Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473951

ABSTRACT

Plant growth exhibits rhythmic characteristics, and gibberellins (GAs) are involved in regulating cell growth, but it is still unclear how GAs crosstalk with circadian rhythm to regulate cell elongation. The study analyzed growth characteristics of wild-type (WT), zmga3ox and zmga3ox with GA3 seedlings. We integrated metabolomes and transcriptomes to study the interaction between GAs and circadian rhythm in mediating leaf elongation. The rates of leaf growth were higher in WT than zmga3ox, and zmga3ox cell length was shorter when proliferated in darkness than light, and GA3 restored zmga3ox leaf growth. The differentially expressed genes (DEGs) between WT and zmga3ox were mainly enriched in hormone signaling and cell wall synthesis, while DEGs in zmga3ox were restored to WT by GA3. Moreover, the number of circadian DEGs that reached the peak expression in darkness was more than light, and the upregulated circadian DEGs were mainly enriched in cell wall synthesis. The differentially accumulated metabolites (DAMs) were mainly attributed to flavonoids and phenolic acid. Twenty-two DAMs showed rhythmic accumulation, especially enriched in lignin synthesis. The circadian DEGs ZmMYBr41/87 and ZmHB34/70 were identified as regulators of ZmHCT8 and ZmBM1, which were enzymes in lignin synthesis. Furthermore, GAs regulated ZmMYBr41/87 and ZmHB34/70 to modulate lignin biosynthesis for mediating leaf rhythmic growth.


Subject(s)
Gibberellins , Zea mays , Gibberellins/metabolism , Zea mays/genetics , Lignin/metabolism , Gene Expression Profiling , Transcriptome , Plant Leaves/metabolism , Circadian Rhythm , Gene Expression Regulation, Plant
2.
Biocell ; 47(10): 2125-2132, 2023.
Article in English | MEDLINE | ID: mdl-37974562

ABSTRACT

Osteoarthritis (OA), the most common form of joint disease, is characterized clinically by joint pain, stiffness, and deformity. OA is now considered a whole joint disease; however, the breakdown of the articular cartilage remains the major hallmark of the disease. Current treatments targeting OA symptoms have a limited impact on impeding or reversing the OA progression. Understanding the molecular and cellular mechanisms underlying OA development is a critical barrier to progress in OA therapy. Recent studies by the current authors' group and others have revealed that the nuclear factor of activated T cell 1 (NFAT1), a member of the NFAT family of transcription factors, regulates the expression of many anabolic and catabolic genes in articular chondrocytes of adult mice. Mice lacking NFAT1 exhibit normal skeletal development but display OA in both appendicular and spinal facet joints as adults. This review mainly focuses on the recent advances in the regulatory role of NFAT1 transcription factor in the activities of articular chondrocytes and its implication in the pathogenesis of OA.

3.
Environ Res ; 236(Pt 1): 116761, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37516265

ABSTRACT

Excessive nitrogen (N) fertilization in agroecological systems increases nitrous oxide (N2O) emissions. 3,4-dimethylpyrazole phosphate (DMPP) is used to mitigate N2O losses. The influence of DMPP efficiency on N2O mitigation was clearly affected by spatiotemporal heterogeneity. Using field and incubation experiments combined with metagenomic sequencing, we aimed to investigate DMPP efficiency and the underlying microbial mechanisms in dark-brown (Siping, SP), fluvo-aquic (Cangzhou, CZ; Xinxiang, XX), and red soil (Wenzhou, WZ) from diverse climatic zones. In the field experiments, the DMPP efficiency in N2O mitigation ranged from 51.6% to 89.9%, in the order of XX, CZ, SP, and WZ. The DMPP efficiency in the incubation experiments ranged from 58.3% to 93.9%, and the order of efficiency from the highest to lowest was the same as that of the field experiments. Soil organic matter, total N, pH, texture, and taxonomic and functional α-diversity were important soil environment and microbial factors for DMPP efficiency. DMPP significantly enriched ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB), which promoted N-cycling with low N2O emissions. Random forest (RF) and regression analyses found that an AOA (Nitrosocosmicus) and NOB (Nitrospina) demonstrated important and positive correlation with DMPP efficiency. Moreover, genes associated with carbohydrate metabolism were important for DMPP efficiency and could influenced N-cycling and DMPP metabolism. The similar DMPP efficiency indicated that the variation in DMPP efficiency was significantly due to soil physicochemical and microbial variations. In conclusion, filling the knowledge gap regarding the response of DMPP efficiency to abiotic and biotic factors could be beneficial in DMPP applications, and in adapting more efficient strategies to improve DMPP efficiency and mitigate N2O emissions in multiple regions.


