Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
ACS Omega ; 9(32): 34725-34734, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39157156

ABSTRACT

In chemical production processes, outliers are inevitable. Many existing feature extraction algorithms are overly sensitive to outliers and excessively focus on secondary features while ignoring the key features in the data. To address this problem, the Frobenius norm based soft linear discriminant analysis algorithm (FBSLA) is proposed in this paper. Specifically, FBSLA uses the Frobenius norm instead of its square as a metric to enhance the robustness of the algorithm. Furthermore, a nonreduced dimensionality projection matrix is introduced to make the training data features more obvious. Additionally, soft constraint is adopted instead of the traditional hard constraint to reduce the sensitivity caused by outliers. To validate the effectiveness of FBSLA, in this paper, experiments are conducted on the Tennessee Eastman Process and the Penicillin Fermentation Process data sets. According to experimental results, FBSLA significantly outperforms other state-of-the-art algorithms in terms of fault detection accuracy.

2.
Inorg Chem ; 63(33): 15398-15408, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39096309

ABSTRACT

Steering selectivity in photocatalytic conversion of CO2, especially toward deep reduction products, is vital to energy and environmental goals yet remains a great challenge. In this work, we demonstrate a facet-dependent photocatalytic selective reduction of CO2 to CH4 in Cu-doped TiO2 catalysts exposed with different facets synthesized by a topological transformation from MIL-125 (Ti) precursors. The optimized round cake-like Cu/TiO2 photocatalyst mainly exposed with the (001) facet exhibited a high photocatalytic CO2 reduction performance with a CH4 yield of 40.36 µmol g-1 h-1 with a selectivity of 94.1%, which are significantly higher than those of TiO2 (001) (4.70 µmol g-1 h-1 and 52.6%, respectively), Cu/TiO2 (001 + 101) (18.95 µmol g-1 h-1 and 69.6%, respectively), and Cu/TiO2 (101) (14.73 µmol g-1 h-1 and 78.9%, respectively). The results of experimental and theoretical calculations demonstrate that the Cu doping dominating the promoted separation and migration efficiencies of photogenerated charges and the preferential adsorption on (001) facets synergistically contribute to the selective reduction of CO2 to CH4. This work highlights the significance of synergy between facet engineering and ion doping in the design of high-performance photocatalysts with respect to selective reduction of CO2 to multielectron products.

3.
Adv Sci (Weinh) ; : e2405346, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136073

ABSTRACT

Central and systemic inflammation play pivotal roles in epileptogenesis and proepileptogenesis in temporal lobe epilepsy (TLE). The interplay between peripheral CD4+ T cells and central microglia orchestrates the "systemic-central" immune response in TLE. However, the precise molecular mechanisms linking central and systemic inflammation in TLE remain unknown. This preliminary findings revealed an imbalance in Th1/Th2 subsets in the periphery,accompanied by related cytokines release in TLE patients. they proposed that this peripheral Th1/Th2 imbalance may influence central inflammation by mediating microglial state dynamics within epileptic foci and distant brain regions. In Li-pilocarpine-induced TLE rats, a peripheral Th1/Th2 imbalance and observed corresponding central and systemic responses is confirmed. Notably, CD4+ T cells infiltrated through the compromised blood-brain barrierand are spatially close to microglia around epileptic foci. Intravenous depletion and reinfusion of CD4+ T cells modulated microglia state dynamics and altered neuroinflammatory cytokines secretion. Moreover, mRNA sequencing of the human hippocampus identified Notch1 as a key regulator of Th1/Th2 differentiation, CD4+ T cell recruitment to brain infiltration sites, and the regulation of microglial responses, seizure frequency, and cognition. This study underscores the significance of Th1/Th2 imbalance in modulating the "systemic-central" response in TLE, highlighting Notch1 as a potential therapeutic target.

