Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; : 173329, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38772482

ABSTRACT

The remediation of high-concentration thallium (Tl+) contaminated wastewater is a critical environmental concern. Current research emphasizes the effectiveness of adsorption and oxidation methods for Tl+ treatment, yet challenges persist in enhancing their performance. This study explores the feasibility of emergency Tl+ wastewater treatment and elucidates the mechanisms of Tl+ incorporation into mineral structures, with a focus on the struvite mineral as a framework for Tl+ integration via NH4+ ion exchange. To assess the efficacy and mechanisms of Tl+ immobilization, we utilized comprehensive analytical techniques, including X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS), Thermogravimetric Analysis (TG), and Density Functional Theory (DFT) calculations. The findings reveal that struvite adsorbs Tl+ onto its surface, followed by an ion exchange process between monovalent cations (NH4+/K+) within the structure and Tl+. Ultimately, Tl+ is incorporated in the form of a (NH4,Tl)MgPO4 solid solution within the structure, achieving a remarkable maximum incorporation capacity of 320.56 mg/g, which significantly surpasses the capacity of typical adsorbents. The findings demonstrate significant Tl+ incorporation, validating the approach for emergency wastewater treatment and suggesting the potential of mineralogy in environmental remediation. This research contributes to advancing heavy metal wastewater treatment strategies, offering a foundation for further investigation.

2.
Chemosphere ; 311(Pt 2): 137078, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36328319

ABSTRACT

Due to the stable chelating effect of organic phosphonates in wastewater, phosphonates with increasing emission are difficult to be removed effectively by traditional ferric salt flocculation, which has posed tough challenges for reducing total phosphorus pollution in recent years. In this work, calcium carbonate (CaCO3) was introduced to work together with the widely investigated flocculant of ferric chloride (FeCl3) to realize an efficient removal of nitrilotrismethylenephosphonic acid (NTMP) at much lower dosage of FeCl3. With an aid of synergy effect from together use of CaCO3 and FeCl3, the remaining concentration as low as 0.16 mg-P/L, far below the sewage discharge limit (0.5 mg-P/L), was simply obtained with a significantly reduced Fe/P molar ratio at only 4, resulting from calcium source donor to form more stable Fe-Ca-P tridentate bridging complexes, high affinity towards ferric ions on CaCO3 surface and slow-release alkaline from CaCO3. A comparison among sodium hydroxide (NaOH), calcium hydroxide (Ca(OH)2) and CaCO3 as additives, was carried out to highlight the advantages of using CaCO3 and clarify the mechanism for the greatly improved performance by a set of characterizations including XRD, FTIR, Zeta potential, XPS, SEM-EDS and TG analyses. The addition of CaCO3 in ferric flocculation resulted in further obvious advantages such as 75% shortened settling time and only one-third of sludge volume of the precipitant, beneficial to the sample handling in engineering application. The proposed new approach has been further confirmed to work efficiently on real phosphonate-containing wastewater. Discussion on the interaction between CaCO3 and ferric salts in phosphonate solutions shed new insights into the working mechanism of using CaCO3 for the treatment of phosphonates-containing wastewater.

3.
Chemosphere ; 313: 137449, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36464018

ABSTRACT

This study explored a possible destruction of hexachlorobenzene (HCB) as example of persistent organic pollutants (POPs) as well as the dechlorination mechanism by directly using minerals in the soil, such as antigorite, talc and olivine. Compared with a stable quartz phase of SiO2, all three Mg silicate minerals demonstrated certain degrading capacity for HCB with different efficiency order as: antigorite > talc > olivine > SiO2 at 2 h of milling time. Interestingly, olivine exhibited a better performance than antigorite at 4 h of milling time, giving destruction percentage of 92.7% over 89.0% even at high concentrated HCB up to 5% added. Raman and ESR characterizations of the ball milled sample with olivine indicated the formation of amorphous carbon and graphitic carbon, and the occurrence of free radicals was observed to play an important role in dechlorination and carbonization of HCB. The first identified effectiveness of directly using Mg silicate minerals, allowed no addition of active chemicals during the ball milling, therefore avoided the concern over extrinsic contaminations on the soil. Olivine was further utilized to deal with actual contaminated soil and showed unique advantages on application prospects.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Soil Pollutants/analysis , Hexachlorobenzene/chemistry , Soil/chemistry , Asbestos, Serpentine , Silicon Dioxide , Talc , Minerals , Carbon
4.
Environ Technol ; 44(12): 1798-1807, 2023 May.
Article in English | MEDLINE | ID: mdl-34842054