Subject(s)
Nitrous Oxide , Phosphates , Phosphates/analysis , Dimethylphenylpiperazinium Iodide/metabolism , Bacteria/genetics , Bacteria/metabolism , Soil , China , Ammonia , Nitrites/analysis , Nitrites/metabolism , Soil Microbiology , Fertilizers/analysis
4.
J Exp Bot ; 74(15): 4503-4519, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37170764

ABSTRACT

The lengths of the basal internodes is an important factor for lodging resistance of maize (Zea mays). In this study, foliar application of coronatine (COR) to 10 cultivars at the V8 growth stage had different suppression effects on the length of the eighth internode, with three being categorized as strong-inhibition cultivars (SC), five as moderate (MC), and two as weak (WC). RNA-sequencing of the eighth internode of the cultivars revealed a total of 7895 internode elongation-regulating genes, including 777 transcription factors (TFs). Genes related to the hormones cytokinin, gibberellin, auxin, and ethylene in the SC group were significantly down-regulated compared to WC, and more cell-cycle regulatory factors and cell wall-related genes showed significant changes, which severely inhibited internode elongation. In addition, we used EMSAs to explore the direct regulatory relationship between two important TFs, ZmABI7 and ZmMYB117, which regulate the cell cycle and cell wall modification by directly binding to the promoters of their target genes ZmCYC1, ZmCYC3, ZmCYC7, and ZmCPP1. The transcriptome reported in this study will provide a useful resource for studying maize internode development, with potential use for targeted genetic control of internode length to improve the lodging resistance of maize.


Subject(s)
Indoleacetic Acids , Zea mays , Zea mays/metabolism , Indoleacetic Acids/metabolism , Gibberellins/metabolism , Transcriptome , Sequence Analysis, RNA , Gene Expression Regulation, Plant
5.
J Environ Manage ; 339: 117927, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37075633

ABSTRACT

Straw retention (SR) and organic fertilizer (OF) application contribute to improve soil quality, but it is unclear how the soil microbial assemblage under organic amendments mediate soil biochemical metabolism pathways to perform it. This study collected soil samples from wheat field under different application of fertilizer (chemical fertilizer, as control; SR, and OF) in North China Plain, and systematically investigated the interlinkages among microbe assemblages, metabolites, and physicochemical properties. Results showed that the soil organic carbon (SOC) and permanganate oxidizable organic carbon (LOC) in soil samples followed the trend as OF > SR > control, and the activity of C-acquiring enzymes presented significantly positive correlation with SOC and LOC. In organic amendments, bacteria and fungi community were respectively dominated by deterministic and stochastic processes, while OF exerted more selective pressure on soil microbe. Compared with SR, OF had greater potential to boost the microbial community robustness through increasing the natural connectivity and stimulating fungal taxa activities in inter-kingdom microbial networks. Altogether 67 soil metabolites were significantly affected by organic amendments, most of them belonged to benzenoids (Ben), lipids and lipid-like molecules (LL), and organic acids and derivatives (OA). These metabolites were mainly derived from lipid and amino acid metabolism pathways. A list of keystone genera such as stachybotrys and phytohabitans were identified as important to soil metabolites, SOC, and C-acquiring enzyme activity. Structural equation modeling showed that soil quality properties were closely associated with LL, OA, and PP drove by microbial community assembly and keystone genera. Overall, these findings suggested that straw and organic fertilizer might drive keystone genera dominated by determinism to mediate soil lipid and amino acid metabolism for improving soil quality, which provided new insights into understanding the microbial-mediated biological process in amending soil quality.


