Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
Virulence ; 15(1): 2350775, 2024 12.
Article in English | MEDLINE | ID: mdl-38736041

ABSTRACT

OBJECTIVES: The translocation of intestinal flora has been linked to the colonization of diverse and heavy lower respiratory flora in patients with septic ARDS, and is considered a critical prognostic factor for patients. METHODS: On the first and third days of ICU admission, BALF, throat swab, and anal swab were collected, resulting in a total of 288 samples. These samples were analyzed using 16S rRNA analysis and the traceability analysis of new generation technology. RESULTS: On the first day, among the top five microbiota species in abundance, four species were found to be identical in BALF and throat samples. Similarly, on the third day, three microbiota species were found to be identical in abundance in both BALF and throat samples. On the first day, 85.16% of microorganisms originated from the throat, 5.79% from the intestines, and 9.05% were unknown. On the third day, 83.52% of microorganisms came from the throat, 4.67% from the intestines, and 11.81% were unknown. Additionally, when regrouping the 46 patients, the results revealed a significant predominance of throat microorganisms in BALF on both the first and third day. Furthermore, as the disease progressed, the proportion of intestinal flora in BALF increased in patients with enterogenic ARDS. CONCLUSIONS: In patients with septic ARDS, the main source of lung microbiota is primarily from the throat. Furthermore, the dynamic trend of the microbiota on the first and third day is essentially consistent.It is important to note that the origin of the intestinal flora does not exclude the possibility of its origin from the throat.


Subject(s)
Bacteria , Bronchoalveolar Lavage Fluid , Microbiota , Pharynx , RNA, Ribosomal, 16S , Respiratory Distress Syndrome , Sepsis , Humans , Male , Female , Respiratory Distress Syndrome/microbiology , Middle Aged , Pharynx/microbiology , RNA, Ribosomal, 16S/genetics , Bronchoalveolar Lavage Fluid/microbiology , Aged , Sepsis/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Pulmonary Alveoli/microbiology , Adult , Intensive Care Units , Gastrointestinal Microbiome
2.
Mol Cell Biochem ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748384

ABSTRACT

Axis inhibitor protein 1 (AXIN1) is a protein recognized for inhibiting tumor growth and is commonly involved in cancer development. In this study, we explored the potential molecular mechanisms that connect alternative splicing of AXIN1 to the metastasis of hepatocellular carcinoma (HCC). Transcriptome sequencing, RT‒PCR, qPCR and Western blotting were utilized to determine the expression levels of AXIN1 in human HCC tissues and HCC cells. The effects of the AXIN1 exon 9 alternative splice isoform and SRSF9 on the migration and invasion of HCC cells were assessed through wound healing and Transwell assays, respectively. The interaction between SRSF9 and AXIN1 was investigated using UV crosslink RNA immunoprecipitation, RNA pulldown, and RNA immunoprecipitation assays. Furthermore, the involvement of the AXIN1 isoform and SRSF9 in HCC metastasis was validated in a nude mouse model. AXIN1-L (exon 9 including) expression was downregulated, while AXIN1-S (exon 9 skipping) was upregulated in HCC. SRSF9 promotes the production of AXIN1-S by interacting with the sequence of exons 8 and 10 of AXIN1. AXIN1-S significantly promoted HCC cells migration and invasion by activating the Wnt pathway, while the opposite effects were observed for AXIN1-L. In vivo experiments demonstrated that AXIN1-L inhibited HCC metastasis, whereas SRSF9 promoted HCC metastasis in part by regulating the level of AXIN1-S. AXIN1, a tumor suppressor protein that targets the AXIN1/Wnt/ß-catenin signaling axis, may be a promising prognostic factor and a valuable therapeutic target for HCC.