ABSTRACT

Toward the treatment of waste solution containing heavy metals, direct precipitation of the metal ions from an acidic solution without alkaline neutralisation is still the greatest challenge. Based on the ligand properties of benzene tricarboxylic acid (BTC) to copper ions, a simple ball milling with 90 min at 400 rpm was used to activate BTC to enhance its capacity for copper removal from the pH of the original solution around 3-4. A set of analytical methods were used to characterise the activated BTC sample and BTC-Cu precipitate before and after copper precipitation. Compared with the raw BTC, the activated BTC could efficiently remove copper ions over 90% from an initial copper concentration of 100 mg/L in a shorter time from an acidic media with lower pH of around 2.60 and the maximum adsorption capacity can be stable at about 111.70 mg/g, resulting from probably the enhanced deprotonation effect for copper incorporation. Furthermore, at controlled dosage, the activated BTC demonstrated much high selectivity on precipitating copper ions from other heavy metals of Ni, Mn, Zn and Cd and provided a new approach for easy copper recycling from waste solution as secondary sources. This process may serve the purpose of recycling both metal and acidic solutions after the purification.


Subject(s)
Copper , Metals, Heavy , Copper/chemistry , Benzene , Metals, Heavy/chemistry , Adsorption , Ions , Hydrogen-Ion Concentration
5.
Environ Technol ; 44(14): 2104-2112, 2023 Jun.
Article in English | MEDLINE | ID: mdl-34962220

ABSTRACT

A mechanochemical (MC) method was employed for the remediation of soil contaminated with fluoranthene (C16H10, FL) a four-ringed polycyclic aromatic hydrocarbon (PAH) containing three benzene rings and a central five-membered heterocyclic ring, with the effects of soil inorganic components, milling conditions, and the degradation mechanism investigated. Results showed that the addition of SiO2 and kaolin to soil resulted in a greater increase in the effectiveness of FL removal than other inorganic additives. After 3 hours of milling at 500 rpm, the FL removal rate from SiO2 containing soil, reached 99.26%, with the removal efficiency increasing in accordance with an increase in milling duration and speed. The milled samples were characterized by FT-IR, Raman spectroscopy, and GC-MS analysis, revealing the mechanism of FL degradation, including destruction of the aromatic skeleton structure and the formation of amorphous carbon and graphite. The MC remediation method was applied to FL contaminated soil, showing that FL was efficiently degraded in soil without any soil additives, resulting in a significant reduction in the biotoxicity of the remediated soil. The organic matter, moisture content and pH of the actual soil changed slightly after mechanical ball milling. Thus, the MC method has high potential in the remediation of PAH-contaminated soils.HIGHLIGHTSA mechanochemical (MC) method for the degradation of fluoranthene was assessed.The use of silica and kaolin as soil additives enhances fluoranthene remediation.Fluoranthene can be efficiently removed from contaminated soil by milling alone.The degradation mechanism was skeleton structure destruction and carbonization.The biotoxicity of soil was significantly reduced by milling.