Subject(s)
Microbiota , Soil , Soil/chemistry , Carbon/chemistry , Agriculture/methods , Triticum/metabolism , Zea mays/metabolism , Fertilizers/analysis , Soil Microbiology , Amino Acids/metabolism , Lipids
6.
Adv Mater ; 35(33): e2301118, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37120155

ABSTRACT

Porous graphdiynes are a new class of porous 2D materials with tunable electronic structures and various pore structures. They have potential applications as well-defined nanostructured electrodes and can provide platforms for understanding energy storage mechanisms underlying supercapacitors. Herein, the effect of stacking structure and metallicity on energy storage with such electrodes is investigated. Simulations reveal that supercapacitors based on porous graphdiynes of AB stacking structure can achieve both higher double-layer capacitance and ionic conductivity than AA stacking. This phenomenon is ascribed to more intense image forces in AB stacking, leading to a breakdown of ionic ordering and the formation of effective "free ions". Macroscale analysis shows that doped porous graphdiynes can deliver outstanding gravimetric and volumetric energy and power densities due to their enhanced quantum capacitance. These findings pave the way for designing high-performance supercapacitors by regulating pore topology and metallicity of electrode materials.

7.
BMC Plant Biol ; 23(1): 74, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36737696

ABSTRACT

BACKGROUND: Auxin plays a crucial role in nitrate (NO3-)-mediated root architecture, and it is still unclear that if NO3- supply modulates auxin reallocation for regulating root formation in maize (Zea mays L.). This study was conducted to investigate the role of auxin efflux carrier ZmPIN1a in the root formation in response to NO3- supply. RESULTS: Low NO3- (LN) promoted primary root (PR) elongation, while repressed the development of lateral root primordia (LRP) and total root length. LN modulated auxin levels and polar transport and regulated the expression of auxin-responsive and -signaling genes in roots. Moreover, LN up-regulated the expression level of ZmPIN1a, and overexpression of ZmPIN1a enhanced IAA efflux and accumulation in PR tip, while repressed IAA accumulation in LRP initiation zone, which consequently induced LN-mediated PR elongation and LR inhibition. The inhibition rate of PR length, LRP density and number of ZmPIN1a-OE plants was higher than that of wild-type plants after auxin transport inhibitor NPA treatment under NN and LN conditions, and the degree of inhibition of root growth in ZmPIN1a-OE plants was more obvious under LN condition. CONCLUSION: These findings suggest that ZmPIN1a was involved in modulating auxin levels and transport to alter NO3--mediated root formation in maize.


Subject(s)
Indoleacetic Acids , Nitrates , Indoleacetic Acids/metabolism , Nitrates/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant , Biological Transport/genetics , Zea mays/metabolism
8.
J Integr Plant Biol ; 65(3): 703-720, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36511119

ABSTRACT

Water uptake is crucial for crop growth and development and drought stress tolerance. The water channel aquaporins (AQP) play important roles in plant water uptake. Here, we discovered that a jasmonic acid analog, coronatine (COR), enhanced maize (Zea mays) root water uptake capacity under artificial water deficiency conditions. COR treatment induced the expression of the AQP gene Plasma membrane intrinsic protein 2;5 (ZmPIP2;5). In vivo and in vitro experiments indicated that COR also directly acts on ZmPIP2;5 to improve water uptake in maize and Xenopus oocytes. The leaf water potential and hydraulic conductivity of roots growing under hyperosmotic conditions were higher in ZmPIP2;5-overexpression lines and lower in the zmpip2;5 knockout mutant, compared to wild-type plants. Based on a comparison between ZmPIP2;5 and other PIP2s, we predicted that COR may bind to the functional site in loop E of ZmPIP2;5. We confirmed this prediction by surface plasmon resonance technology and a microscale thermophoresis assay, and showed that deleting the binding motif greatly reduced COR binding. We identified the N241 residue as the COR-specific binding site, which may activate the channel of the AQP tetramer and increase water transport activity, which may facilitate water uptake under hyperosmotic stress.


Subject(s)
Aquaporins , Zea mays , Zea mays/genetics , Water/metabolism , Cell Membrane/metabolism , Aquaporins/chemistry , Aquaporins/genetics , Aquaporins/metabolism , Membrane Proteins/metabolism , Plant Roots/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant
9.
Plant Biotechnol J ; 21(7): 1320-1342, 2023 07.
Article in English | MEDLINE | ID: mdl-36435985

