Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Food Sci ; 89(4): 2450-2464, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462851

ABSTRACT

Fermented foods have shown promise in preventing or treating ulcerative colitis (UC) via regulating intestinal flora and correcting metabolic disorders. However, the prevention effect of fermented Wallace melon juice (FMJ) on UC is unclear. In this study, the effects of FMJ on dextran sodium sulfate (DSS)-induced UC were investigated via 16S rRNA sequencing and non-targeted metabolomics. The results showed that FMJ was effective in alleviating the symptoms of UC, reducing histological damage and oxidative stress, decreasing the levels of pro-inflammatory cytokines. After FMJ treatment, the level of propionic acid, butyric acid, and valeric acid increased by 14.1%, 44.4%, and 52.4% compared to DSS-induced UC mice. Meanwhile, the levels of harmful bacteria such as Oscillospira, Bacteroidetes, and Erysipelotrichaceae and Clostridium decreased, while the levels of beneficial bacteria such as Akkermansia, Lactobacillus, and Bifidobacterium increased. Fecal metabolomics analysis identified 31 differential metabolites, which could regulate metabolic disorders in UC mice by controlling the primary bile acid biosynthesis, purine metabolism, and pantothenate and CoA biosynthesis pathway. Additionally, the abundances of butyric acid, bile acids, and pantothenic acid were positively correlated with Allobaculum, Bifidobacterium, and other beneficial bacteria (R2 > 0.80, p < 0.01). The results indicated that FMJ played a role in regulating the structure of intestinal flora, which in turn helped in repairing metabolic disorders and alleviated colitis inflammation.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Metabolic Diseases , Animals , Mice , Lactobacillus , Colitis, Ulcerative/chemically induced , Dextran Sulfate/adverse effects , RNA, Ribosomal, 16S , Butyric Acid , Bifidobacterium , Firmicutes , Mice, Inbred C57BL , Disease Models, Animal , Colon
2.
Nanomaterials (Basel) ; 13(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446530

ABSTRACT

Spatially resolved photoluminescence at the sub-micro scale was used to study the optical non-uniformity of the micro-LED under varied power density excitation levels. The trend of the efficiency along injection levels were found to be highly dependent on the location of the chip mesa. The sidewall was 80% lower than the center under low-power density excitation, but was 50% higher under high-power density excitation. The external quantum efficiency droop at the center and the sidewall was 86% and 52%, respectively. A 2 µm band area near the sidewall was characterized where the efficiency and its trends changed rapidly. Beyond such band, the full width at half maximum and peak wavelength variation across the chip varied less than 1 nm, indicating high uniformity of the material composition. The sudden change = in the band, especially under high level excitation indicates the indium composition change formed by ion residues on the sidewall affect the distribution of charge carriers. These findings contribute to the understanding of cause of efficiency disadvantage and non-uniformity problems in small-size micro-LEDs.

3.
Theor Appl Genet ; 136(5): 122, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142873

ABSTRACT

KEY MESSAGE: A metal transporter ZmNRAMP6 was identified by using a trait-associated co-expression network analysis at a genome-wide level. ZmNRAMP6 confers maize sensitivity to Pb by accumulating it to maize shoots. ZmNRAMP6 knockout detains Pb in roots, activates antioxidant enzymes, and improves Pb tolerance. Lead (Pb) is one of the most toxic heavy metal pollutants, which can penetrate plant cells via root absorption and thus cause irreversible damages to the human body through the food chain. To identify the key gene responsible for Pb tolerance in maize, we performed a trait-associated co-expression network analysis at a genome-wide level, using two maize lines with contrasting Pb tolerances. Finally, ZmNRAMP6 that encodes a metal transporter was identified as the key gene among the Pb tolerance-associated co-expression module. Heterologous expression of ZmNRAMP6 in yeast verified its role in Pb transport. Combined Arabidopsis overexpression and maize mutant analysis suggested that ZmNRAMP6 conferred plant sensitivity to Pb stress by mediating Pb distribution across the roots and shoots. Knockout of ZmNRAMP6 caused Pb retention in the roots and activation of the antioxidant enzyme system, resulting in an increased Pb tolerance in maize. ZmNRAMP6 was likely to transport Pb from the roots to shoots and environment. An integration of yeast one-hybrid and dual-luciferase reporter assay uncovered that ZmNRAMP6 was negatively regulated by a known Pb tolerance-related transcript factor ZmbZIP54. Collectively, knockout of ZmNRAMP6 will aid in the bioremediation of contaminated soil and food safety guarantee of forage and grain corn.