Subject(s)
Environmental Restoration and Remediation , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Silicon Dioxide , Kaolin , Spectroscopy, Fourier Transform Infrared , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Soil Pollutants/chemistry
6.
J Hazard Mater ; 441: 129884, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36084465

ABSTRACT

The removal of trivalent arsenic (As (III)) from water has received extensive attention from researchers. Iron electrocoagulation (Fe-EC) is an efficient technology for arsenic removal. However, electrode passivation hinders the development and application of Fe-EC. In this work, an innovative Fe-EC route was developed to remove As (III) through an electrochemical-siderite packed column (ESC). Ferrous ions were produced from siderite near the anode, and hydroxide was generated near the cathode during the electrochemical decomposition of siderite. As a result, an effect of Fe-EC-like was obtained. The results showed that an excellent removal performance of As (III) (>99%) was obtained by adjusting the parameters (As (III) concentration at 10 mg/L, pH at 7, Na2SO4 at 10 mM and the hydraulic retention time at 30 min) and the oxidation rate of As (III) reached 84.12%. The mechanism analysis indicated that As (III) was oxidized to As (Ⅴ) by the produced active oxide species and electrode, and then was removed by capturing on the iron oxide precipitates. As (III) was likely to be oxidized in two ways, one by the reactive oxygen species (possibly •OH, Fe(IV) and •O2- species), and another directly by the anode. The long-term effectiveness of arsenic removal demonstrated that ESC process based on the electrochemical-siderite packed column was an appropriate candidate for treating As (III) pollution.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Arsenic/chemistry , Carbonates , Ferric Compounds , Flocculation , Iron/chemistry , Oxidation-Reduction , Oxides , Reactive Oxygen Species , Water , Water Pollutants, Chemical/chemistry , Water Purification/methods
7.
Sci Rep ; 12(1): 12257, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851317

ABSTRACT

Serum branched chain amino acids (BCAAs) and aromatic amino acids (AAAs) are associated with obesity, insulin resistance and type 2 diabetes mellitus (T2DM). We investigated the levels of these amino acids in women with gestational diabetes mellitus (GDM) and examined their changes in response to an oral glucose tolerance test (OGTT). 110 women were enrolled and underwent a 75-g OGTT during their second trimester; 43 women were diagnosed with GDM and 67 women did not have GDM (non-GDM women). During the OGTT, fasting, 1-h, and 2-h blood samples were obtained. BCAA and AAA levels were measured by liquid chromatography-tandem mass spectrometry. The differences in BCAA and AAA levels between GDM and non-GDM women were not evident during fasting but became significant after glucose loading. Glucose ingestion decreased the levels of BCAAs and AAAs in both groups. Notably, GDM women showed a delayed and blunted decrease in these amino acids compared to non-GDM women. The risks of 2-h changes in BCAAs and AAAs for GDM women were significant. We identified that the differences in BCAA and AAA levels between GDM women and controls, which were not evident during fasting, could be provoked by performing an OGTT.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Amino Acids , Amino Acids, Aromatic , Amino Acids, Branched-Chain , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Glucose , Humans , Pregnancy
8.
Water Res ; 221: 118678, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35752092

ABSTRACT

Recovery of phosphorus from wastewater through struvite crystallization is one of the most attractive methods. However, the cost of chemical consumption makes this technology is unattractive to some extent. In this work, highly active serpentine was prepared by one-step mechanical activation and then used to recover phosphate as struvite from the black water containing 132.8 mg/L phosphorus and 3144 mg/L ammonia nitrogen. The results indicated that the prepared active serpentine can release magnesium ions and hydroxide ions simultaneously into an aqueous solution and is an ideal raw material for struvite crystallization. The factors for phosphorus recovery in this process mainly include mechanical activation intensity, serpentine dosage, and contact time. For the actual black water, a high recovery rate of phosphorus (>98%) is achieved by using active serpentine as the magnesium and alkali source for struvite precipitation. The recovery product was identified as struvite with a median particle size of 32.96 µm. It was confirmed that the mechanical activation damaged the crystal structure of the raw serpentine, improving the activity of Mg2+ and OH-. The undissolved Si-containing particles act as crystal seeds, accelerating the struvite crystallization process. Furthermore, a pilot-scale test was conducted with a rural public toilet in Xiong'an New District, Hebei Province. The results showed that an acceptable phosphorus recovery (98%) could be achieved using active serpentine. Additionally, it was demonstrated that the serpentine process to recover phosphate as struvite reduced the cost by 54.4% in compared with an ordinary chemical process. The active serpentine is a promising dual source of magnesium and alkali for the phosphorus recovery by the struvite method. It has a potential prospect for the large-scale application in phosphorus recovery and struvite fertilizer production.