4.
J Hazard Mater ; 478: 135375, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39141942

ABSTRACT

The brominated flame retardant 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) widely used in manufacturing is inevitably released into the environment, resulting in the exposure of organisms to BTBPE. Therefore, it is particularly important to explore its toxic mechanism. The liver is one of the main accumulating organs of BTBPE, but the mechanism underlying BTBPE hepatotoxicity has not been thoroughly investigated. In our study, BTBPE was administered to Sprague-Dawley (SD) rats and rat hepatocytes (BRL cells) in vivo and in vitro, respectively, and HE staining, AO/EB staining, fluorescent probes, qPCR, immunofluorescence, and dual-luciferase reporter assays were performed. We investigated the mechanism of action of growth arrest-specific 5 (GAS5), miR-743a-5p, and NUAK family kinase 1 (NUAK1) in BTBPE-induced necroptosis from the perspective of competing endogenous RNAs (ceRNAs) using NUAK1 inhibitors, siRNAs, mimics, and overexpression plasmids. Our study showed that exposure to BTBPE caused necroptosis in the liver and BRL cells, accompanied by an oxidation-reduction imbalance and an inflammatory response. It is worth noting that NUAK1 is a newly discovered upstream regulatory target for necroptosis. In addition, miR-743a-5p was shown to inhibit necroptosis by targeting NUAK1 and down-regulating NUAK1. GAS5 upregulates NUAK1 expression by competitively binding to miR-743a-5p, thereby inducing necroptosis. This study demonstrated, for the first time, that the GAS5-miR-743a-5p-NUAK1 axis is involved in the regulation of necroptosis via ceRNAs. Thus, GAS5 and NUAK1 induce necroptosis by competitively binding to miR-743a-5p.

5.
Sci Total Environ ; 950: 175131, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39127212

ABSTRACT

TPhP and IPPP, alternatives to PBDEs as flame retardants, have been studied for their developmental toxicity, but their visual toxicities are less understood. In this study, zebrafish larvae were exploited to evaluate the potential ocular impairments following exposure to BDE-47, TPhP, and IPPP. The results revealed a range of ocular abnormalities, including malformation, vascular issues within the eyes, and histopathological changes in the retina. Notably, the visually mediated behavioral changes were primarily observed in IPPP and TPhP, indicating that they caused more severe eye malformations and vision impairment than BDE-47. Molecular docking and MD simulations showed stronger binding affinity of TPhP and IPPP to RAR and RBP receptors. Elevated ROS and T3 levels induced by these compounds led to apoptosis in larvae eyes, and increased GABA levels induced by TPhP and IPPP hindered retinal repair. In summary, our results indicate TPhP and IPPP exhibit severer visual toxicity than BDE-47, affecting eye development and visually guided behaviors. The underlying mechanism involves disruptions in RA signaling, retinal neurotransmitters imbalance, thyroid hormones up-regulation, and apoptosis in larvae eyes. This work highlights novel insights into the need for cautious use of these flame retardants due to their potential biological hazards, thereby offering valuable guidance for their safer applications.

6.
Ophthalmic Res ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39111293

ABSTRACT

INTRODUCTION: To investigate the association of parameters related to accommodation and convergence and axial elongation in basic intermittent exotropia (IXT) patients and the potential clinical predictors of axial length (AL) growth. METHODS: A total of 140 basic IXT patients were recruited in this study. The medians of AL growth in different age brackets were chosen to divide the subjects into Group A (slower axial elongation group, n=69) and Group B (faster axial elongation group, n=71). Parameters of dominant and nondominant eyes were compared and analyzed during the 12-month follow-up period. The parameters, including baseline refraction, angle of deviation, Newcastle score (NCS), accommodative amplitude (AMP), accommodative facility (AMF), accommodative response, positive or negative relative accommodation (PRA/NRA), and near point of convergence (NPC), were analyzed via univariate and multivariate regression. RESULTS: Subjects in faster axial elongation group tended to have more myopic spherical equivalents (t=3.956, P<.001), greater accommodative amplitudes of dominant eyes (t=-2.238, P=.027) and less near points of convergence (t=2.347, P=.020) than in slower axial elongation group. For dominant eyes, logistic and linear regression analysis revealed that more negative spherical equivalents (OR=0.603, P<.001; ß=-0.045, P<.001), greater accommodative amplitudes (OR=1.201, P=.027; ß=0.023, P=.010) and less near points of convergence (OR=0.883, P=.021; ß=-0.012, P=.019) were correlated with the faster axial elongation. For nondominant eyes, more myopic spherical equivalent (OR=0.682; P=.001; ß=-0.029, P=.005) was the only parameter correlated with faster axial elongation through regression analysis. CONCLUSION: In children with basic intermittent exotropia, faster axial elongation in the dominant eyes were associated with more myopic spherical equivalents, greater accommodative amplitudes, and lower near points of convergence. These accommodative parameters can serve as potential clinical indicators for monitoring myopia progression in addition to axial length.