ABSTRACT

Nitrogen (N), one of the most important nutrients, limits plant growth and crop yields in sustainable agriculture system, in which phytohormones are known to play essential roles in N availability. Hence, it is not surprising that massive studies about the crosstalk between N and phytohormones have been constantly emerging. In this review, with the intellectual landscape of N and phytohormones crosstalk provided by the bibliometric analysis, we trace the research story of best-known crosstalk between N and various phytohormones over the last 20 years. Then, we discuss how N regulates various phytohormones biosynthesis and transport in plants. In reverse, we also summarize how phytohormones signallings modulate root system architecture (RSA) in response to N availability. Besides, we expand to outline how phytohormones signallings regulate uptake, transport, and assimilation of N in plants. Further, we conclude advanced biotechnology strategies, explain their application, and provide potential phytohormones-regulated N use efficiency (NUE) targets in crops. Collectively, this review provides not only a better understanding on the recent progress of crosstalk between N and phytohormones, but also targeted strategies for improvement of NUE to increase crop yields in future biotechnology breeding of crops.


Subject(s)
Nitrogen , Plant Growth Regulators , Plant Breeding , Crops, Agricultural , Biotechnology
10.
Front Plant Sci ; 13: 978304, 2022.
Article in English | MEDLINE | ID: mdl-36247603

ABSTRACT

Improving crop salt tolerance is an adaptive measure to climate change for meeting future food demands. Previous studies have reported that glycine betaine (GB) plays critical roles as an osmolyte in enhancing plant salt resistance. However, the mechanism underlying the GB regulating plant Na+ homeostasis during response to salinity is poorly understood. In this study, hydroponically cultured maize with 125 mM NaCl for inducing salinity stress was treated with 100 µM GB. We found that treatment with GB improved the growth of maize plants under non-stressed (NS) and salinity-stressed (SS) conditions. Treatment with GB significantly maintained the properties of chlorophyll fluorescence, including Fv/Fm, ΦPSII, and ΦNPQ, and increased the activity of the antioxidant enzymes for mitigating salt-induced growth inhibition. Moreover, GB decreased the Na+/K+ ratio primarily by reducing the accumulation of Na+ in plants. The results of NMT tests further confirmed that GB increased Na+ efflux from roots under SS condition, and fluorescence imaging of cellular Na+ suggested that GB reduced the cellular allocation of Na+. GB additionally increased Na+ efflux in leaf protoplasts under SS condition, and treatment with sodium orthovanadate, a plasma membrane (PM) H+-ATPase inhibitor, significantly alleviated the positive effects of GB on Na+ efflux under salt stress. GB significantly improved the vacuolar activity of NHX but had no significant effects on the activity of V type H+-ATPases. In addition, GB significantly upregulated the expression of the PM H+-ATPase genes, ZmMHA2 and ZmMHA4, and the Na+/H+ antiporter gene, ZmNHX1. While, the V type H+-ATPases gene, ZmVP1, was not significantly regulated by GB. Altogether these results indicate that GB regulates cellular Na+ homeostasis by enhancing PM H+-ATPases gene transcription and protein activities to improve maize salt tolerance. This study provided an extended understanding of the functions of GB in plant responses to salinity, which can help the development of supportive measures using GB for obtaining high maize yield in saline conditions.

11.
Front Plant Sci ; 13: 921245, 2022.
Article in English | MEDLINE | ID: mdl-35795348

ABSTRACT

Dodder (Cuscuta spp.) species are obligate parasitic flowering plants that totally depend on host plants for growth and reproduction and severely suppress hosts' growth. As a rootless and leafless plant, excised dodder shoots exhibit rapid growth and elongation for several days to hunt for new host stems, and parasitization could be reestablished. This is one unique ability of the dodder to facilitate its success in nature. Clearly, excised dodder stems have to recycle stored nutrients to elongate as much as possible. However, the mechanism of stored nutrient recycling in the in vitro dodder shoots is still poorly understood. Here, we found that dodder is a carbohydrate-rich holoparasitic plant. During the in vitro dodder shoot development, starch was dramatically and thoroughly degraded in the dodder shoots. Sucrose derived from starch degradation in the basal stems was transported to the shoot tips, in which EMP and TCA pathways were activated to compensate for carbon demand for the following elongation according to the variations of sugar content related to the crucial gene expression, and the metabolomics analysis. Additionally, antioxidants were significantly accumulated in the shoot tips in contrast to those in the basal stems. The variations of phytohormones (jasmonic acid, indole-3-acetic acid, and abscisic acid) indicated that they played essential roles in this process. All these data suggested that starch and sucrose degradation, EMP and TCA activation, antioxidants, and phytohormones were crucial and associated with the in vitro dodder shoot elongation.