Subject(s)
Plant Roots , Soil Pollutants , Humans , Plant Roots/metabolism , Zea mays/physiology , Antioxidants/metabolism , Lead/toxicity , Lead/metabolism , Saccharomyces cerevisiae , Soil Pollutants/metabolism
4.
Theor Appl Genet ; 136(4): 93, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37010631

ABSTRACT

KEY MESSAGE: Combined GWAS, WGCNA, and gene-based association studies identified the co-expression network and hub genes for maize EC induction. ZmARF23 bound to ZmSAUR15 promoter and regulated its expression, affecting EC induction. Embryonic callus (EC) induction in immature maize embryos shows high genotype dependence, which limits the application of genetic transformation in transgenic breeding and gene function elucidation in maize. Herein, we conducted a genome-wide association mapping (GWAS) for four EC induction-related traits, namely rate of embryonic callus induction (REC), increased callus diameter (ICD), ratio of shoot formation (RSF), and length of shoot (LS) across different environments. A total of 77 SNPs were significantly associated these traits under three environments and using the averages (across environments). Among these significant SNPs, five were simultaneously detected under multiple environments and 11 had respective phenotypic variation explained > 10%. A total of 257 genes were located in the linkage disequilibrium decay of these REC- and ICD-associated SNPs, of which 178 were responsive to EC induction. According to the expression values of the 178 genes, we performed a weighted gene co-expression network analysis (WGCNA) and revealed an EC induction-associated module and five hub genes. Hub gene-based association studies uncovered that the intragenic variations in GRMZM2G105473 and ZmARF23 influenced EC induction efficiency among different maize lines. Dual-luciferase reporter assay indicated that ZmARF23 bound to the promoter of a known causal gene (ZmSAUR15) for EC induction and positively regulated its expression on the transcription level. Our study will deepen the understanding of genetic and molecular mechanisms underlying EC induction and contribute to the use of genetic transformation in maize.


Subject(s)
Genome-Wide Association Study , Zea mays , Zea mays/genetics , Zea mays/metabolism , Plant Breeding , Chromosome Mapping , Phenotype , Polymorphism, Single Nucleotide
5.
Theor Appl Genet ; 136(1): 12, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36662253

ABSTRACT

KEY MESSAGE: Combined linkage and association analysis revealed five co-localized genetic loci across multiple environments. The key gene Zm00001d026491 was further verified to influence leaf length by candidate gene association analysis. Leaf morphology and number determine the canopy structure and thus affect crop yield. Herein, the genetic basis and key genes for 25 leaf-related traits, including leaf lengths (LL), leaf widths (LW), and leaf areas (LA) of eight continuous leaves under the tassel, and the number of leaves above the primary ear (LAE), were dissected by using an association panel and a biparental population. Using an intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, 290 quantitative trait loci (QTL) controlling these traits were detected across different locations, among which 115 QTL were individually repeatedly identified in at least two environments. Using the association panel, 165 unique significant single-nucleotide polymorphisms (SNPs) were associated with target traits (P < 2.15E-06), of which 35 were separately detected across multiple environments. In total, 42 pleiotropic QTL/SNPs (pQTL/SNPs) were responsible for at least two of the LL, LW, LA, and LAE traits across multiple environments. Combining the QTL mapping and association study, five unique SNPs were located within the confidence intervals of seven QTL, and 77 genes were identified based on the linkage disequilibrium regions of co-localized SNP loci. Gene-based association studies verified that the intragenic variants in the candidate gene Zm00001d026491 influenced LL of the third leaf counted from the top node. These findings will provide vital information to understanding the genetic basis of leaf-related traits and help to cultivate maize varieties with ideal plant architecture.