3.
Oral Dis ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38462960

ABSTRACT

OBJECTIVES: To explore the effects of cathepsin K (CTSK) inhibition on type H vessel formation and alveolar bone resorption within periodontitis. METHODS: Conditioned media derived from preosteoclasts pretreated with the CTSK inhibitor odanacatib (ODN), ODN supplemented small interfering RNA targeting PDGF-BB (si-PDGF-BB), or PBS were prepared, to assess their proangiogenic effects on endothelial cells (HUVECs). A series of angiogenic-related assays were conducted to evaluate HUVEC proliferation, migration, and tube formation abilities in vitro. In addition, qRT-PCR and Western blot assays were employed to examine the expression levels of genes/proteins related to PDGF-BB/PDGFR-ß axis components. A mouse periodontitis model was established to evaluate the effects of CTSK inhibition on type H vessel formation. RESULTS: CTSK inhibition promoted PDGF-BB secretion from preosteoclasts and proliferation, migration, and tube formation activities of HUVECs in vitro. However, the conditioned medium from preosteoclasts pretreated by si-PDGF-BB impaired the angiogenic activities of HUVECs. This promoted angiogenesis function by CTSK inhibition may be mediated by the PDGF-BB/PDGFR-ß axis. Functionally, in vivo studies demonstrated that CTSK inhibition significantly accelerated type H vessel formation and alleviated bone loss within periodontitis. CONCLUSION: CTSK inhibition promotes type H vessel formation and attenuates alveolar bone resorption within periodontitis via PDGF-BB/PDGFR-ß axis.

4.
Sci Total Environ ; 923: 171475, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38453063

ABSTRACT

Climbazole is an azole biocide that has been widely used in formulations of personal care products. Climbazole can cause developmental toxicity and endocrine disruption as well as gut disturbance in aquatic organisms. However, the mechanisms behind gut toxicity induced by climbazole still remain largely unclear in fish. Here, we evaluate the gut effects by exposing grass carp (Ctenopharyngodon idella) to climbazole at levels ranging from 0.2 to 20 µg/L for 42 days by evaluating gene transcription and expression, biochemical analyses, correlation network analysis, and molecular docking. Results showed that climbazole exposure increased cyp1a mRNA expression and ROS level in the three treatment groups. Climbazole also inhibited Nrf2 and Keap1 transcripts as well as proteins, and suppressed the transcript levels of their subordinate antioxidant molecules (cat, sod, and ho-1), increasing oxidative stress. Additionally, climbazole enhanced NF-κB and iκBα transcripts and proteins, and the transcripts of NF-κB downstream pro-inflammatory factors (tnfα, and il-1ß/6/8), leading to inflammation. Climbazole increased pro-apoptosis-related genes (fadd, bad1, and caspase3), and decreased anti-apoptosis-associated genes (bcl2, and bcl-xl), suggesting a direct reaction to apoptosis. The molecular docking data showed that climbazole could form stable hydrogen bonds with CYP1A. Mechanistically, our findings suggested that climbazole can induce inflammation and oxidative stress through CYP450s/ROS/Nrf2/NF-κB pathways, resulting in cell apoptosis in the gut of grass carp.


Subject(s)
Carps , Dietary Supplements , Imidazoles , Animals , Dietary Supplements/analysis , Diet , NF-kappa B , Kelch-Like ECH-Associated Protein 1/metabolism , Immunity, Innate , Azoles/toxicity , NF-E2-Related Factor 2/metabolism , Molecular Docking Simulation , Reactive Oxygen Species/metabolism , Signal Transduction , Fish Proteins/genetics , Fish Proteins/metabolism , Inflammation/chemically induced , Inflammation/veterinary , Oxidative Stress , Apoptosis , Carps/metabolism
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167114, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447883