12.
BMC Plant Biol ; 22(1): 346, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842577

ABSTRACT

BACKGROUND: Low grain water content (GWC) at harvest of maize (Zea mays L.) is essential for mechanical harvesting, transportation and storage. Grain drying rate (GDR) is a key determinant of GWC. Many quantitative trait locus (QTLs) related to GDR and GWC have been reported, however, the confidence interval (CI) of these QTLs are too large and few QTLs has been fine-mapped or even been cloned. Meta-QTL (MQTL) analysis is an effective method to integrate QTLs information in independent populations, which helps to understand the genetic structure of quantitative traits. RESULTS: In this study, MQTL analysis was performed using 282 QTLs from 25 experiments related GDR and GWC. Totally, 11 and 34 MQTLs were found to be associated with GDR and GWC, respectively. The average CI of GDR and GWC MQTLs was 24.44 and 22.13 cM which reduced the 57 and 65% compared to the average QTL interval for initial GDR and GWC QTL, respectively. Finally, 1494 and 5011 candidate genes related to GDR and GWC were identified in MQTL intervals, respectively. Among these genes, there are 48 genes related to hormone metabolism. CONCLUSIONS: Our studies combined traditional QTL analyses, genome-wide association study and RNA-seq to analysis major locus for regulating GWC in maize.


Subject(s)
Quantitative Trait Loci , Zea mays , Chromosome Mapping/methods , Dehydration/genetics , Edible Grain/metabolism , Genome-Wide Association Study , Hormones/analysis , Hormones/metabolism , Phenotype , Quantitative Trait Loci/genetics , Water/metabolism , Zea mays/genetics , Zea mays/metabolism
13.
Lab Med ; 53(4): 360-368, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35075477

ABSTRACT

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) frequently coexist and can act synergistically to drive adverse outcomes of one another. This study aimed to unravel the metabolomic changes in patients with NAFLD and T2DM, to identify potential noninvasive biomarkers, and to provide insights for understanding the link between NAFLD and T2DM. METHODS: Three hundred participants aged 35 to 70 years who were diagnosed with NAFLD (n = 100), T2DM (n = 100), or a comorbidity of NAFLD and T2DM (n = 100) were included in this study. Anthropometrics and routine blood chemistry were assessed after overnight fast. The global serum metabolomic analysis was performed by ultra-performance liquid chromatography-Orbitrap mass spectrometry. Multivariate data analysis methods were utilized to identify the potential biomarkers. RESULTS: A set of serum biomarkers that could effectively separate NAFLD from NAFLD + T2DM and T2DM from NAFLD + T2DM were identified. We found that patients with coexisting NAFLD and T2DM had significantly higher levels of total protein (TP), triglycerides (TG), glucose in urine, and gamma-hydroxybutyric acid than those with NAFLD and had significant increased levels of TP, albumin, alanine aminotransferase, aspartate aminotransferase, total cholesterol, cholinesterase, TG, low-density lipoprotein, and apolipoprotein A when compared to patients with T2DM. CONCLUSION: The metabolomics results provide evidence that the comorbidity of NAFLD and T2DM considerably altered patients' metabolomics patterns compared to those of patients with only NAFLD or T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Biomarkers , Chromatography, Liquid , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Humans , Mass Spectrometry , Metabolomics/methods , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology
14.
Sci Total Environ ; 806(Pt 3): 151225, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34715210