7.
Semin Dial ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39111739

ABSTRACT

BACKGROUND: Patients with end-stage renal disease (ESRD) on maintenance hemodialysis (MHD) are at high risk for major adverse cardiovascular and cerebrovascular events (MACCE), which are prone to be detrimental to patients' lives. Identifying risk factors for MACCE can help target measures to prevent or reduce the occurrence of MACCE. OBJECTIVE: The aim was to investigate the correlation between miR-142-3p and MACCE in ESRD patients on MHD and to provide a new predictor for MACCE occurrence. METHODS: Blood samples were collected from subjects to detect the expression of miR-142-3p using RT-qPCR. The correlation of miR-142-3p with HDL-C and hs-CRP was assessed by the Pearson method. The occurrence of MACCE in patients during the 36-month follow-up period was recorded. The clinical value of miR-142-3p in MACCE occurrence was analyzed by the Kaplan-Meier curve, multivariate logistic regression, and ROC curve. RESULTS: In ESRD patients on MHD, miR-142-3p was downregulated, and it showed a positive correlation with HDL-C but a negative correlation with hs-CRP. The cumulative incidence of MACCE at 1, 2, and 3 years was 8.9%, 20.0%, and 30.4%, respectively. miR-142-3p levels were reduced in patients who developed MACCE and were associated with the cumulative incidence of MACCE. miR-142-3p was a risk factor for MACCE and showed a predictive value with specificity and sensitivity of 89.36% and 56.10%, respectively. CONCLUSIONS: miR-142-3p was a risk factor of MACCE in ESRD patients undergoing MHD.

8.
Environ Toxicol Pharmacol ; 110: 104528, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121912

ABSTRACT

Isopropylate Triphenyl Phosphate (IPPP), a novel organophosphorus flame retardant, has become a widespread environmental pollutant. However, the toxic effects and mechanisms of IPPP remain unclear. In this study, we evaluated the neurodevelopmental toxicity effects of IPPP on zebrafish embryonic development, neurobehavior, and physiological and transcriptomic changes. The results showed that IPPP induced adverse developments such as low survival rates and hatching rates, decreased body length and eye distance, and also led to increased heart rates and embryonic malformation rates. The developmental defects mainly included typical pericardial edema, eye deformities, and a reduction in the number of newborn neurons. Mitochondrial energy metabolism disorders and apoptosis of cardiomyocytes may be responsible for heart malformation. Behavioral results showed that IPPP caused abnormal changes in swimming speed, total swimming distance and trajectory, and showed a low-dose effect. In addition, the decreased activity of neurotransmitters such as acetylcholinesterase (AchE) and dopamine (DA), and the changes in genes related to the central nervous system (CNS) and metabolism pathway may be the causes of neurodevelopmental toxicity of IPPP. Meanwhile, IPPP induced oxidative stress and apoptosis, and changed the ATPase activity of zebrafish larvae by altering nuclear factor erythroid2-related factor 2 (Nrf2) and mitochondrial signaling pathways, respectively. Transcriptome sequencing results indicated that Cytochrome P450 and drug metabolism, Energy metabolism-related pathways, Glutathione metabolism, Retinoid acid (RA) and REDOX signaling pathways were significantly enriched, and most of the genes in these pathways were up-regulated after IPPP treatment, which may be new targets for IPPP-induced neurodevelopment. In summary, the results of this study provide an important reference for a comprehensive assessment of the toxic effects and health risks of the new pollutant IPPP.