Subject(s)
Quantitative Trait Loci , Zea mays , Zea mays/genetics , Genetic Linkage , Chromosome Mapping , Phenotype , Polymorphism, Single Nucleotide , Plant Leaves/genetics
6.
Int J Biol Macromol ; 225: 518-525, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36395950

ABSTRACT

In this study, a novel active chitosan (CH) packaging film that incorporates garlic leaf extract (GL) and stem cellulose nanocrystals (CNC) was prepared. The addition of CNC to the CH film increased its tensile strength, hydrophilicity, thermal stability, and water/oxygen barrier and decreased its water contact angle and weight-loss rate, while the addition of GL greatly enhanced its antioxidant and antibacterial activities. SEM and AFM analyses showed that the CNC agglomerates and deposits in the lower layer and the surface roughness of the film was the highest at 1.2 % concentration. The optimal composition of the film was determined to be 0.8 % CNC and 4 % GL by the fuzzy mathematics evaluation method. Then, black garlic was preserved with the optimized coating by electrostatic spraying and was found to slow water loss and migration, while its excellent antioxidant activities decreased the degree of browning during 90 d of storage.


Subject(s)
Chitosan , Garlic , Nanoparticles , Antioxidants/pharmacology , Antioxidants/chemistry , Chitosan/chemistry , Cellulose/chemistry , Static Electricity , Water/chemistry , Nanoparticles/chemistry , Plant Extracts/pharmacology
7.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499409

ABSTRACT

Ear shank length (ESL) has significant effects on grain yield and kernel dehydration rate in maize. Herein, linkage mapping and genome-wide association study were combined to reveal the genetic architecture of maize ESL. Sixteen quantitative trait loci (QTL) were identified in the segregation population, among which five were repeatedly detected across multiple environments. Meanwhile, 23 single nucleotide polymorphisms were associated with the ESL in the association panel, of which four were located in the QTL identified by linkage mapping and were designated as the population-common loci. A total of 42 genes residing in the linkage disequilibrium regions of these common variants and 12 of them were responsive to ear shank elongation. Of the 12 genes, five encode leucine-rich repeat receptor-like protein kinases, proline-rich proteins, and cyclin11, respectively, which were previously shown to regulate cell division, expansion, and elongation. Gene-based association analyses revealed that the variant located in Cyclin11 promoter affected the ESL among different lines. Cyclin11 showed the highest expression in the ear shank 15 days after silking among diverse tissues of maize, suggesting its role in modulating ESL. Our study contributes to the understanding of the genetic mechanism underlying maize ESL and genetic modification of maize dehydration rate and kernel yield.


Subject(s)
Genome-Wide Association Study , Zea mays , Zea mays/genetics , Phenotype , Chromosome Mapping , Quantitative Trait Loci , Polymorphism, Single Nucleotide , Genetic Linkage
8.
Front Plant Sci ; 13: 1015151, 2022.
Article in English | MEDLINE | ID: mdl-36226300

ABSTRACT

Lead (Pb) is a highly toxic contaminant to living organisms and the environment. Excessive Pb in soils affects crop yield and quality, thus threatening human health via the food chain. Herein, we investigated Pb tolerance among a maize association panel using root bushiness (BSH) under Pb treatment as an indicator. Through a genome-wide association study of relative BSH, we identified four single nucleotide polymorphisms (SNPs) and 30 candidate genes associated with Pb tolerance in maize seedlings. Transcriptome analysis showed that four of the 30 genes were differentially responsive to Pb treatment between two maize lines with contrasting Pb tolerance. Among these, the ZmbZIP107 transcription factor was confirmed as the key gene controlling maize tolerance to Pb by using gene-based association studies. Two 5' UTR_variants in ZmbZIP107 affected its expression level and Pb tolerance among different maize lines. ZmbZIP107 protein was specifically targeted to the nucleus and ZmbZIP107 mRNA showed the highest expression in maize seedling roots among different tissues. Heterologous expression of ZmbZIP107 enhanced rice tolerance to Pb stress and decreased Pb absorption in the roots. Our study provided the basis for revelation of the molecular mechanism underlying Pb tolerance and contributed to cultivation of Pb-tolerant varieties in maize.