Subject(s)
Magnesium , Phosphorus , Crystallization , Magnesium/chemistry , Magnesium Compounds/chemistry , Phosphates/chemistry , Phosphorus/chemistry , Struvite/chemistry , Wastewater/chemistry , Water
9.
Environ Sci Pollut Res Int ; 29(45): 68555-68563, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35545743

ABSTRACT

Coagulation with aluminum salts is an important method for fluoride removal from groundwater. However, the hydration of aluminum salts generating a large number of H+ usually leads to limited defluorination performance due to the optimum pH of active aluminum phase for fluoride removal around 5.5-6.5. In this work, enhanced fluoride removal from groundwater through precise regulation of active aluminum phase by CaCO3 was investigated. Precipitation products were characterized by XPS, FTIR, XRD, and SEM, respectively, and the mechanism of the high fluoride removal efficiency was discussed and compared with the traditional coagulation of Al2(SO4)3. In the Al2(SO4)3 + CaCO3 (ASCC) system, CaCO3 can stably regulate the pH at the optimum range for active aluminum phase existence and has the best fluoride removal effect. CaCO3 accurately regulated the activity of the aluminum phase by slowly releasing OH- and fine tuning pH, thereby achieving effective fluoride removal. Undissolved CaCO3 particles exist as the carrier of defluorination flocs to accelerate precipitation and improve stability. The work here provides a new method for fluoride removal and may shed light on the application of CaCO3 coagulants for other pollutants.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Purification , Aluminum/chemistry , Fluorides/analysis , Groundwater/chemistry , Salts , Water , Water Pollutants, Chemical/analysis , Water Purification/methods
10.
Chemosphere ; 301: 134677, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35472614

ABSTRACT

A novel silicate-based composite material was simply prepared by co-milling kaolinite and calcium compounds to endow the well studied clay minerals with active calcium for efficient removal of heavy metals. Batch experiments were carried out to investigate the main affecting factors such as raw material ratio, ball milling time, contact time, etc.. Even at a neutral solution pH, the silicate adsorbent exhibited excellent performance for the adsorption of Cd(II), reaching equilibrium in 30 min with a removal efficiency over 95%, and allowed a direct discharge of the treated solution without the need of acidic neutralization as usually used in the alkaline precipitation. A set of analytical methods including SEM/EDS and 29Si MAS NMR etc. were used to analyze the adsorption mechanism of Cd(II), revealing that the adsorption process was mainly dominated by ion exchange to accommodate Cd ions inside silicate matrix, accompanied with partial hydroxide precipitation, rather than normally reported surface adsorption on pristine minerals. Furthermore, the as-prepared adsorption material exhibited similar excellent immobilization capacity for multiple heavy metals including Cu(II), Zn(II), Ni(II), Cd(II) and Mn(II). These findings provide a novel concept for the activation of the widely available cheap silicate minerals by the same widely available cheap calcium compounds and high contribution may be expected on its potentials to the environmental purification of heavy metal pollution in water and soil.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Cadmium/analysis , Calcium Compounds/chemistry , Hydrogen-Ion Concentration , Ion Exchange , Kaolin , Metals, Heavy/chemistry , Minerals , Silicates/chemistry , Water Pollutants, Chemical/chemistry
11.
Immunol Lett ; 243: 28-37, 2022 03.
Article in English | MEDLINE | ID: mdl-35120907