ABSTRACT

AIMS: Exchange protein directly activated by cAMP 1 (EPAC1), a major isoform of guanine nucleotide exchange factors, is highly expressed in vascular endothelia cells and regulates angiogenesis in the retina. High intratumor microvascular densities (MVD) resulting from angiogenesis is responsible for breast cancer development. Downregulation of EPAC1 in tumor cell reduces triple-negative breast cancer (TNBC)-induced angiogenesis. However, whether Epac1 expressed in vascular endothelial cells contributes to angiogenesis and tumor development of TNBC remains elusive. MAIN METHODS: We employed NY0123, a previously identified potent EPAC inhibitor, to explore the anti-angiogenic biological role of EPAC1 in vitro and in vivo through vascular endothelial cells, rat aortic ring, Matrigel plug, and chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) assays, as well as the in vivo xenograft tumor models of TNBC in both chick embryo and mice. KEY FINDINGS: Inhibiting EPAC1 in vascular endothelial cells by NY0123 significantly suppresses angiogenesis and tumor growth of TNBC. In addition, NY0123 possesses a better inhibitory efficacy than ESI-09, a reported specific EPAC inhibitor tool compound. Importantly, inhibiting EPAC1 in vascular endothelia cells regulates the typical angiogenic signaling network, which is associated with not only vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor-2 (VEGFR2) signaling, but also PI3K/AKT, MEK/ERK and Notch pathway. CONCLUSIONS: Our findings support that EPAC1 may serve as an effective anti-angiogenic therapeutic target of TNBC, and EPAC inhibitor NY0123 has the therapeutic potential to be developed for the treatment of TNBC.


Subject(s)
Guanine Nucleotide Exchange Factors , Neovascularization, Pathologic , Triple Negative Breast Neoplasms , Animals , Chick Embryo , Humans , Mice , Rats , Endothelial Cells/metabolism , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Phosphatidylinositol 3-Kinases , Triple Negative Breast Neoplasms/blood supply , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Vascular Endothelial Growth Factor A/metabolism , Neovascularization, Pathologic/drug therapy
6.
Head Face Med ; 20(1): 12, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368383

ABSTRACT

BACKGROUND: The surgically facilitated orthodontic strategy has been a promising strategy for orthodontic treatment recently. Therefore, the present meta-analysis was conducted to assess the available scientific evidence regarding the clinical outcomes, including the potential detrimental effects associated with these surgical procedures, with the aim of providing much more evidence-based information for clinical practice. METHODS: An electronic search of three databases (PubMed, Cochrane, and Embase) and a manual search of relevant articles published up to May 2023 were carried out. Clinical trials (≥ 10 subjects) that utilized surgically facilitated orthodontic strategies with clinical and/or radiographic outcomes were included. Meta-analyses and sub-group analyses were performed to analyze the standardized mean difference (SMD) or weighted mean difference (WMD), and confidence interval (CI) for the recorded variables. RESULTS: Nineteen studies published from Oct 2012 to May 2023 met the inclusion criteria. Based on the analysis outcomes, corticotomy treatment significantly decreased the alignment duration (WMD: -1.08 months; 95% CI = -1.65, -0.51 months, P = 0.0002), and accelerated the canine movement (WMD: 0.72 mm; 95% CI = 0.63, 0.81 mm, P < 0.00001) compared to the traditional orthodontic group. The periodontally accelerated osteogenic orthodontic (PAOO) strategy markedly reduced the total treatment duration (SMD: -1.98; 95% CI = -2.59, -1.37, P < 0.00001) and increased the bone thickness (SMD:1.07; 95% CI = 0.74, 1.41, P < 0.00001) compared to traditional orthodontic treatment. CONCLUSION: The present study suggests that facilitated orthodontic treatment in terms of corticotomy and PAOO strategy may represent attractive and effective therapeutic strategy for orthodontic patients.


Subject(s)
Osteogenesis , Tooth Movement Techniques , Humans , Tooth Movement Techniques/methods , Dental Care , Osteotomy/methods , Time Factors
7.
Article in English | MEDLINE | ID: mdl-38341953

ABSTRACT

Antiviral treatment for COVID-19 is considered an effective tool in reducing the rate of severe cases and deaths. As of June 2023, a total of six small molecule antiviral drugs have been conditionally approved for marketing by the National Medical Products Administration (NMPA) within China. In this study, a method of HPLC-MS/MS was established and validated for the determination of six small molecule antiviral drugs in plasma using Lamivudine as an internal standard. The chromatographic separation was performed using gradient elution with an ACE 3 C18-PFP column (3.0 mm × 150 mm, 3 µm), and the mobile phase consisted of deionized water and acetonitrile/water (90:10, v/v), both with 10 mmol/L of ammonium acetate and 0.1 % ammonium hydroxide added. Quantitative analysis of the six small molecule drugs was carried out through selective reaction monitoring based on the positive ion spray ionization mode. The method exhibited excellent precision, accuracy, recovery, and linearity, and it was used to determine the pharmacokinetic characteristics in rats. Our work not only established a bioanalytical method for six small molecule antiviral drugs but also provided scientific references for clinical pharmacokinetic studies.