9.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36234514

ABSTRACT

The differences in spatially optical properties between blue and green quantum wells (QWs) in a monolithic dual-wavelength semipolar (20-21) structure were investigated by scanning near-field optical microscopy (SNOM). The shortest wavelength for green QWs and the longest wavelength for blue QWs were both discovered in the region with the largest stress. It demonstrated that In composition, compared to stress, plays a negligible role in defining the peak wavelength for blue QWs, while for green QWs, In composition strongly affects the peak wavelength. For green QWs, significant photoluminescence enhancement was observed in the defect-free region, which was not found for blue QWs. Furthermore, the efficiency droop was aggravated in the defect-free region for green QWs but reduced for blue QWs. It indicates that carrier delocalization plays a more important role in the efficiency droop for QWs of good crystalline quality, which is experimentally pointed out for the first time.

10.
BMC Med Genomics ; 15(1): 188, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064700

ABSTRACT

BACKGROUND: 46,XX male disorders of sex development are rare. Approximately 80% of cases of testicular tissue differentiation may be due to translocation of SRY to the X chromosome or an autosome. SRY-negative 46,XX males show overexpression of pro-testis genes, such as SOX9 and SOX3, or failure of pro-ovarian genes, such as WNT4 and RSPO1, which induces testis differentiation, however, almost all testicles exhibit dysgenesis. Following inadequate exposure to androgens during the embryo stage, remnants of the Mullerian duct and incomplete closure of the urogenital sinus lead to enlargement of prostatic utricles. This condition is associated with proximal hypospadias and disorders of sex development. Many cases are asymptomatic, but show increased rates of postoperative complications and surgical failure. CASE PRESENTATION: A 5-year-old Chinese boy with scrotal hypospadias and bilateral cryptorchidism with prostatic utricles was presented. Gonadal histology showed ovo-testicular tissue on the right side and testicular tissue on the left side; all testicular tissue exhibited dysgenesis. Furthermore, chromosome karyotype analysis revealed 46,XX and, the presence of SRY was ruled out by polymerase chain reaction analysis. Whole-genome analysis showed the boy has a 1.4-Mb duplication in the Xq27.1q27.2 region (arr[hg19]Xq27.1q27.2:139585794-140996652) involving SOX3. No SOX3 duplication was observed in the parents, who had a normal phenotype. CONCLUSIONS: We report the first case of an SRY-negative 46 XX male with prostatic utricle caused by SOX3 duplication. SOX3 duplication may cause sex reversal, and all 46,XX SRY-negative males should be screened for SOX3 mutations. Gonadal biopsy is recommended to evaluate ovarian and testicular tissue development. Testicular dysgenesis and low exposure to male hormones during fetal development can lead to enlarged prostatic utricles. Thus endoscopic examination should be performed preoperatively to detect prostatic utricles in SRY-negative 46,XX males to determine the surgical plan and reduce postoperative complications.


Subject(s)
Disorders of Sex Development , Hypospadias , Disorders of Sex Development/pathology , Humans , Male , Postoperative Complications/pathology , SOXB1 Transcription Factors/genetics , Saccule and Utricle , Testis
11.
Int J Mol Sci ; 23(17)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36077153

ABSTRACT

Salinization seriously threatens the normal growth of maize, especially at the seedling stage. Recent studies have demonstrated that circular RNAs (circRNAs) play vital roles in the regulation of plant stress resistance. Here, we performed a genome-wide association study (GWAS) on the survival rate of 300 maize accessions under a salt stress treatment. A total of 5 trait-associated SNPs and 86 candidate genes were obtained by the GWAS. We performed RNA sequencing for 28 transcriptome libraries derived from 2 maize lines with contrasting salt tolerance under normal and salt treatment conditions. A total of 1217 highly expressed circRNAs were identified, of which 371 were responsive to a salt treatment. Using PCR and Sanger sequencing, we verified the reliability of these differentially expressed circRNAs. An integration of the GWAS and RNA-Seq analyses uncovered two differentially expressed hub genes (Zm00001eb013650 and Zm00001eb198930), which were regulated by four circRNAs. Based on these results, we constructed a regulation model of circRNA/miRNA/mRNA that mediated salt stress tolerance in maize. By conducting hub gene-based association analyses, we detected a favorable haplotype in Zm00001eb198930, which was responsible for high salt tolerance. These results help to clarify the regulatory relationship between circRNAs and their target genes as well as to develop salt-tolerant lines for maize breeding.