ABSTRACT

Nitrous oxide (N2O) is a pollutant released from agriculture soils following N fertilizer application. N stabilizers, such as N-(n-butyl) thiophosphoric triamide (NBPT) and 3,4-dimethylpyrazole phosphate (DMPP) could mitigate these N2O emissions when applied with fertilizer. Here, field experiments were conducted to investigate the microbial mechanisms by which NBPT and DMPP mitigate N2O emissions following urea application. We determined dynamic N2O emissions and inorganic N concentrations for two wheat seasons and combined this with metagenomic sequencing. Application of NBPT, DMPP, and both NBPT and DMPP together with urea decreased mean N2O accumulative emissions by 77.8, 91.4 and 90.7%, respectively, compared with urea application alone, mainly via repressing the increase in NO2- concentration after N fertilization. Sequencing results indicated that urea application enriched microorganisms that were positively correlated with N2O production, whereas N stabilizers enriched microorganisms that were negatively correlated with N2O production. Furthermore, compared to urea application alone, NBPT with urea reduced the abundances of genes related to denitrification, including napA/nasA, nirS/nirK, and norBC, resulting in a higher soil NO3- pool. Conversely, DMPP application, either alone or together with NBPT, decreased the abundance of genes involved in ammonia oxidation and denitrification, including amoCAB, hao, napA/nasA, nirS/nirK, and norBC, and maintained a greater soil NH4+ pool. Both N stabilizers resulted in similar abundances of nirABD-which is related to NO2- reducers-as when no N fertilizer was applied, which could prevent NO2- accumulation, consequently mitigating N2O emissions. These findings suggest that the high effectiveness of N stabilizers on mitigating N2O emissions could be attributed to changes to soil microbial communities and N-cycling functional genes to control the by-product or intermediate products of microbial N-cycling processes in agricultural soils.


Subject(s)
Fertilizers , Nitrous Oxide , Agriculture , Fertilizers/analysis , Nitrogen/analysis , Nitrous Oxide/analysis , Soil , Soil Microbiology
15.
J Exp Bot ; 72(18): 6659-6671, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34161578

ABSTRACT

Potassium deficiency causes severe losses in yield and quality in crops. Mepiquat chloride, a plant growth regulator, can increase K+ uptake in cotton (Gossypium hirsutum), but the underlying physiological mechanisms remain unclear. In this study, we used a non-invasive micro-test technique to measure K+ and H+ fluxes in the root apex with or without inhibitors of K+ channels, K+ transporters, non-selective cation channels, and plasma membrane H+-ATPases. We found that soaking seeds in mepiquat chloride solution increased the K+ influx mediated by K+ channels and reduced the K+ efflux mediated by non-selective cation channels in cotton seedlings. Mepiquat chloride also increased negative membrane potential (Em) and the activity of plasma membrane H+-ATPases in roots, due to higher levels of gene expression and protein accumulation of plasma membrane H+-ATPases as well as phosphorylation of H+-ATPase 11 (GhAHA11). Thus, plasma membrane hyperpolarization mediated by H+-ATPases was able to stimulate the activity of K+ channels in roots treated with mepiquat chloride. In addition, reduced K+ efflux under mepiquat chloride treatment was associated with reduced accumulation of H2O2 in roots. Our results provide important insights into the mechanisms of mepiquat chloride-induced K+ uptake in cotton and hence have the potential to help in improving K nutrition for enhancing cotton production.


Subject(s)
Gibberellins , Gossypium , Cell Membrane , Gossypium/genetics , Hydrogen Peroxide , Piperidines , Plant Roots , Proton-Translocating ATPases
16.
BMC Plant Biol ; 21(1): 202, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33906598

ABSTRACT

BACKGROUND: Lodging is one of the important factors causing maize yield. Plant height is an important factor in determining plant architecture in maize (Zea mays L.), which is closely related to lodging resistance under high planting density. Coronatine (COR), which is a phytotoxin and produced by the pathogen Pseudomonas syringae, is a functional and structural analogue of jasmonic acid (JA). RESULTS: In this study, we found COR, as a new plant growth regulator, could effectively reduce plant height and ear height of both hybrids (ZD958 and XY335) and inbred (B73) maize by inhibiting internode growth during elongation, thus improve maize lodging resistance. To study gene expression changes in internode after COR treatment, we collected spatio-temporal transcriptome of inbred B73 internode under normal condition and COR treatment, including the three different regions of internode (fixed, meristem and elongation regions) at three different developmental stages. The gene expression levels of the three regions at normal condition were described and then compared with that upon COR treatment. In total, 8605 COR-responsive genes (COR-RGs) were found, consist of 802 genes specifically expressed in internode. For these COR-RGs, 614, 870, 2123 of which showed expression changes in only fixed, meristem and elongation region, respectively. Both the number and function were significantly changed for COR-RGs identified in different regions, indicating genes with different functions were regulated at the three regions. Besides, we found more than 80% genes of gibberellin and jasmonic acid were changed under COR treatment. CONCLUSIONS: These data provide a gene expression profiling in different regions of internode development and molecular mechanism of COR affecting internode elongation. A putative schematic of the internode response to COR treatment is proposed which shows the basic process of COR affecting internode elongation. This research provides a useful resource for studying maize internode development and improves our understanding of the COR regulation mechanism based on plant height.