Subject(s)
COVID-19 , Liquid Chromatography-Mass Spectrometry , Rats , Animals , Chromatography, Liquid/methods , Pharmaceutical Preparations , Tandem Mass Spectrometry/methods , SARS-CoV-2 , Reproducibility of Results , Chromatography, High Pressure Liquid/methods , Water , Antiviral Agents
8.
J Hazard Mater ; 465: 133463, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38219582

ABSTRACT

Azole antifungal climbazole has frequently been detected in aquatic environments and shows various effects in fish. However, the underlying mechanism of toxicity through the gut-brain axis of climbazole is unclear. Here, we investigated the effects of climbazole at environmental concentrations on the microbiota-intestine-brain axis in grass carp via histopathological observation, gene expression and biochemical analyses, and high-throughput sequencing of the 16 S rRNA. Results showed that exposure to 0.2 to 20 µg/L climbazole for 42 days significantly disrupted gut microbiota and caused brain neurotoxicity in grass carp. In this study, there was an alteration in the phylum and genus compositions in the gut microbiota following climbazole treatment, including reducing Fusobacteria (e.g., Cetobacterium) and increasing Actinobacteria (e.g., Nocardia). Climbazole disrupted intestinal microbial abundance, leading to increased levels of lipopolysaccharide and tumor necrosis factor-alpha in the gut, serum, and brain. They passed through the impaired intestinal barrier into the circulation and caused the destruction of the blood-brain barrier through the gut-brain axis, allowing them into the brain. In the brain, climbazole activated the nuclear factor kappaB pathway to increase inflammation, and suppressed the E2-related factor 2 pathway to produce oxidative damage, resulting in apoptosis, which promoted neuroinflammation and neuronal death. Besides, our results suggested that this neurotoxicity was caused by the breakdown of the microbiota-gut-brain axis, mediated by reduced concentrations of dopamine, short chain fatty acids, and intestinal microbial activity induced by climbazole.


Subject(s)
Carps , Fungicides, Industrial , Imidazoles , Animals , Brain-Gut Axis , Azoles
9.
Light Sci Appl ; 12(1): 292, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38052775

ABSTRACT

Biomarker detection is key to identifying health risks. However, designing sensitive and single-use biosensors for early diagnosis remains a major challenge. Here, we report submonolayer lasers on optical fibers as ultrasensitive and disposable biosensors. Telecom optical fibers serve as distributed optical microcavities with high Q-factor, great repeatability, and ultralow cost, which enables whispering-gallery laser emission to detect biomarkers. It is found that the sensing performance strongly depends on the number of gain molecules. The submonolayer lasers obtained a six-order-of-magnitude improvement in the lower limit of detection (LOD) when compared to saturated monolayer lasers. We further achieve an ultrasensitive immunoassay for a Parkinson's disease biomarker, alpha-synuclein (α-syn), with a lower LOD of 0.32 pM in serum, which is three orders of magnitude lower than the α-syn concentration in the serum of Parkinson's disease patients. Our demonstration of submonolayer biolaser offers great potentials in high-throughput clinical diagnosis with ultimate sensitivity.

10.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2374-2382, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37899102