Subject(s)
RNA, Circular , Zea mays , Gene Expression Profiling , Genome-Wide Association Study , Plant Breeding , RNA, Circular/genetics , Reproducibility of Results , Salt Tolerance/genetics , Transcriptome , Zea mays/genetics
12.
Int J Mol Sci ; 23(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35955919

ABSTRACT

The ability of immature embryos to induce embryogenic callus (EC) is crucial for genetic transformation in maize, which is highly genotype-dependent. To dissect the genetic basis of maize EC induction, we conducted QTL mapping for four EC induction-related traits, the rate of embryogenic callus induction (REC), rate of shoot formation (RSF), length of shoot (LS), and diameter of callus (DC) under three environments by using an IBM Syn10 DH population derived from a cross of B73 and Mo17. These EC induction traits showed high broad-sense heritability (>80%), and significantly negative correlations were observed between REC and each of the other traits across multiple environments. A total of 41 QTLs for EC induction were identified, among which 13, 12, 10, and 6 QTLs were responsible for DC, RSF, LS, and REC, respectively. Among them, three major QTLs accounted for >10% of the phenotypic variation, including qLS1-1 (11.54%), qLS1-3 (10.68%), and qREC4-1 (11.45%). Based on the expression data of the 215 candidate genes located in these QTL intervals, we performed a weighted gene co-expression network analysis (WGCNA). A combined use of KEGG pathway enrichment and eigengene-based connectivity (KME) values identified the EC induction-associated module and four hub genes (Zm00001d028477, Zm00001d047896, Zm00001d034388, and Zm00001d022542). Gene-based association analyses validated that the variations in Zm00001d028477 and Zm00001d034388, which were involved in tryptophan biosynthesis and metabolism, respectively, significantly affected EC induction ability among different inbred lines. Our study brings novel insights into the genetic and molecular mechanisms of EC induction and helps to promote marker-assisted selection of high-REC varieties in maize.


Subject(s)
Quantitative Trait Loci , Zea mays , Chromosome Mapping , Genes, Plant , Phenotype , Zea mays/genetics , Zea mays/metabolism
13.
Plants (Basel) ; 11(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956467

ABSTRACT

Low moisture content (MC) and high dehydration rate (DR) at physiological maturity affect grain mechanical harvest, transport, and storage. In this study, we used an association panel composed of 241 maize inbred lines to analyze ear moisture changes at physiological maturity stage. A genome-wide association study revealed nine significant SNPs and 91 candidate genes. One SNP (SYN38588) was repeatedly detected for two traits, and 15 candidate genes were scanned in the linkage disequilibrium regions of this SNP. Of these, genes Zm00001d020615 and Zm00001d020623 were individually annotated as a polygalacturonase (PG) and a copper transporter 5.1 (COPT5.1), respectively. Candidate gene association analysis showed that three SNPs located in the exons of Zm00001d020615 were significantly associated with the dehydration rate, and AATTAA was determined as the superior haplotype. All these findings suggested that Zm00001d020615 was a key gene affecting moisture changes of maize at the physiological maturity stage. These results have demonstrated the genetic basis of ear moisture changes in maize and indicated a superior haplotype for cultivating maize varieties with low moisture content and high dehydration rates.

14.
NeuroRehabilitation ; 51(2): 283-289, 2022.
Article in English | MEDLINE | ID: mdl-35723120

ABSTRACT

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that has been widely used for hand function recovery in patients with subacute and chronic stroke. OBJECTIVE: To observe the effect of low-frequency repetitive transcranial magnetic stimulation (rTMS) combined with functional electrical stimulation (FES) on hand function recovery during convalescence of stroke. METHODS: Patients were divided into3 groups of 20 patients in each. All patients received routine training. rTMS group was treated with low-frequency repetitive transcranial magnetic stimulation (rTMS). FES group received functional electrical stimulation (FES) therapy. Observation group was treated with low-frequency rTMS and FES. The changes of TMS-MEP in the 3 groups were observed at the time of enrollment and after 2 courses of treatment, respectively, and the total active activity of fingers (TAM) and Fugl-Meyer assessment (FMA) rating scale were evaluated in wrist and hand parts. RESULTS: The amplitude of TMS-MEP was significantly higher than that of FES group. FMA score and TAM score in the observation group were significantly better than that of rTMS group and FES group. CONCLUSION: Low-frequency rTMS combined with FES treatment can effectively improve the range of motion of fingers, and significantly improve the grasp, pinching and other functions of hands.