ABSTRACT

Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a group of potentially life-threatening autoimmune diseases. The kidney and lung are the most common and most severely affected organs. Previous studies have shown that the chemokine ligand CXCL16 and its receptor CXCR6 play an important role in kidney disease. However, whether CXCL16/CXCR6 is involved in the pathogenesis of AAV remains elusive. In this study, the levels of CXCL16 and its specific receptor CXCR6 were investigated. According to kidney outcome, patients were divided into two groups, specifically one with high CXCL16 levels and one with low CXCL16 levels, by cut-off values using receiver operating characteristic (ROC) curves. The clinical parameters and histological features were further compared between the two groups. The ability of CXCL16 to induce neutrophil chemotaxis was analysed using a Transwell migration assay in a coculture system of conditional immortalized human glomerular endothelial cells (ciGEnCs) and neutrophils. We observed that the levels of CXCL16 were significantly increased in the circulation, along with the expression in renal tissue of AAV patients compared to healthy controls (HCs). CXCR6 expression on neutrophils was significantly higher in patients with AAV than in HCs. There were positive correlations between the levels of CXCL16 and serum creatinine, IL-6, CRP, and TNF-α and negative correlations with eGFR. The serum levels of CXCL16 could act as a predictive biomarker of renal outcome in AAV. CXCL16 secretion was upregulated in ciGEnCs treated with AAV serum. CXCL16 released from ciGEnCs contributed to neutrophil migration. Furthermore, neutrophil migration was attenuated by silencing CXCL16 expression via transfection with short hairpin RNA (shRNA) sequences and lentivirus. Taken together, these data suggest that the inhibition of the CXCL16/CXCR6 axis may provide new therapeutic strategies targeting AAV.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Endothelial Cells , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis , Autoantibodies/metabolism , Cell Movement , Chemokine CXCL16/metabolism , Endothelial Cells/metabolism , Humans , Neutrophils
12.
Bioresour Technol ; 349: 126879, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35202826

ABSTRACT

Layered double hydroxides (LDHs) were used as carriers for the microbial consortium in sequencing biofilm batch reactor (SBBR) without inoculation to promote the removal of phosphate. The adsorption capacity of [Zn-Al]-LDH was significantly better than that of [Mg-Al]-LDH. The pollutants removal performance and behavior of microorganisms in LDH-SBBRs were also investigated. LDH-SBBRs showed improved removal efficiencies of COD, phosphate and TP with a low C/N ratio. Microscopic images show that biofilm formed rapidly in LDH-SBBRs. SEM-EDS detected abundant carbon and phosphorus, implying that biomass and phosphorus accumulate on LDH carriers. The microbial compositions of the three SBBRs indicate that the LDHs carriers improved the biodiversity of biofilm in the bioreactors. Synergistic effects of adsorption and biodegradation between well-structured LDHs and microorganisms led to an improved phosphate removal performance of LDH-SBBR. The results also demonstrate that [Zn-Al]-LDH carrier is the best for improving SBBR phosphate removal.


Subject(s)
Phosphates , Water Pollutants, Chemical , Adsorption , Bacteria , Biofilms , Bioreactors , Hydroxides/pharmacology
13.
Environ Sci Pollut Res Int ; 29(18): 27421-27429, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34981379