ABSTRACT

The rhizosphere effect of plants affects soil organic carbon (SOC) mineralization. It is still unclear for the mechanism by which the rhizosphere effect of dominant plants in secondary broadleaved forest habitats invaded by moso bamboo affects SOC mineralization. Taking broadleaved tree species (Quercus glauca and Cunninghamia lanceolata) and moso bamboo, dominating respectively in uninvaded secondary broadleaved forest and bamboo forest formed after the invasion as test materials, we investigated rhizosphere effect of plants on the SOC mineralization in laboratory incubation experiments. The results showed that carbon mineralization rates of Phyllostachys edulis (PE), Quercus glauca (QG) and Cunninghamia lanceolata (CL) rhizosphere soils were 20%, 26%, and 21% higher than bulk soils, respectively. Carbon mineralization of bulk soils of QG and CL was 22% and 26% higher, while that of rhizosphere soils was 14% and 11% higher than PE, respectively. The contents of water-soluble organic carbon and organic carbon in rhizosphere soils of the three species were significantly higher than those of bulk soil, and the abundance of rhizosphere soil bacteria was higher than that of non-rhizosphere. The contents of microbial biomass carbon, water-soluble organic carbon, and total nitrogen were important factors influencing carbon mineralization in rhizosphere, while water-soluble organic carbon and microbial metabolic quotient were important factors influencing carbon mineralization in non-rhizosphere. On the whole, the rhizosphere effect increased total SOC mineralization, driving by changes in microbial biomass carbon, water-soluble organic carbon, and total nitrogen content. The results could provide a theoretical basis for plant-soil interaction on soil carbon cycling in bamboo invasion habitats.


Subject(s)
Carbon , Trees , Carbon/analysis , Rhizosphere , Soil , Forests , Poaceae , Plants , Nitrogen/analysis , Bacteria , Water , Soil Microbiology , China
11.
Aquat Toxicol ; 263: 106698, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37722153

ABSTRACT

Climbazole, an azole, is widely used in personal care products, pharmaceuticals, and pesticides and is frequently detected in surface water. Climbazole has showed endocrine-disrupting effects. However, the effects of climbazole in fish are still largely unclear. In this study, grass carp (Ctenopharyngodon idella) and liver cell lines (L8824 cells) were treated with climbazole at concentrations ranging from 0.2 to 20 µg/L for 42 days in vivo and 24 h in vitro to evaluate the effects on the liver, respectively. Pathological, biochemical, and gene transcription and expression analyses were conducted to examine the hepatotoxicity. Our results showed that climbazole significantly decreased the hepatosomatic index, caused cell apoptosis in vivo and in vitro, and finally accumulated lipids in the liver. Beside, climbazole increased ROS levels, reduced Nrf2 and Keap1 mRNA and protein levels, and further decreased transcription of Nrf2-dependent downstream antioxidant enzyme genes, causing oxidative stress. Moreover, climbazole increased transcription and protein levels of apoptosis-related genes. Finally, climbazole damaged mitochondrial function and structure, disrupted liver lipid metabolism. Overall, climbazole caused hepatotoxicity, leading to a high ecological risk for aquatic organisms.

12.
Sci Total Environ ; 904: 166933, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37709096

ABSTRACT

China's takeaway food industry is growing rapidly, and bringing unprecedented demand for plastic packaging, which results in serious plastic pollution and increasing emissions of plasticizers of phthalate esters (PAEs) and greenhouse gases (GHGs). This study assesses the current and future situation of plastic usage for takeaway food packaging in China, and also analyzes the PAEs and GHG emissions brought by these plastics under different scenarios. From 2010 to 2020, the plastic usage grew from 2.92 to 101 × 104 tons, and brought 112-3845 kg PAEs and 43.6-1438 kt CO2e GHG emissions. Their distribution exhibited a clear 'two-line' pattern: higher features mostly located in Beijing-Guangzhou and Beijing-Shanghai railways. The socio-economic factors model performed better than the growth rate model for plastic usage prediction from 2021 to 2060. It is predicted that 40.6 Mt. plastic would be consumed in 2060, and they will bring 155 tons PAEs and 37.0 Mt. CO2e GHGs. At that time, biodegradable plastic replaced or plastic cycling cannot significantly contribute to national carbon reduction, unless using a temperature change of 2 °C scenario. Our work improves the understanding of PAEs and GHG emission from plastic pollution, and provides insight into long-term dynamics in the plastics management of takeaway food industry.