Subject(s)
Stroke Rehabilitation , Stroke , Electric Stimulation , Humans , Recovery of Function/physiology , Stroke Rehabilitation/methods , Transcranial Magnetic Stimulation/methods , Treatment Outcome
15.
J Palliat Med ; 25(12): 1802-1809, 2022 12.
Article in English | MEDLINE | ID: mdl-35749724

ABSTRACT

Background: Although the importance of intensive care unit (ICU) nurse initiative in end-of-life (EOL) decision making has been confirmed, there are few studies on the nurses' initiative in EOL situations. Objectives: To explore the role and mechanism of facilitators/barriers and perceived stress on the behavior of ICU nurses that initiate EOL decision making (i.e., initiative behavior). Design: This research adopted a cross-sectional descriptive design. Setting/Participants: A questionnaire composed of demographics, facilitators/barriers scale, perceived stress scale, and initiative behavior for EOL decision-making scale was used for registered ICU nurses in five tertiary general hospitals in Zhejiang Province, China. Results: The average score of the EOL decision initiative behavior was 5.54 on a range of 2-10. The results of correlation analysis indicated that the facilitators promote the initiative behavior, whereas the barriers interfere with initiative behavior. Facilitators/barriers in the EOL decision-making process significantly predicted the initiative behavior of ICU nurses in decision making (ß = 0.698, p < 0.001). Facilitators/barriers had a significant indirect effect on the initiative behavior of ICU nurses through perceived stress. The 95% confidence interval was (-0.327 to -0.031), and the mediating effect of perceived stress accounted for 6.31% of the total effect. Conclusion: In the EOL context, the decision initiative of ICU nurses was at a medium level. Medical managers should implement intervention strategies based on the path that affects the initiative behavior of ICU nurses to reduce barriers and stress level in the decision-making process. That is, they should improve inter-team collaboration, nurse-patient communication, clarity of role responsibilities, and emotional support in dying situations to increase initiative and participation of ICU nurses in decision making.


Subject(s)
Death , Intensive Care Units , Humans , Cross-Sectional Studies , China
16.
Theor Appl Genet ; 134(10): 3305-3318, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34218289

ABSTRACT

KEYMESSAGE: Two hub genes GRMZM2G075104 and GRMZM2G333183 involved in salt tolerance were identified by GWAS and WGCNA. Furthermore, they were verified to affect salt tolerance by candidate gene association analysis. Salt stress influences maize growth and development. To decode the genetic basis and hub genes controlling salt tolerance is a meaningful exploration for cultivating salt-tolerant maize varieties. Herein, we used an association panel consisting of 305 lines to identify the genetic loci responsible for Na+- and K+-related traits in maize seedlings. Under the salt stress, seven significant single nucleotide polymorphisms were identified using a genome-wide association study, and 120 genes were obtained by scanning the linkage disequilibrium regions of these loci. According to the transcriptome data of the above 120 genes under salinity treatment, we conducted a weighted gene co-expression network analysis. Combined the gene annotations, two SNaC/SKC (shoot Na+ content/shoot K+ content)-associated genes GRMZM2G075104 and GRMZM2G333183 were finally identified as the hub genes involved in salt tolerance. Subsequently, these two genes were verified to affect salt tolerance of maize seedlings by candidate gene association analysis. Haplotypes TTGTCCG-CT and CTT were determined as favorable/salt-tolerance haplotypes for GRMZM2G075104 and GRMZM2G333183, respectively. These findings provide novel insights into genetic architectures underlying maize salt tolerance and contribute to the cultivation of salt-tolerant varieties in maize.