Subject(s)
Amino Acids/pharmacology , Gibberellins/pharmacology , Indenes/pharmacology , Plant Growth Regulators/pharmacology , Pseudomonas syringae/chemistry , Transcriptome , Zea mays/genetics , Cyclopentanes/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Oxylipins/pharmacology , Plant Stems/drug effects , Plant Stems/genetics , Plant Stems/growth & development , Zea mays/drug effects , Zea mays/growth & development
17.
Am J Chin Med ; 49(3): 705-718, 2021.
Article in English | MEDLINE | ID: mdl-33657990

ABSTRACT

Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF) in the Western world, with limited treatment opportunities. 3,5,7,4[Formula: see text]-Tetrahydroxyflavanone (Dihydrokaempferol, DHK, Aromadendrin) is a flavonoid isolated from Chinese herbs and displays high anti-oxidant and anti-inflammatory capacities. In this study, we investigated the protective effect by DHK against APAP-induced liver injury in vitro and in vivo and the potential mechanism of action. Cell viability assays were used to determine the effects of DHK against APAP-induced liver injury. The levels of reactive oxygen species (ROS), serum alanine/aspartate aminotransferases (ALT/AST), liver myeloperoxidase (MPO), and malondialdehyde (MDA) were measured and analyzed to evaluate the effects of DHK on APAP-induced liver injury. Western blotting, immunofluorescence staining, RT-PCR, and Transmission Electron Microscope were carried out to detect the signaling pathways affected by DHK. Here, we found that DHK owned a protective effect on APAP-induced liver injury with a dose-dependent manner. Meanwhile, Western blotting showed that DHK promoted SIRT1 expression and autophagy, activated the NRF2 pathway, and inhibited the translocation of nuclear p65 (NF-[Formula: see text]B) in the presence of APAP. Furthermore, SIRT1 inhibitor EX-527 aggravated APAP-induced hepatotoxicity when treating with DHK. Molecular docking results suggested potential interaction between DHK and SIRT1. Taken together, our study demonstrates that DHK protects against APAP-induced liver injury by activating the SIRT1 pathway, thereby promoting autophagy, reducing oxidative stress injury, and inhibiting inflammatory responses.


Subject(s)
Acetaminophen/adverse effects , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/prevention & control , Flavonoids/pharmacology , Flavonoids/therapeutic use , Phytotherapy , Signal Transduction/drug effects , Signal Transduction/genetics , Sirtuin 1/metabolism , Alanine Transaminase/metabolism , Anti-Inflammatory Agents , Antioxidants , Aspartate Aminotransferases/metabolism , Autophagy/drug effects , Cells, Cultured , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/chemistry , Flavonoids/isolation & purification , Gene Expression/drug effects , Humans , Malondialdehyde/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Sirtuin 1/genetics
18.
Trials ; 22(1): 123, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33557898

ABSTRACT

BACKGROUND: Neck pain is a common clinical disease, which seriously affects people's mental health and quality of life and results in loss of social productivity. Improving neck pain's curative effect and reducing its recurrence rate are major medical problems. Shi's manipulation therapy has unique advantages and technical features that aid in the diagnosis and treatment of neck pain. Compared with first-line non-steroidal anti-inflammatory drug (NSAID) treatment of neck pain, Shi's cervical manipulation lacks the relevant research basis of therapeutic advantage, safety, and satisfaction for treating acute and subacute neck pain. Herein, we aim to confirm our hypothesis in a clinical trial that the safety and efficacy of Shi's cervical manipulation will be more effective, safer, and more satisfactory than NSAIDs to treat acute and subacute neck pain. METHODS: In this multicenter, positive-controlled, randomized clinical trial, traditional analgesic drug (NSAID) is used to evaluate and show that Shi's manipulation is more effective, safe, and satisfactory for treating acute and subacute neck pain. Overall, 240 subjects are randomly divided into the trial and control groups, with both groups treated by the corresponding main intervention method for up to 12 weeks. Clinical data will be collected before the intervention and immediately after the first treatment; at 3 days and 1, 2, 4, 8, and 12 weeks after the intervention; and at 26 and 52 weeks after treatment follow-up of clinical observation index data collection. The clinical observation indices are as follows: (1) cervical pain is the primary observation index, measured by Numerical Rating Scale. The secondary indices include the following: (2) cervical dysfunction index, measured by patient self-evaluation using cervical Neck Disability Index; (3) cervical activity measurement, measured by the cervical vertebra mobility measurement program of Android mobile phone system; (4) overall improvement, measured by patient self-evaluation with SF-36; and (5) satisfactory treatment, determined by patient self-evaluation. DISCUSSION: We will discuss whether Shi's cervical manipulation has greater advantages in efficacy, safety, and satisfaction of acute and subacute neck pain than traditional NSAIDs, to provide a scientific basis for the dissemination and application of Shi's cervical manipulation. TRIAL REGISTRATION: China Registered Clinical Trial Registration Center ChiCTR1900021371 . Registered on 17 February 2019.