Subject(s)
Environmental Pollution , Greenhouse Gases , China , Plasticizers , Food Industry , Plastics
13.
Front Immunol ; 14: 1168848, 2023.
Article in English | MEDLINE | ID: mdl-37545520

ABSTRACT

Histone deacetylase 6 (HDAC6), an almost exclusively cytoplasmic enzyme, plays an essential role in many biological processes and exerts its deacetylation-dependent/independent effects on a variety of target molecules, which has contributed to the flourishing growth of relatively isoform-specific enzyme inhibitors. Renal transplantation (RT) is one of the alternatively preferred treatments and the most cost-effective treatment approaches for the great majority of patients with end-stage renal disease (ESRD). HDAC6 expression and activity have recently been shown to be increased in kidney disease in a number of studies. To date, a substantial amount of validated studies has identified HDAC6 as a pivotal modulator of innate and adaptive immunity, and HDAC6 inhibitors (HDAC6i) are being developed and investigated for use in arrays of immune-related diseases, making HDAC6i a promising therapeutic candidate for the management of a variety of renal diseases. Based on accumulating evidence, HDAC6i markedly open up new avenues for therapeutic intervention to protect against oxidative stress-induced damage, tip the balance in favor of the generation of tolerance-related immune cells, and attenuate fibrosis by inhibiting multiple activations of cell profibrotic signaling pathways. Taken together, we have a point of view that targeting HDAC6 may be a novel approach for the therapeutic strategy of RT-related complications, including consequences of ischemia-reperfusion injury, induction of immune tolerance in transplantation, equilibrium of rejection, and improvement of chronic renal graft interstitial fibrosis after transplantation in patients. Herein, we will elaborate on the unique function of HDAC6, which focuses on therapeutical mechanism of action related to immunological events with a general account of the tantalizing potential to the clinic.


Subject(s)
Histone Deacetylase 6 , Kidney Diseases , Kidney Transplantation , Humans , Fibrosis , Histone Deacetylase 6/antagonists & inhibitors , Signal Transduction
14.
Lasers Med Sci ; 38(1): 184, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37578665

ABSTRACT

The aim of this study is to systematically summarize the available evidence regarding low-level laser therapy (LLLT) speed-up effect on dental alignment in comprehensive orthodontic treatment. An extensive electronic search was conducted in PubMed, ScienceDirect, Cochrane, Web of Science, and Scopus up to February 20, 2023. The Cochrane risk of bias tool and the Newcastle-Ottawa Quality Assessment Form were used by two authors independently to assess the risk of bias (RoB). Statistical analysis was performed by Review Manager 5.3. The eight eligible trials were reviewed and included in qualitative synthesis. Four studies reported the overall time of leveling and alignment (OLAT, days), enabling a synthesizing of the data. The meta-analysis results showed that LLLT significantly reduced the overall time of leveling and alignment compared to control group (MD=-30.36, 95% CI range -41.50 to -19.22, P<0.0001), with moderate heterogeneity (χ2=4.10, P=0.25, I2=27%). Based on the data available, statistically significant evidence with moderate risk of bias suggests that LLLT may have a positive effect on accelerating dental alignment. However, due to the differences in intervention strategy and evaluating method, the conclusions should be interpreted with caution.


Subject(s)
Low-Level Light Therapy , Tooth Movement Techniques , Time Factors , Tooth Movement Techniques/methods
15.
Bioresour Technol ; 386: 129566, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37506936

ABSTRACT

The nitrogen removal efficiency and distribution of microbial community in a denitrification process aided by zero-valent iron (ZVI) under low carbon-to-nitrogen ratio (C/N) were assessed in this study. Experimental results demonstrated that the nitrogen removal efficiency (TNRE) increased to 96.4 ± 2.72% and 63.3 ± 4.02% after continuous addition of ZVI with molar ratio of ZVI to nitrate (NO3--N) (ZVI/N) of 6 at C/N of 3 and 2, respectively, which was 4% and 7.7% higher than the blank one. Meanwhile, extracellular polymeric substance (EPS) could be used as electron transfer medium and endogenous carbon source for denitrification system and also the production of which increased by 28.43% and 53.10% under ZVI stimulation compared to the control group. Finally, a symbiotic system composed by autotrophic and heterotrophic denitrification bacteria was formed by aid of ZVI. This study proposed new insights into denitrification process improved by ZVI.