9.
Am J Transl Res ; 16(7): 2973-2981, 2024.
Article in English | MEDLINE | ID: mdl-39114695

ABSTRACT

OBJECTIVE: To investigate the efficacy of ischemia-modified albumin (IMA), lipoprotein-associated phospholipase A2 (Lp-PLA2), brain-derived neurotrophic factor (BDNF), and visinin-like protein-1 (VILIP-1) in diagnosing chronic cerebral hypoperfusion (CCH). METHODS: This retrospective study included 84 patients with suspected chronic cerebral ischemia admitted to Sichuan Provincial People's Hospital between February 2021 and April 2022. Arterial spin labeling (ASL) imaging and biological examinations were performed. According to the ASL perfusion imaging patterns, the patients were divided into a CCH group (n = 55) and a non-CCH group (n = 29). Serum markers of the two groups were compared, and correlation analysis was conducted between ischemic marker levels and cerebral blood flow (CBF) in the ischemic region, as measured by ASL. Receiver operating characteristic (ROC) curve analysis was used to evaluate the efficacy of each marker for diagnosing chronic cerebral ischemia. The Delong test was used to compare AUC size between groups. RESULTS: Compared to the non-CCH group, the CCH group exhibited higher IMA levels and lower BDNF concentrations (P < 0.05). However, VILIP-1 and Lp-PLA2 concentrations were not significantly different between the two groups (P > 0.05). Moreover, IMA and BDNF levels were not correlated with CBF in the hypoperfused area. ROC curve analysis demonstrated that the cut-off values of 24.2915 U/mL and 6.714 ng/L for IMA and BDNF achieved a sensitivity of 83.6% and 41.8% and a specificity of 62.1% and 93.1%, respectively. Lastly, the areas under the curve for IMA and BDNF were 0.738 (95% confidence interval [CI], 0.627-0.848) and 0.631 (95% CI, 0.512-0.751), respectively. CONCLUSION: IMA and BDNF may have clinical value in the diagnosis of CCH.

10.
PeerJ ; 12: e17458, 2024.
Article in English | MEDLINE | ID: mdl-38948231

ABSTRACT

In a jujube orchard, cropping withgrass may influence bacterial diversity and ecological networks due to changes of physicochemical properties in soil, which has a serious effect on the stability of soil ecosystems. The aim of this study was to analyze the effects of different cultivation methods (CK: cleaning tillage; NG: cropping with native grass; VV: cropping with Vicia villosa) on the soil's bacterial structure and its co-occurrence network in a jujube orchard. The results showed that the highest moisture content, total nitrogen, and organic matter in the rhizosphere soil of a jujube orchard was found in the VV group. The soil's moisture content, total nitrogen, and organic matter in the VV group were 2.66%, 0.87 g kg-1, and 5.55 mg kg-1 higher than that found in the CK group. Compared to the CK group, the number of unique species in the rhizosphere soil in the NG and the VV groups increased by 7.33% and 21.44%. The PICRUSt and FAPROTAX analysis showed that sown grass had a greater influence on the ecological function of the soil's bacteria. Cropping with Vicia villosa and native grass significantly increased aerobic chemoheterotrophy, nitrogen respiration, nitrate reduction related to biochemical cycles, and the relative abundance of genes related to carbohydrate metabolism and the biodegradation of xenobiotics. The bacterial network complexity in the NG group was higher than that in the CK and VV groups and was greatest in the hub nodes (OTU42, Bacteroidota; OTU541, Nitrospiraceae). In this study, the ecological benefit seen in the soil's microbial function provides support to the theory that cropping with grass (Vicia villosa) increases the sustainable development of a jujube orchard.


Subject(s)
Rhizosphere , Soil Microbiology , Vicia , Ziziphus , Vicia/microbiology , Soil/chemistry , Poaceae/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
11.
Front Endocrinol (Lausanne) ; 15: 1354214, 2024.
Article in English | MEDLINE | ID: mdl-38948525