ABSTRACT

The growing presences of conventional and emerging contaminants make the wastewater treatment increasingly difficult and expensive on a global scale. ZVI tends to be an expectable material for the detoxification of some difficult contaminants such as chlorinated solvents and nitroaromatics. In this work, together use with calcium carbonate (CaCO3), which serves as a green supporter to ZVI and also direct participant toward the purification process, has been carried out by cogrinding to give a synergistic effect, particularly for treating multiple pollutants including both inorganic and organic compositions. Based on a set of analytical methods of XRD, FTIR, SEM, XPS, and other test methods, the activation mechanism of the ball milling process and the removal performances of the prepared composites were examined. The results prove that the mechanically activated calcium carbonate and ZVI composite samples exhibited extremely high removal capacity on a variety of pollutants contaminated water. The decolorization of azo dyes is mainly attributed to the breaking of chromogenic functional group nitrogen and nitrogen double bonds, and the removal mechanism of aromatic series occurs through a hydrogenation substitution reaction. As to the inorganic pollutant removals, besides the efficient heavy metal ion precipitations, phosphate and fluoride ions are co-precipitated through the formation of fluorapatite to achieve a simultaneous and synergistic removal effect. Under the optimal reaction conditions, the concentration of PO43- is reduced from 250 to 0 mg/L, and that of F- is reduced from 51.07 to 1.20 mg/L. The prepared composite sample of ZVI rand calcium carbonate allowed simultaneous removals of both inorganic and organic pollutants, simplifying the remediation process of complicated multiple contaminations.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Calcium Carbonate , Humans , Iron/chemistry , Nitrogen , Water Pollutants, Chemical/analysis
14.
J Hazard Mater ; 424(Pt A): 127272, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34564046

ABSTRACT

Utilization of natural clay minerals for the treatment of heavy metal cadmium contamination is appealing as the affordable and readily accessible raw materials. However, the low reactivity of natural serpentine limits its practical application for Cd removal. In the present study, mechanochemical activation of antigorite-type serpentine (SP) as example was introduced to enhance its removal capacity for heavy metal of cadmium high enough for practical use. It was found ball-milling at 600 rpm for 60 min for antigorite resulted in the increased release of hydroxyl group to facilitate the precipitation of Cd2+, giving a capacity of 27.4 mg/g for the treatment of 100 mg/L Cd2+ for 120 min at room temperature, which was 10 times higher than that of the pristine antigorite (2.5 mg/g). More significantly, magnesium sulfate (MgSO4, MS) was introduced for the first time to process antigorite, thus to form MgSO4-incorporated antigorite. As a result, the removal capacity for Cd2+ was dramatically increased to 239.7 mg/g with the equal antigorite dosage (the molar ratio of SP/MS = 1:0.5), which is also much higher than the other reported clay minerals. Results showed that, MgSO4 incorporation promoted the reactivity of antigorite and provided numerous SO42- active sites, which allowed the heterogeneous nucleation of basic cadmium sulfate (CdSO4·3.5 Cd(OH)2·xH2O) precipitate on antigorite, therefore not requiring high alkalinity support as the conventional formation of cadmium hydroxide does. Correspondingly, under the new mechanism, the Cd precipitation could take place in a wide pH range, even from pH 3.0, which was a rarely reported phenomenon happening on natural minerals. Based on these findings, this study demonstrated the effectiveness of mechanochemical incorporation of sulfate for enhancing the Cd2+ removal capacity of serpentine, as well as the high efficiency of new pathway for Cd2+ precipitation. Moreover, the potential of low-cost serpentine as alternative stabilizers for the highly-effective remediation of heavy metal contamination may be expected.


Subject(s)
Cadmium , Metals, Heavy , Adsorption , Asbestos, Serpentine , Catalytic Domain , Hydrogen-Ion Concentration , Magnesium Sulfate
15.
J Hazard Mater ; 424(Pt D): 127708, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34801310