Subject(s)
Carbon , Iron , Denitrification , Nitrogen , Extracellular Polymeric Substance Matrix , Nitrates , Bioreactors
16.
Adv Sci (Weinh) ; 10(23): e2301983, 2023 08.
Article in English | MEDLINE | ID: mdl-37271897

ABSTRACT

Hepatocellular carcinoma (HCC) is an aggressive and fatal disease caused by a subset of cancer stem cells (CSCs). It is estimated that there are approximately 100 000 long noncoding RNAs (lncRNAs) in humans. However, the mechanisms by which lncRNAs affect tumor stemness remain poorly understood. In the present study, it is found that DIO3OS is a conserved lncRNA that is generally downregulated in multiple cancers, including HCC, and its low expression correlates with poor clinical outcomes in HCC. In in vitro cancer cell lines and an in vivo spontaneous HCC mouse model, DIO3OS markedly represses tumor development via its suppressive role in CSCs through downregulation of zinc finger E-box binding homeobox 1 (ZEB1). Interestingly, DIO3OS represses ZEB1 post-transcriptionally without affecting its mRNA levels. Subsequent experiments show that DIO3OS interacts with the NONO protein and restricts NONO-mediated nuclear export of ZEB1 mRNA. Overall, these findings demonstrate that the DIO3OS-NONO-ZEB1 axis restricts HCC development and offers a valuable candidate for CSC-targeted therapeutics for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Animals , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Active Transport, Cell Nucleus , Cell Line, Tumor , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
17.
Environ Pollut ; 333: 122098, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37352960

ABSTRACT

Many organic chemicals are present in aquatic environments, but how to screen and prioritize these chemicals has always been a difficult task. Here we investigated organic chemicals in the West River Basin by using a developed non-target identification workflow. A total of 957 chemicals were tentatively identified, with 96 assigned as high confidence levels by matching with reference standards, MassBank spectral library, and using CompTox Chemistry Dashboard database as the compound library for MetFrag. More pesticides and their transformation products (e.g., metolachlor ESA, acetochlor ESA, deethylatrazine, and hydroxyatrazine) were detected in the wet season due to the increasing usage. High detection of pharmaceutical and personal care products and their transformation products in the tributaries was linked to rural farming and human activities. Irbesartan that is used to treat high blood pressure was recognized in the river and positive correlations between some detected chemicals and irbesartan were observed, indicating a domestic wastewater source. Ecological risks of the identified chemicals were calculated by toxicological prioritization ranking schemes, and 24 chemicals showed high ToxPi scores in the river. The results from this study show the presence of a large number of emerging organic chemicals in our waterways, and demonstrated conceptual schemes for integrating risk assessment into a non-target screening workflow.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/analysis , Rivers/chemistry , Irbesartan/analysis , Organic Chemicals
18.
BMC Cancer ; 23(1): 479, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37237269

ABSTRACT

BACKGROUND: B-cell lymphoma 2 (Bcl-2) family proteins are key regulators of apoptosis, which possess four conserved Bcl-2 homologies (BH) domains. Among the BH domains, the BH3 domain is considered as a potent 'death domain' while the BH4 domain is required for anti-apoptotic activity. Bcl-2 can be converted to a pro-apoptotic molecule through the removal or mutation of the BH4 domain. Bcl-2 is considered as an inducer of angiogenesis, which can promote tumor vascular network formation and further afford nutrients and oxygen to promote tumor progression. However, whether disrupting the function of the BH4 domain to convert Bcl-2 into a pro-apoptotic molecule could make Bcl-2 possess the potential for anti-angiogenic therapy remains to be defined. METHODS: CYD0281 was designed and synthesized according to the lead structure of BDA-366, and its function on inducing a conformational change of Bcl-2 was further evaluated via immunoprecipitation (IP) and immunofluorescence (IF) assays. Moreover, the function of CYD0281 on apoptosis of endothelial cells was analyzed via cell viability, flow cytometry, and western blotting assays. Additionally, the role of CYD0281 on angiogenesis in vitro was determined via endothelial cell migration and tube formation assays and rat aortic ring assay. Chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, breast cancer cell xenograft tumor on CAM and in mouse models as well as the Matrigel plug angiogenesis assay were used to explore the effects of CYD0281 on angiogenesis in vivo. RESULTS: We identified a novel potent small-molecule Bcl-2-BH4 domain antagonist, CYD0281, which exhibited significant anti-angiogenic effects both in vitro and in vivo, and further inhibited breast cancer tumor growth. CYD0281 was found to induce conformational changes in Bcl-2 through the exposure of the BH3 domain and convert Bcl-2 from an anti-apoptotic molecule into a cell death inducer, thereby resulting in the apoptosis of vascular endothelial cells. CONCLUSIONS: This study has revealed CYD0281 as a novel Bcl-2-BH4 antagonist that induces conformational changes of Bcl-2 to convert to a pro-apoptotic molecule. Our findings indicate that CYD0281 plays a crucial role in anti-angiogenesis and may be further developed as a potential anti-tumor drug candidate for breast cancer. This work also provides a potential anti-angiogenic strategy for breast cancer treatment.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Chick Embryo , Mice , Humans , Rats , Animals , Female , Proto-Oncogene Proteins c-bcl-2/metabolism , Endothelial Cells/metabolism , Protein Domains , Breast Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
19.
Yale J Biol Med ; 96(1): 57-77, 2023 03.
Article in English | MEDLINE | ID: mdl-37009193