ABSTRACT

Background: Polycystic ovary syndrome (PCOS) is both a common endocrine syndrome and a metabolic disorder that results in harm to the reproductive system and whole-body metabolism. This study aimed to investigate differences in the serum metabolic profiles of patients with PCOS compared with healthy controls, in addition to investigating the effects of compound oral contraceptive (COC) treatment in patients with PCOS. Materials and methods: 50 patients with PCOS and 50 sex-matched healthy controls were recruited. Patients with PCOS received three cycles of self-administered COC treatment. Clinical characteristics were recorded, and the laboratory biochemical data were detected. We utilized ultra-performance liquid chromatography-high-resolution mass spectrometry to study the serum metabolic changes between patients with PCOS, patients with PCOS following COC treatment, and healthy controls. Result: Patients with PCOS who received COC treatment showed significant improvements in serum sex hormone levels, a reduction in luteinising hormone levels, and a significant reduction in the levels of biologically active free testosterone in the blood. Differential metabolite correlation analysis revealed differences between PCOS and healthy control groups in N-tetradecanamide, hexadecanamide, 10E,12Z-octadecadienoic acid, and 13-HOTrE(r); after 3 months of COC treatment, there were significant differences in benzoic acid, organic acid, and phenolamides. Using gas chromatography-mass spectrometry to analyse blood serum in each group, the characteristic changes in PCOS were metabolic disorders of amino acids, carbohydrates, and purines, with significant changes in the levels of total cholesterol, uric acid, phenylalanine, aspartic acid, and glutamate. Conclusion: Following COC treatment, improvements in sex hormone levels, endocrine factor levels, and metabolic levels were better than in the group of PCOS patients receiving no COC treatment, indicating that COC treatment for PCOS could effectively regulate the levels of sex hormones, endocrine factors, and serum metabolic profiles.


Subject(s)
Metabolomics , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Female , Metabolomics/methods , Adult , Young Adult , Case-Control Studies , Metabolome/drug effects , Testosterone/blood , Contraceptives, Oral/therapeutic use , Contraceptives, Oral, Combined/therapeutic use , Biomarkers/blood
12.
Int J Cardiol Heart Vasc ; 53: 101434, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38974459

ABSTRACT

Coronary heart disease (CHD) is a serious cardiovascular illness, for which an elevated uric acid (UA) level presents as a considerable risk factor. This can be treated with UA-lowering drugs such as allopurinol and benzbromarone, which can reduce UA levels by the inhibition of UA production or by promoting its excretion. Such drugs can also be beneficial to CHD in other ways, such as reducing the degree of coronary arteriosclerosis, improving myocardial blood supply and alleviating ventricular remodeling. Different UA-lowering drugs are used in different ways: allopurinol is preferred as a single agent in clinical application, but in absence of the desired response, a combination of drugs such as benzbromarone with ACE inhibitors may be used. Patients must be monitored regularly to adjust the medication regimen. Appropriate use of UA-lowering drugs has great significance for the prevention and treatment of CHD. However, the specific mechanisms of the drugs and individualized drug use need further research. This review article expounds the mechanisms of UA-lowering drugs on CHD and their clinical application strategy, thereby providing a reference for further optimization of treatment.

13.
Front Endocrinol (Lausanne) ; 15: 1379293, 2024.
Article in English | MEDLINE | ID: mdl-38978626

ABSTRACT

Background: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine disorder with wide-ranging metabolic implications, including obesity. RNA editing, a post-transcriptional modification, can fine-tune protein function and introduce heterogeneity. However, the role of RNA editing and its impact on adipose tissue function in PCOS remain poorly understood. Methods: This study aimed to comprehensively analyze RNA-editing events in abdominal and subcutaneous adipose tissue of PCOS patients and healthy controls using high-throughput whole-genome sequencing (WGS) and RNA sequencing. Results: Our results revealed that PCOS patients exhibited more RNA-editing sites, with adenosine-to-inosine (A-to-I) editing being prevalent. The expression of ADAR genes, responsible for A-to-I editing, was also higher in PCOS. Aberrant RNA-editing sites in PCOS adipose tissue was enriched in immune responses, and interleukin-12 biosynthetic process. Tumor necrosis factor (TNF) signaling, nuclear factor kappa B (NF-κB) signaling, Notch signaling, terminal uridylyl transferase 4 (TUT4), hook microtubule tethering protein 3 (HOOK3), and forkhead box O1 (FOXO1) were identified to be of significant differences. Differentially expressed genes (DEGs) in PCOS adipose tissue were enriched in immune responses compared with controls, and the DEGs between subcutaneous and abdominal adipose tissue were also enriched in immune responses suggesting the important role of subcutaneous adipose tissue. Furthermore, we identified the correlations between RNA editing levels and RNA expression levels of specific genes, such as ataxia-telangiectasia mutated (ATM) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) in inflammation pathways and ATM, TUT4, and YTH N6-methyladenosine RNA-binding protein C2 (YTHDC2) in oocyte development pathway. Conclusions: These findings suggest that RNA-editing dysregulation in PCOS adipose tissue may contribute to inflammatory dysregulations. Understanding the interplay between RNA editing and adipose tissue function may unveil potential therapeutic targets for PCOS management. However, further research and validation are required to fully elucidate the molecular mechanisms underlying these associations.