Subject(s)
Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Salt Tolerance , Seedlings/physiology , Stress, Physiological , Zea mays/physiology , Genome, Plant , Genome-Wide Association Study , Linkage Disequilibrium , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Seedlings/genetics , Transcriptome , Zea mays/genetics
17.
Physiol Plant ; 172(4): 2170-2180, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34028036

ABSTRACT

Microelements are necessary for plant growth and development, they control key processes of physiological metabolism. Herein, we evaluated three accumulation-related performances for each of the four microelements (Fe, Zn, Cu, and Mn) among 305 inbred maize lines. Quantification of these microelements in maize roots and shoots revealed abundant phenotypic variations in the association panel, with the variation coefficients ranging from 0.31 to 0.76. Principal component analysis (PCA) of the three related traits (concentration in root, concentration in shoot, and transport coefficient) showed that PC1 and PC2 explained >95% of phenotypic variations for each element. The scores of PC1 and PC2 were thereby used for a genome-wide association study by combining 44,134 SNPs of this panel. A total of 27, 1, 5, and 3 SNPs were significantly (P < .05) associated with Zn-PC1, Zn-PC2, Cu-PC1, and Mn-PC2, respectively, with 11 genes closely linked (r2 > 0.8) to these SNPs. Of them, GRMZM2G142870, GRMZM2G045531, and GRMZM2G143512 were individually annotated as ABC transporter C family member 14, zinc transporter 3, and heavy metal ATPase10. A candidate gene association analysis further verified that GRMZM2G142870 and GRMZM2G045531 affect Zn and Mn accumulations, respectively. Evaluation of contrasting allele ratios in elite lines indicated that the majority of the alleles correlating with higher Zn or Cu had not been utilized in maize breeding. Integration of more "higher-accumulation" alleles in the elite lines will be practical for improving Zn and Cu accumulations in maize. Our findings contribute to genetic revelation and molecular marker-assisted selection of microelement accumulations in maize.


Subject(s)
Genome-Wide Association Study , Zea mays , Phenotype , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis , Seedlings/genetics , Zea mays/genetics
18.
Front Plant Sci ; 12: 585174, 2021.
Article in English | MEDLINE | ID: mdl-33868323

ABSTRACT

RGB1, a subunit of heterotrimeric G protein, plays important roles in regulating grain size and weight of rice. However, the molecular mechanisms underlying controlling grain filling process by G protein are still largely unclear. In the present study, we show that RGB1 controls not only the grain size but also the grain filling process. Knock-down of RGB1 significantly delayed grain development and reduced starch accumulation and grain weight, which was closely related to the delayed and the lower expression of genes encoding sucrose metabolism and starch biosynthesis related enzymes during grain filling stage. Suppression of RGB1 expression also resulted in the lower auxin content in grains, which was correlated with the lower expression of OsNF-YB1 and OsYUC11 during grain filling stage. Further biochemical evidence showed that OsYUC11 expression was under control of OsNF-YB1 by its interaction with promoter of OsYUC11. Taken together, we propose that RGB1 controls rice grain development and grain filling process by changing auxin homeostasis in endosperm cells. OsNF-YB1, which acts as a key downstream effector of RGB1, interacts directly with the promoter of OsYUC11 and stimulates the OsYUC11 expression, thereby regulating auxin biosynthesis and starch accumulation and grain size.

19.
Int. j. clin. health psychol. (Internet) ; 20(3): 271-281, sept.-dic. 2020. tab
Article in English | IBECS | ID: ibc-201613

ABSTRACT

BACKGROUND/OBJECTIVE: The goal of this study is to establish a Chinese version of the End-of-Life Decision Making and Associated Staff Stress Questionnaire to assess its reliability and validity. METHOD: A sample of 119 Intensive Care Unit physicians and 485 nurses in China completed the questionnaire, along with questionnaires assessing motional exhaustion subscale, Stress Overload Scale, and other variables associated with end-of-life decision. RESULTS: Seven factors obtained via exploratory factor analysis could explain 70.61% of the total variance. Confirmatory factor analysis demonstrated an acceptable model fit with Root Mean Square Error of Approximation (RMSEA) being .078 and Standardized Root Mean Square Residual (SRMR) being .066. Validity evidence based on relationships with other variables was provided by positive or negative correlations between the questionnaire subscales and emotional exhaustion, stress overload, and other variables associated with end-of-life decision. The average content validity index was .96. The Cronbach's Alpha and test–retest reliability was outstanding. CONCLUSIONS: The Chinese version of the End-of-Life Decision Making and Associated Staff Stress Questionnaire is a reliable and valid instrument for measuring the facilitators and hinders to facilitate the end-of-life decision-making, communication and the associated pressure perceived by relevant Intensive Care Unit medical staff among the Chinese population