ABSTRACT

Iron manganese oxide resources are widely derived from the geological structure, and their combinations play an important role in the migration and transformation of arsenic. Iron oxide and manganese oxide exist generally in a mixed state in Fe-Mn oxides synthesized via the well studied co-precipitation methods using potassium permanganate and manganese/iron sulfates. Herein, a newly designed Fe-Mn-O compositing oxide with Fe-MnO2, Mn-Fe2O3, (Fe0.67Mn0.33)OOH solid solution and FeOOH as the main components, simply through solvent-free mechanical ball milling pyrolusite (MnO2) and ferrihydrite (FeOOH) together has been reported. Atomic-scale integrations by doping Fe and Mn with each other were detected and an adsorption-oxidation bifunctionality was achieved, where Fe-doped MnO2 served as oxidizer for As(III) and amorphous/ground FeOOH acted as adsorbent first for As(III) and then As(V) from the oxidization. The maximal adsorption for As(III) could reach 44.99 mg/g and over 82.5% of As(III) was converted to As(V). More importantly, high removal ability of arsenic worked in a wide pH range of 2-10.5%, and 87.2% of its initial adsorption-oxidation capacity could be kept even after 5-cycles reuse for treating 20 mg/L As(III) with a dosage at 1 g/L. Together with the enhanced adsorption capacity by the milled FeOOH, surface electron transfer efficiency of the developed Fe-MnO2 surrounded with Mn-Fe2O3 has been studied for the first time to understand the oxidization effect to As(V). Besides the environment-friendliness of ball milling method, the prepared sample is quite stable without noticeable metal release into solution. Mechanism studies of arsenic removal by the as-prepared Fe-Mn-O oxide provide a new direction for improving the oxidation efficiency of MnO2 to As(III) based on the widely available cheap Mn and Fe oxides, contributing to the development of advanced oxidization process in the treatment of waste water.

16.
Chemosphere ; 280: 130805, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34162095

ABSTRACT

The use of iron species to remove PO43- is widely used, and the fresh Fe3+ produced in situ demonstrate better effect on the removal of PO43- in many researches. Therefore, in order to develop a simpler and more efficient method for PO43- removal, we designed an easy operation by electrochemically dissolving siderite to produce fresh Fe3+ in situ for PO43- removal from wastewater. Results showed that current intensity at 20 mA, initial pH at 6, initial PO43- concentration at 1 mM and influent flow rate at 2.5 mL min-1 were the best parameters for removing PO43-, ensuring that the PO43- concentration of effluent can be kept below 1 mg L-1 through the electrochemical system. Different from other studies, a large amount of Fe2+ can be dissolved from natural minerals without adding H+ to the system and Fe3+ species are generated in situ from the oxidation of the Fe2+ without using a specific oxidizer. This electrochemical treatment method with siderite as a packed column can be used as a new method of high efficiency, simple operation and low-cost for treating eutrophic water bodies.


Subject(s)
Water Pollutants, Chemical , Water Purification , Carbonates , Ferric Compounds , Phosphates , Water
17.
ACS Omega ; 5(46): 29971-29977, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33251433

ABSTRACT

Cellulose saccharification to produce glucose is considered as an important approach for application of biomass resources. Solid acids as catalysts for this purpose have attracted much attention with the advantages of environmental friendliness, easy separation of products, and recyclability. In this work, a new method was introduced to prepare a H3PO4-based solid acid catalyst by simply grinding with kaolinite. Characterizations of the prepared products based on a set of analytical methods as well as cellulose hydrolysis were investigated and optimized. Loading H3PO4 on kaolinite with a mass ratio of 20% was used as a high-stability green catalyst. Cellulose hydrolysis occurred on the prepared catalyst even at much mild conditions with a low temperature of 343 K, and a yield of glucose products at 6.85% was achieved at optimized conditions. A catalytic activity of 82% remained after three cycles of use. The possible hydrolysis of cellulose under very low temperature demonstrates a potential approach for promoting biomass conversion into useful materials.

18.
Chemosphere ; 258: 127275, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32535445

ABSTRACT

Clay minerals are widely used to treat sewage containing heavy metals such as zinc and cadmium. In this study, the chemical reactivity of natural serpentine was signally improved through mechanochemical activation, achieving the efficient separation of Zn(Ⅱ) and Cd(Ⅱ) ions in a mixed solution. The activated serpentine would release a large amount of Mg2+ and OH- and thereby selectively precipitate Zn(Ⅱ) ions as an uncommon metamorphic zinc mineral, bechererite, in the presence of SO42-. By adjusting the parameters including grinding intensity, reaction temperature, serpentine dosage and salt species, the optimum conditions were determined and a 92% separation rate of Zn(Ⅱ) and Cd(Ⅱ) ions was achieved. The mechanochemical activation of natural clay minerals expresses a great potential for purification of heavy metal contaminated sewage, as well as the simultaneous separation and recovery of multi-metal secondary resources.