Subject(s)
Adipose Tissue , Obesity , Polycystic Ovary Syndrome , RNA Editing , Humans , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/immunology , Polycystic Ovary Syndrome/pathology , Female , Obesity/genetics , Obesity/metabolism , Adult , Adipose Tissue/metabolism , Case-Control Studies , Whole Genome Sequencing
14.
Huan Jing Ke Xue ; 45(7): 4044-4051, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022952

ABSTRACT

The safety and security of stored rainwater quality is the key to improve the efficiency of rainwater resources storage, and roof rainwater is the best scenario for rainwater storage and utilization. Through long-term monitoring of the evolution of water quality during the roof rainwater storage process, different storage materials (PE and glass) and different DO regulation modes (sealing and aeration) were constructed, and 16S rRNA microbial diversity sequencing and environmental factor correlation methods were used to characterize the changes in water quality under microbial metabolism during the rainwater storage process, as well as the potential risks of utilization and health. The results showed that the degradation of COD occurred mainly in the first 10 days of the storage process, and the nutrients were transformed mainly by microbial metabolism. There were differences in the characteristics of water quality changes under different water storage conditions, with traditional PE materials promoting the propagation of some pathogenic Xanthobacter, Alternaria, Stachybotrys, and Cladosporium, which were negatively correlated with DO and pH. Aeration was beneficial in reducing the abundance of bacteria and fungi, whereas the sealed water storage method was beneficial in inhibiting the growth of pathogenic bacteria such as Legionella.


Subject(s)
Rain , Water Microbiology , Water Quality , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/growth & development , RNA, Ribosomal, 16S/genetics
15.
Huan Jing Ke Xue ; 45(7): 4032-4043, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022951

ABSTRACT

To identify emerging contaminants (ECs) in rainwater is a topic that has gradually received widespread attention. Rainwater resources, specifically urban roofs, play a crucial role in utilizing rainwater efficiently by understanding the occurrence and migration characteristics of pollutants in precipitation. This study selected a typical roof and studied the differences in rainwater quality and pollution occurrence at different collection stages during six rainfall events from March to May in 2023. Principal component analysis (PCA) and correlation analysis were used to explore the distribution, migration, and transformation of ECs in the collection process of roof rainwater. The findings revealed the presence of 44/54 ECs in wet deposition, dry and wet deposition, and roof runoff processes, with a total concentration range of 63.0 to 432.4 ng·L-1 and an average concentration of 166.8 ng·L-1. Notably, bisphenol A (BPA) exhibited the highest concentration, ranging from 14.7 to 265.6 ng·L-1, with an average concentration of 62.5 ng·L-1, followed by ofloxacin (OFX) and ethylhexyl methoxycinnamate (EHMC), with detected concentrations up to 45.5 ng·L-1 and 44.8 ng·L-1. Dissolved organic matter (DOM), nitrogen pollutants, and particulate matter were important factors affecting the occurrence characteristics of ECs, with a mantel correlation coefficient of up to 0.98 (P<0.01). Based on the analysis of different rainfall events and collection stages, variations were observed in the accumulation pathways and contribution ratios of different pollutants. The wet deposition exhibited the highest content of ECs in the initial stage, whereas the dry and wet deposition and roof runoff processes displayed higher ECs content in the later stages. Additionally, the average ECs contribution rates of dry and wet deposition to roof runoff were 21.48% and 78.52%, respectively. Due to the influence of roof material and surface roughness retention performance, over 30% of ECs, including pharmaceuticals and personal care products (PPCPs), endocrine-disrupting compounds (EDCs), and pesticides, were deposited on the roof during the runoff collection. The results of this research can provide the theoretical foundation and technical support for the identification and control of ECs in urban roof runoff and for the safe storage of rainwater.