Subject(s)
Manipulation, Spinal , Neck Pain , China , Humans , Manipulation, Spinal/adverse effects , Multicenter Studies as Topic , Neck Pain/diagnosis , Neck Pain/therapy , Quality of Life , Randomized Controlled Trials as Topic , Treatment Outcome
19.
New Phytol ; 230(2): 698-709, 2021 04.
Article in English | MEDLINE | ID: mdl-33458815

ABSTRACT

Rice (Oryza sativa) is the staple food for over half the world's population. Drought stress imposes major constraints on rice yields. Intriguingly, labdane-related diterpenoid (LRD) phytoalexins in maize (Zea mays) affect drought tolerance, as indicated by the increased susceptibility of an insertion mutant of the class II diterpene cyclase ZmCPS2/An2 that initiates such biosynthesis. Rice also produces LRD phytoalexins, utilizing OsCPS2 and OsCPS4 to initiate a complex metabolic network. For genetic studies of rice LRD biosynthesis the fast-growing Kitaake cultivar was selected for targeted mutagenesis via CRISPR/Cas9, with an initial focus on OsCPS2 and OsCPS4. The resulting cps2 and cps4 knockout lines were further crossed to create a cps2x4 double mutant. Both CPSs also were overexpressed. Strikingly, all of the cv Kitaake cps mutants exhibit significantly increased susceptibility to drought, which was associated with reduced stomatal closure that was evident even under well-watered conditions. However, CPS overexpression did not increase drought resistance, and cps mutants in other cultivars did not alter susceptibility to drought, although these also exhibited lesser effects on LRD production. The results suggest that LRDs may act as a regulatory switch that triggers stomatal closure in rice, which might reflect the role of these openings in microbial entry.


Subject(s)
Biological Products , Diterpenes , Oryza , Droughts , Oryza/genetics , Plant Proteins/genetics , Zea mays
20.
Plant Sci ; 303: 110770, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33487354

ABSTRACT

Dodder is a holoparasitic flowering plant that re-establishes parasitism with the host when broken off from the host. However, how in vitro dodder shoots recycle stored nutrients to maintain growth for reparasitizing hosts is not well characterized. Here, the spatial and temporal distribution characteristics of carbohydrates and reactive oxygen species (ROS) were analysed to explore the mechanism of recycling stored nutrients in dodder shoots in vitro. Our results showed that in vitro dodder shoots grew actively for more than 10 d, while dry mass decreased continuously. During this process, the transcript levels and activities of amylases gradually increased until 2 d and then declined in basal stems, which induced starch degradation at the tissue, cellular and subcellular levels. Additionally, the distribution characteristics of H2O2 and the activities and transcript levels of antioxidant enzymes indicated that shoot tips exhibited more robust ROS-scavenging capacity, and basal stems maintained higher ROS accumulation. Comparative proteomics analysis revealed that starch in basal stems acted as an energy source, and the glycolysis, TCA cycle and pentose phosphate pathway represented the energy supply for shoot tip elongation with time. These results indicated that efficient nutrient recycling and ROS modulation facilitated the parasitism of dodder grown in vitro by promoting shoot elongation growth to reach the host.


Subject(s)
Antioxidants/metabolism , Carbon/metabolism , Cuscuta/growth & development , Plant Shoots/growth & development , Carbohydrate Metabolism , Cuscuta/metabolism , Cuscuta/ultrastructure , Microscopy, Electron, Transmission , Plant Shoots/metabolism , Plant Shoots/ultrastructure , Proteomics , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...