ANTECEDENTES/OBJETIVO: El objetivo de este estudio es obtener una versión china del End-of-Life Decision Making and Associated Staff Stress Questionnaire. MÉTODO: Una muestra de 119 médicos de la Unidad de Cuidados Intensivos y 485 enfermeras chinas completaron el cuestionario, junto con cuestionarios para evaluar el agotamiento por movimiento, la sobrecarga de estrés y otras variables asociadas con la decisión del final del la vida. RESULTADOS: Siete factores obtenidos a través del análisis factorial exploratorio explican el 70,61% de la varianza total. El análisis factorial confirmatorio mostró un modelo de cuatro factores con ajuste satisfactorio (RMSEA = .078; SRMR = .066). Las evidencias de validez basadas en las relaciones con otras variables fue demostrada por correlaciones con agotamiento emocional, sobrecarga de estrés y otras variables asociadas con la decisión de fin de la vida. El índice de validez de contenido promedio fue de 0,96. Los coeficientes de fiabilidad de consistencia interna y test-retest fueron buenos. CONCLUSIONES: Se trata de un instrumento que aporta medidas fiables y válidas para la percepción del fin de la vida por el personal médico chino de las unidades de cuidados intensivos


Subject(s)
Humans , Decision Making , Surveys and Questionnaires , Terminal Care , Translations , Cross-Cultural Comparison , Psychometrics , Factor Analysis, Statistical , Health Personnel , China
20.
Int J Clin Health Psychol ; 20(3): 271-281, 2020.
Article in English | MEDLINE | ID: mdl-32994800

ABSTRACT

BACKGROUND/OBJECTIVE: The goal of this study is to establish a Chinese version of the End-of-Life Decision Making and Associated Staff Stress Questionnaire to assess its reliability and validity. METHOD: A sample of 119 Intensive Care Unit physicians and 485 nurses in China completed the questionnaire, along with questionnaires assessing motional exhaustion subscale, Stress Overload Scale, and other variables associated with end-of-life decision. RESULTS: Seven factors obtained via exploratory factor analysis could explain 70.61% of the total variance. Confirmatory factor analysis demonstrated an acceptable model fit with Root Mean Square Error of Approximation (RMSEA) being .078 and Standardized Root Mean Square Residual (SRMR) being .066. Validity evidence based on relationships with other variables was provided by positive or negative correlations between the questionnaire subscales and emotional exhaustion, stress overload, and other variables associated with end-of-life decision. The average content validity index was .96. The Cronbach's α and test-retest reliability was outstanding. CONCLUSIONS: The Chinese version of the End-of-Life Decision Making and Associated Staff Stress Questionnaire is a reliable and valid instrument for measuring the facilitators and hinders to facilitate the end-of-life decision-making, communication and the associated pressure perceived by relevant Intensive Care Unit medical staff among the Chinese population.


ANTECEDENTES/OBJETIVO: El objetivo de este estudio es obtener una versión china del End-of-Life Decision Making and Associated Staff Stress Questionnaire. MÉTODO: Una muestra de 119 médicos de la Unidad de Cuidados Intensivos y 485 enfermeras chinas completaron el cuestionario, junto con cuestionarios para evaluar el agotamiento por movimiento, la sobrecarga de estrés y otras variables asociadas con la decisión del final del la vida. RESULTADOS: Siete factores obtenidos a través del análisis factorial exploratorio explican el 70,61% de la varianza total. El análisis factorial confirmatorio mostró un modelo de cuatro factores con ajuste satisfactorio (RMSEA = .078; SRMR = .066). Las evidencias de validez basadas en las relaciones con otras variables fue demostrada por correlaciones con agotamiento emocional, sobrecarga de estrés y otras variables asociadas con la decisión de fin de la vida. El índice de validez de contenido promedio fue de 0,96. Los coeficientes de fiabilidad de consistencia interna y test-retest fueron buenos. CONCLUSIONES: Se trata de un instrumento que aporta medidas fiables y válidas para la percepción del fin de la vida por el personal médico chino de las unidades de cuidados intensivos.

SELECTION OF CITATIONS
SEARCH DETAIL
...