16.
Int J Ophthalmol ; 17(7): 1283-1291, 2024.
Article in English | MEDLINE | ID: mdl-39026903

ABSTRACT

AIM: To investigate diabetic retinopathy (DR) prevalence in Chinese renal-biopsied type 2 diabetes mellitus (T2DM) patients with kidney dysfunction, and to further evaluate its relationship with diabetic nephropathy (DN) incidence and the risk factors for DR development in this population. METHODS: A total of 84 renal-biopsied T2DM patients were included. Fundus and imaging examinations were employed for DR diagnosis. Demographic information and clinical measures along with renal histopathology were analyzed for comparisons between the DR and non-DR groups. Risk factors on DR development were analyzed with multiple logistic regression. RESULTS: DR prevalence was 50% in total. The incidences of DN, non-diabetic renal disease (NDRD) and mixed-type pathology were 47.6%, 19.0% and 33.3% in the DR group respectively, while 11.9%, 83.3% and 4.8% in the non-DR group. Systolic blood pressure, ratio of urinary albumin to creatine ratio, urinary albumin, 24-hours urinary protein, the incidence and severity of DN histopathology were found statistically increased in the DR group. Multiple logistic regression analysis showed histopathological DN incidence significantly increased the risk of DR development [odds ratio (OR)=21.664, 95% confidential interval (CI) 5.588 to 83.991, P<0.001 for DN, and OR=45.475, 95%CI 6.949 to 297.611, P<0.001 for mixed-type, respectively, in reference to NDRD)], wherein DN severity positively correlated. CONCLUSION: Renal histopathological evidence indicates DN incidence and severity increases the risk of DR development in Chinese T2DM patients inexperienced of regular fundus examinations.

17.
Anal Chim Acta ; 1317: 342915, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39029997

ABSTRACT

Acteoside (ACT) was the main bioactive components in phenylethanoid glycosides of Cistanche tubulosa. Currently, the development of an efficient method for selectively separating ACT was crucial. Consequently, yolk-shell magnetic mesoporous carbon (YSMMC) was synthesized as a nanofiller to prepare molecularly imprinted membranes (ACT-MIMs) with instant noodles-like structure for selectively separating ACT. The numerous YSMMC were moved to the upper surface of ACT-MIMs by magnetic guidance and constructed the instant noodles-like structure in ACT-MIMs. The instant noodle-like structure increased the surface roughness of ACT-MIMs, which was conducive to improving the effective imprinted interface, increasing the selectivity of ACT-MIMs. In addition, the instant noodle-like structure had dendritic interleaved pathways in ACT-MIMs. The dendritic interleaved pathways can intercept ACT through ACT-MIMs, enhancing the permselectivity of ACT-MIMs. The prepared YSMMC possessed the dendritic shell and interlayer cavity structure can provide a great accommodation space, improving the rebinding capacities of ACT-MIMs. The high permselectivity (14.49), remarkable selectivity (7.52), and excellent rebinding capacity (120.48 mg/g) were achieved for the prepared ACT-MIMs. Thus, the design of ACT-MIMs with the instant noodles-like structure were valuable for selectively separating of bioactive components.


Subject(s)
Glucosides , Phenols , Phenols/chemistry , Phenols/analysis , Glucosides/chemistry , Glucosides/analysis , Membranes, Artificial , Molecular Imprinting , Porosity , Surface Properties , Carbon/chemistry , Polyphenols
18.
Toxicol Appl Pharmacol ; 490: 117020, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969211

ABSTRACT

This study explored the effects of 1, 2-bis (2,4, 6-tribromophenoxy) ethane (BTBPE) and bis (2-ethylhexyl) tetrabromophthalate (TBPH) on serum metabolites and lipids in male Sprague-Dawley (SD) rats. Rats were orally gavaged 250 mg/kg bw of BTBPE and 500 mg/kg bw of TBPH for 28 consecutive days. Serum samples were collected for metabolomics and lipidomics analysis. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to explore changes in rat metabolic patterns. Least absolute shrinkage and selection operator (LASSO) regression models were established using serum levels of total thyroxine (TT4), free thyroxine (FT4), and rats' grouping information as variables to screen for robust differential substances. SuperPred was the database to obtain potential targets. The metabolomics and lipidomics results showed that BTBPE and TBPH had an impact on rat metabolic patterns, affecting pathways such as vitamin B6 synthesis. For BTBPE treatment, pyridoxal and ceramide (Cer) 24:0;4O were selected as differential substances related to thyroid hormones. For TBPH treatment, dehydroascorbic acid, acylcarnitine (CAR) 19:0, and diglyceride (DG) 38:4 were selected as differential substances related to thyroid hormones. Serotonin 2c receptor and cyclooxygenase-2 were chosen as potential targets of BTBPE and TBPH, respectively. In conclusion, this study found that BTBPE and TBPH impacted the metabolism of rats, and this effect may be related to changes in thyroid function.