Subject(s)
Asbestos, Serpentine/chemistry , Cadmium/isolation & purification , Zinc/isolation & purification , Chemical Precipitation , Sewage/chemistry , Solutions , Sulfates/chemistry
19.
Chemosphere ; 249: 126227, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32087456

ABSTRACT

Efficient lead removal from metal-containing wastewater, such as acid mine drainage (AMD), is an important step in environmental purification and secondary resources recovery. In this paper, a novel approach by mechanochemically activating CaCO3 through simply wet ball milling in metal-containing solution was developed, where selective Pb2+ precipitation in the form of PbCO3 was achieved based on its reaction with the CO32- from the activated CaCO3. By such milling operation, the removal efficiency of Pb2+ from aqueous solution could reach over 99%, while more than 99% Zn2+ (as well as Mn, Ni and Cd) was remaining in the solutions, demonstrating the feasibility and high effectiveness of precipitating Pb2+ and serving the purpose of recovering other metals without Pb impurity. The solubility differences between Pb carbonate and other carbonates of Zn, Mn, Ni or Cd were understood to be the main pathway and using CaCO3 would offer an easy operation and environmental friendly process to purify the metals-containing wastewater by precipitating Pb, compared with the difficulties when using alkaline neutralization to treat them. In addition, basic zinc carbonate (a zinc-containing ore waste) as an alternative precipitant to CaCO3 in the separation process was also confirmed to increase the zinc recovery in the solution while maintaining high Pb2+ removal efficiency.


Subject(s)
Calcium Carbonate/chemistry , Lead/chemistry , Waste Disposal, Fluid/methods , Carbonates , Green Chemistry Technology , Metals, Heavy/analysis , Mining , Wastewater , Water , Water Purification , Zinc/analysis , Zinc/chemistry , Zinc Compounds
20.
Chemosphere ; 247: 125963, 2020 May.
Article in English | MEDLINE | ID: mdl-32069729

ABSTRACT

Lead (Pb) pollution in the soil is becoming more and more serious, and lead poisoning incidents also constantly occur. Therefore, the remediation of lead pollution in the soil has attracted widespread attention. In this study, heavy metal lead in soil was remediated by mechanochemical methods. The effects of different ball milling conditions on the toxic leaching concentration and morphological distribution (BCR sequential extraction procedure) of lead in contaminated soil were analyzed, including the addition of calcium dihydrogen phosphate (Ca(H2PO4)2), ball milling time, and ball milling speed. The reaction mechanism was analyzed by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and a laser particle size analyzer. The results show that the optimal conditions for mechanochemical immobilization were 10% additive (Ca(H2PO4)2), milling speed of 550 rpm, and ball milling time for 2 h. Under this condition, the toxic leaching concentration of lead from contaminated soil was 4.36 mg L-1, and in the BCR sequential extraction procedure, Pb was mainly present in the residual fraction (54.96%). The mechanism of mechanochemical solidification of heavy metal lead in soil is that, during the ball milling process, the lead precipitates with Ca(H2PO4)2 to produce dense agglomerates (Pb3(PO4)2 and PbxCa10-x(PO4)6(OH)2), which fixes the lead in the soil and hampers its leaching.


Subject(s)
Calcium Phosphates/chemistry , Environmental Restoration and Remediation/methods , Lead/isolation & purification , Soil Pollutants/chemistry , Calcium Pyrophosphate/chemistry , Chemical Precipitation , Lead/chemistry , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification , Microscopy, Electron, Scanning , Soil Pollutants/analysis , Soil Pollutants/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...