ABSTRACT

Background: Aiming at understanding whether there are cases of near-tolerance among long-term surviving kidney transplant recipients in our center, or even operant tolerance can be attempted based on their immune status, we analyzed changes of immune cell subsets and cytokines in various groups, and evaluated immune status of long-term survival recipients. Methods: A real-world, observational, retrospective cohort study was conducted in our hospital. Twenty-eight long-term recipients were selected as study subjects, 15 recent postoperative stable recipients, and 15 healthy subjects as controls. T and B lymphocyte subsets, MDSCs, and cytokines were detected and analyzed. Results: Treg/CD4 T cells, total B and B10 cells in long-term and recent renal recipients were lower than healthy controls (HC). The level of IFN-γ and IL-17A in long-term survival patients was obviously higher than that in recent postoperative stable recipients and HC, while TGF-ß1 level was significantly lower in long-term survival group than in short-term postoperative group and HC. Notably, compared with short-term recipients, it has been found that the IL-6 level in both positive and negative HLA groups were obviously lower (all P<0.05). In the long-term survival group, 43% of recipients were positive for urinary protein and 50% were positive for HLA antibody. Conclusion: This "real-world" study validates the findings of real status of long-term survival recipients observed in clinical trials. Contrary to a state of proper tolerance as expected, the group recipients in long-term survival were accompanied by the increased indicators of immune response, while those related to immune tolerance were not significantly increased. Long-term survival recipients with stable renal function may be in an immune equilibrium state where immunosuppression and rejection coexist under the action of low-intensity immune agents. If immunosuppressive agents are reduced or even removed, rejection may occur.


Subject(s)
Kidney Transplantation , Humans , Retrospective Studies , Immunosuppression Therapy , Immune Tolerance , Cytokines/metabolism
20.
Sci Total Environ ; 882: 163319, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37030357

ABSTRACT

Physiological changes with the assist role of soluble microbial products (SMP) of preserved denitrifying sludge (DS) undergoing long-term stress of starvation under different storage temperature is extremely important. In this study, SMP extracted from DS were added into DS in starvation condition under room temperature (15-20 °C), 4 °C and -20 °C with three different bio-augmentation phases of 10, 15 and 30 days. Experimental results showed that added SMP in room temperature was optimal for preservation of DS under starvation stress with optimized dosage of 2.0 mL mL-1 sludge and bio-augmentation phase of 10 d. SMP was more effective in maintaining the specific denitrification activity of DS, and it was nearly boosted to 94.1 % of control one due to assist of 2 times SMP addition with 10 days interval of each. Under assist of SMP, extracellular polymeric substances (EPS) secretion was enhanced as the defense layer to withstand starvation stress, and the protein may be utilized as an alternative substrate to gain energy, accelerate electron transport and transfer during denitrification process. This investigation revealed the feasibility of SMP as an economical and robust strategy for preservation of DS.


Subject(s)
Denitrification , Sewage , Sewage/chemistry , Extracellular Polymeric Substance Matrix , Proteins , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL
...