Subject(s)
Metabolomics , Phthalic Acids , Rats, Sprague-Dawley , Animals , Male , Rats , Phthalic Acids/toxicity , Thyroxine/blood , Lipidomics , Lipids/blood , Lipid Metabolism/drug effects
19.
Environ Sci Technol ; 58(32): 14249-14259, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39079691

ABSTRACT

Polyphosphate (polyP) is found in plankton of diverse aquatic ecosystems and is important for plankton ecology and biogeochemical cycling. However, our knowledge of polyP in aquatic environments is hindered by a lack of data due to the limitations of quantification methods. The estimate of polyP in model organisms using phenol-chloroform extraction followed by enzymatic hydrolysis is complicated and fails for environmental samples. The commonly used 4',6-diamidino-2-phenylindole (DAPI) fluorescence method for environmental studies, on the contrary, severely overestimates polyP due to interference. In this paper, we develop a plankton lysis buffer to extract polyP and a quantification method using a novel polyP-specific fluorescence dye JC-D7. We test the methods using cultured algae and bacteria, as well as natural samples from marine and freshwater environments. We show that our plankton lysis extracts polyP with high recovery while requiring substantially less time and effort. Subsequent polyP quantification using JC-D7 fluorescence overcomes the interference encountered by the DAPI method and provides an accurate measurement of polyP down to <0.5 µmol L-1. This novel method enables more accurate quantification of polyP in aquatic environments and will profoundly enhance our knowledge of polyP, plankton ecology, and biogeochemistry.


Subject(s)
Fluorescent Dyes , Plankton , Polyphosphates , Fluorescent Dyes/chemistry
20.
Bioorg Med Chem ; 110: 117834, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39029436

ABSTRACT

Currently, no effective treatment exists for premature ovarian failure (POF). To obtain compounds with protective effects against POF, we aimed to design and synthesize a series of spiroheterocyclic protective agents with a focus on minimizing toxicity while enhancing their protective effect against cisplatin-induced POF. This was achieved through systematic modifications of Michael receptors and linkers within the molecular structure of 1,5-diphenylpenta-1,4-dien-3-one analogs. To assess the cytotoxicity and activity of these compounds, we constructed quantitative conformational relationship models using an artificial intelligence random forest algorithm, resulting in R2 values exceeding 0.87. Among these compounds, j2 exhibited optimal protective activity. It significantly increased the survival of cisplatin-injured ovarian granulosa KGN cells, improved post-injury cell morphology, reduced apoptosis, and enhanced cellular estradiol (E2) levels. Subsequent investigations revealed that j2 may exert its protective effect via a novel mechanism involving the activation of the SIRT1/AKT signal pathway. Furthermore, in cisplatin-injured POF in rats, j2 was effective in increasing body, ovarian, and uterine weights, elevating the number of follicles at all levels in the ovary, improving ovarian and uterine structures, and increasing serum E2 levels in rats with cisplatin-injured POF. In conclusion, this study introduces a promising compound j2 and a novel target SIRT1 with substantial protective activity against cisplatin-induced POF.


Subject(s)
Cisplatin , Primary Ovarian Insufficiency , Sirtuin 1 , Female , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/drug therapy , Primary Ovarian Insufficiency/pathology , Primary Ovarian Insufficiency/metabolism , Sirtuin 1/metabolism , Sirtuin 1/antagonists & inhibitors , Cisplatin/pharmacology , Animals , Rats , Humans , Structure-Activity Relationship , Up-Regulation/drug effects , Rats, Sprague-Dawley , Molecular Structure , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/chemical synthesis , Drug Discovery , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Dose-Response Relationship, Drug , Apoptosis/drug effects , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL