Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
J Colloid Interface Sci ; 671: 110-123, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795532

ABSTRACT

Herein, a novel rich oxygen vacancy (Ov) cobalt-iron hydrotalcite composite cobalt metal-organic framework material (ZIF-67/CoFe-LDH) was prepared by simple urea water and heat reduction approach and utilized for the peroxymonosulfate (PMS) system to remove sulfamethoxazole (SMX). 95 ± 1.32 % SMX (20 mg/L) was able to degraded in 20 min with TOC removal of 53 ± 1.56 % in ZIF-67/CoFe-LDH/PMS system. The system maintained a fantastic catalytic capability with wide pH range (3-9) and common interfering substances (Cl-, NO3-, CO32-, PO42- and humic acid (HA)), and the degradation efficiency could even remain 80.2 ± 1.48 % at the fifth cycle. Meanwhile, the applicability and feasibility of the catalysts for practical water treatment was verified by the degradation effects of SMX in different water environments and several other typical pollutants. Co and Fe bimetallic active centers synergistically activate PMS, and density functional theory (DFT) predicted adsorption energy about Ov in ZIF-67/CoFe-LDH for PMS was 1.335 eV, and OO bond length of PMS was stretched to 1.826 Å. As a result, PMS was more easily activated and broken, which accelerated the singlet oxygen (1O2), sulfate radical (SO4•-), high-valent metals and other reactive oxygen species (ROS). Radical and non-radical jointly degrading the pollutants improved the catalytic effect. Finally, SMX degradation intermediates were analyzed to explain the degradation pathway and their biotoxicity was also evaluated. This paper provides a new research perspective of oxygen vacancy activating PMS to degrade pollutants.

2.
Front Cardiovasc Med ; 11: 1383264, 2024.
Article in English | MEDLINE | ID: mdl-38784174

ABSTRACT

In high-risk patients with pure native aortic regurgitation (PNAR), transcatheter aortic valve replacement (TAVR) remains an off-label intervention. Due to anatomical variations in the aortic root and technical challenges unique to PNAR, the transfemoral approach (TF-TAVR) requires continued accumulation of experience and technological refinement. In this context, we successfully and safely performed a snare-assisted TF-TAVR procedure for a patient with PNAR, characterized by significant aortic angulation. We introduced an innovative technique termed "snare-assisted coaxiality optimized technique" (SACOT) during valve deployment. SACOT played a crucial role in optimizing valve positioning, enhancing coaxiality, and achieving the ideal implantation depth for PNAR. Post-procedure assessments demonstrated stability and the absence of paravalvular regurgitation (PVR).

3.
BMC Cardiovasc Disord ; 24(1): 251, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745157

ABSTRACT

BACKGROUND: Lp-PLA2 is linked to cardiovascular diseases and poor outcomes, especially in diabetes, as it functions as a pro-inflammatory and oxidative mediator. OBJECTIVES: This research aimed to explore if there is a connection between the serum levels of Lp-PLA2 and the progression of coronary plaques (PP) in individuals with type 2 diabetes mellitus (T2DM) and those without the condition. MATERIALS AND METHODS: Serum Lp-PLA2 levels were measured in 137 T2DM patients with PP and 137 T2DM patients with no PP, and in 205 non-diabetic patients with PP and 205 non-diabetic patients with no PP. These individuals met the criteria for eligibility and underwent quantitative coronary angiography at the outset and again after about one year of follow-up. The attributes and parameters of the participants at the outset were recorded. RESULTS: Increased serum levels of Lp-PLA2 were closely associated with coronary artery PP, and also significantly correlated with change of MLD, change of diameter stenosis and change of cumulative coronary obstruction in both diabetic and non-diabetic groups, with higher correlation coefficients in diabetic patients as compared with non-diabetic patients. Moreover, multivariate logistic regression analysis showed that serum Lp-PLA2 level was an independent determinant of PP in both groups, with OR values more significant in diabetic patients than in non-diabetic patients. CONCLUSIONS: Levels of serum Lp-PLA2 show a significant association with the progression of coronary atherosclerotic plaque in patients with T2DM and those without, especially among individuals with diabetes.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase , Biomarkers , Coronary Angiography , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Disease Progression , Plaque, Atherosclerotic , Humans , Male , 1-Alkyl-2-acetylglycerophosphocholine Esterase/blood , Female , Middle Aged , Plaque, Atherosclerotic/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/complications , Coronary Artery Disease/blood , Coronary Artery Disease/diagnostic imaging , Biomarkers/blood , Aged , Time Factors , Up-Regulation , Case-Control Studies , Risk Factors , Coronary Stenosis/blood , Coronary Stenosis/diagnostic imaging , Prognosis
4.
Circ Res ; 134(11): 1427-1447, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38629274

ABSTRACT

BACKGROUND: Medial arterial calcification is a chronic systemic vascular disorder distinct from atherosclerosis and is commonly observed in patients with chronic kidney disease, diabetes, and aging individuals. We previously showed that NR4A3 (nuclear receptor subfamily 4 group A member 3), an orphan nuclear receptor, is a key regulator in apo (apolipoprotein) A-IV-induced atherosclerosis progression; however, its role in vascular calcification is poorly understood. METHODS: We generated NR4A3-/- mice and 2 different types of medial arterial calcification models to investigate the biological roles of NR4A3 in vascular calcification. RNA-seq was performed to determine the transcriptional profile of NR4A3-/- vascular smooth muscle cells under ß-glycerophosphate treatment. We integrated Cleavage Under Targets and Tagmentation analysis and RNA-seq data to further investigate the gene regulatory mechanisms of NR4A3 in arterial calcification and target genes regulated by histone lactylation. RESULTS: NR4A3 expression was upregulated in calcified aortic tissues from chronic kidney disease mice, 1,25(OH)2VitD3 overload-induced mice, and human calcified aorta. NR4A3 deficiency preserved the vascular smooth muscle cell contractile phenotype, inhibited osteoblast differentiation-related gene expression, and reduced calcium deposition in the vasculature. Further, NR4A3 deficiency lowered the glycolytic rate and lactate production during the calcification process and decreased histone lactylation. Mechanistic studies further showed that NR4A3 enhanced glycolysis activity by directly binding to the promoter regions of the 2 glycolysis genes ALDOA and PFKL and driving their transcriptional initiation. Furthermore, histone lactylation promoted medial calcification both in vivo and in vitro. NR4A3 deficiency inhibited the transcription activation and expression of Phospho1 (phosphatase orphan 1). Consistently, pharmacological inhibition of Phospho1 attenuated calcium deposition in NR4A3-overexpressed vascular smooth muscle cells, whereas overexpression of Phospho1 reversed the anticalcific effect of NR4A3 deficiency in vascular smooth muscle cells. CONCLUSIONS: Taken together, our findings reveal that NR4A3-mediated histone lactylation is a novel metabolome-epigenome signaling cascade mechanism that participates in the pathogenesis of medial arterial calcification.


Subject(s)
Histones , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular , Nuclear Receptor Subfamily 4, Group A, Member 3 , Vascular Calcification , Animals , Vascular Calcification/metabolism , Vascular Calcification/genetics , Vascular Calcification/pathology , Mice , Humans , Histones/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Nuclear Receptor Subfamily 4, Group A, Member 3/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 3/genetics , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Cells, Cultured , DNA-Binding Proteins , Nerve Tissue Proteins , Receptors, Steroid , Receptors, Thyroid Hormone
5.
Eur Radiol ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676731

ABSTRACT

OBJECTIVES: This study aimed to compare the image quality and diagnostic performance of standard-resolution (SR) and ultra-high-resolution (UHR) coronary CT angiography (CCTA) based on photon-counting detector CT (PCD-CT) of coronary stents and explore the best reconstruction kernel for stent imaging. METHODS: From July 2023 to September 2023, patients were enrolled to undergo CCTA using a dual-source PCD-CT system after coronary angioplasty with stent placement. SR images with a slice thickness/increment of 0.6/0.4 mm were reconstructed using a vascular kernel (Bv48), while UHR images with a slice thickness/increment of 0.2/0.2 mm were reconstructed using vascular kernels of six sharpness levels (Bv48, Bv56, Bv60, Bv64, Bv72, and Bv76). The in-stent lumen diameters were evaluated. Subjective image quality was also evaluated by a 5-point Likert scale. Invasive coronary angiography was conducted in 12 patients (25 stents). RESULTS: Sixty-nine patients (68.0 [61.0, 73.0] years, 46 males) with 131 stents were included. All UHR images had significantly larger in-stent lumen diameter than SR images (p < 0.001). Specifically, UHR-Bv72 and UHR-Bv76 for in-stent lumen diameter (2.17 [1.93, 2.63] mm versus 2.20 [1.93, 2.59] mm) ranked the two best kernels. The subjective analysis demonstrated that UHR-Bv72 images had the most pronounced effect on reducing blooming artifacts, showcasing in-stent lumen and stent demonstration, and diagnostic confidence (p < 0.001). Furthermore, SR and UHR-Bv72 images showed a diagnostic accuracy of 78.3% (95% confidence interval [CI]: 56.3%-92.5%) and 88.0% (95%CI: 68.8%-97.5%), respectively. CONCLUSION: UHR CCTA by PCD-CT leads to significantly improved visualization and diagnostic performance of coronary stents, and Bv72 is the optimal reconstruction kernel showing the stent struts and in-stent lumen. CLINICAL RELEVANCE STATEMENT: The significantly improved visualization of coronary stents using ultra-high resolution CCTA could increase the diagnostic accuracy for in-stent restenosis and avoid unnecessary invasive quantitative coronary angiography, thus changing the clinical management for patients after percutaneous coronary intervention. KEY POINTS: Coronary stent imaging is challenging with energy-integrating detector CT due to "blooming artifacts." UHR images using a PCD-CT enhanced coronary stent visualization. UHR coronary stent imaging demonstrated improved diagnostic accuracy in clinical settings.

6.
Front Immunol ; 15: 1285813, 2024.
Article in English | MEDLINE | ID: mdl-38426091

ABSTRACT

Background: Vulnerable plaque was associated with recurrent cardiovascular events. This study was designed to explore predictive biomarkers of vulnerable plaque in patients with coronary artery disease. Methods: To reveal the phenotype-associated cell type in the development of vulnerable plaque and to identify hub gene for pathological process, we combined single-cell RNA and bulk RNA sequencing datasets of human atherosclerotic plaques using Single-Cell Identification of Subpopulations with Bulk Sample Phenotype Correlation (Scissor) and Weighted gene co-expression network analysis (WGCNA). We also validated our results in an independent cohort of patients by using intravascular ultrasound during coronary angiography. Results: Macrophages were found to be strongly correlated with plaque vulnerability while vascular smooth muscle cell (VSMC), fibrochondrocyte (FC) and intermediate cell state (ICS) clusters were negatively associated with unstable plaque. Weighted gene co-expression network analysis showed that Secreted Phosphoprotein 1 (SPP1) in the turquoise module was highly correlated with both the gene module and the clinical traits. In a total of 593 patients, serum levels of SPP1 were significantly higher in patients with vulnerable plaques than those with stable plaque (113.21 [73.65 - 147.70] ng/ml versus 71.08 [20.64 - 135.68] ng/ml; P < 0.001). Adjusted multivariate regression analysis revealed that serum SPP1 was an independent determinant of the presence of vulnerable plaque. Receiver operating characteristic curve analysis indicated that the area under the curve was 0.737 (95% CI 0.697 - 0.773; P < 0.001) for adding serum SPP1 in predicting of vulnerable plaques. Conclusion: Elevated serum SPP1 levels confer an increased risk for plaque vulnerability in patients with coronary artery disease.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Humans , Biomarkers , Coronary Angiography , Osteopontin/genetics , Plaque, Atherosclerotic/pathology
7.
BMC Bioinformatics ; 25(1): 139, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553698

ABSTRACT

BACKGROUND: MicroRNA (miRNA) has been shown to play a key role in the occurrence and progression of diseases, making uncovering miRNA-disease associations vital for disease prevention and therapy. However, traditional laboratory methods for detecting these associations are slow, strenuous, expensive, and uncertain. Although numerous advanced algorithms have emerged, it is still a challenge to develop more effective methods to explore underlying miRNA-disease associations. RESULTS: In the study, we designed a novel approach on the basis of deep autoencoder and combined feature representation (DAE-CFR) to predict possible miRNA-disease associations. We began by creating integrated similarity matrices of miRNAs and diseases, performing a logistic function transformation, balancing positive and negative samples with k-means clustering, and constructing training samples. Then, deep autoencoder was used to extract low-dimensional feature from two kinds of feature representations for miRNAs and diseases, namely, original association information-based and similarity information-based. Next, we combined the resulting features for each miRNA-disease pair and used a logistic regression (LR) classifier to infer all unknown miRNA-disease interactions. Under five and tenfold cross-validation (CV) frameworks, DAE-CFR not only outperformed six popular algorithms and nine classifiers, but also demonstrated superior performance on an additional dataset. Furthermore, case studies on three diseases (myocardial infarction, hypertension and stroke) confirmed the validity of DAE-CFR in practice. CONCLUSIONS: DAE-CFR achieved outstanding performance in predicting miRNA-disease associations and can provide evidence to inform biological experiments and clinical therapy.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , Computational Biology/methods , Algorithms , Genetic Predisposition to Disease
8.
Phys Chem Chem Phys ; 26(7): 6080-6090, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38299709

ABSTRACT

Highly toughened and stiff polyamide 10,12 (PA10,12) composites present a promising alternative to metal products for high-impact environments. However, it is challenging to toughen PA10,12 composites without compromising their robustness. Herein, we report a facile and scalable route to simultaneously develop reinforced and toughened PA10,12 composites via compounding PA10,12, carbon nanotubes (CNTs) and 3-15alkyphenol (PDP). The PDP acted as a compatibilizer to well-disperse MWCNTs since they tended to be adsorbed onto the CNT surface, which was revealed by molecular dynamics simulation. According to the simulation statistics, the vertical PDP conformations (to the CNT surface) were predominant in the ternary composites with ∼78.7% probability. Moreover, the hydrogen bonds (H-bonds) between the PDP and the PA matrix were confirmed using FTIR. A crystallization kinetics study also revealed that the crystallization temperature increased from 166.7 °C for the neat PA10,12 to 168.7 °C for the ternary PA/PDP/CNT composites containing 1.5 wt% CNTs, while the crystallization half-time increased from 0.58 s for the neat PA10,12 to 1.2 s for the ternary composites. It was also found that the notched impact strength of the ternary composites reached 75.2 kJ m-2, which was 970% higher than that of the neat PA10,12 without compromising their tensile strength of 50.5 MPa much. This work provides a new insight into PDP as a compatibilizer to develop simultaneously stiff and toughened nylon composites.

9.
Ultrasonics ; 138: 107244, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237398

ABSTRACT

Fractional flow has been proposed for quantifying the degree of functional stenosis in cerebral arteries. Herein, subharmonic aided pressure estimation (SHAPE) combined with plane wave (PW) transmission was employed to noninvasively estimate the pressure distribution and fractional flow in the middle cerebral artery (MCA) in vitro. Consequently, the effects of incident sound pressure (peak negative pressures of 86-653 kPa), pulse repetition frequency (PRF), number of pulses, and blood flow rate on the subharmonic pressure relationship were investigated. The radio frequency data were stored and beamformed offline, and the subharmonic amplitude over a 0.4 MHz bandwidth was extracted using a 12-cycle PW at 4 MHz. The optimal incident sound pressure was 217 kPa without skull (sensitivity = 0.09 dB/mmHg; r2 = 0.997) and 410 kPa with skull (median sensitivity = 0.06 dB/mmHg; median r2 = 0.981). The optimal PRF was 500 Hz, as this value affords the highest sensitivity (0.09 dB/mmHg; r2 = 0.976) and temporal resolution. In addition, the blood flow rate exhibited a lesser effect on the subharmonic pressure relationship in our experimental setup. Using the optimized parameters, the blood pressure distribution and fractional flow (FFs) were measured. As such, the FFs value was in high agreement with the value measured using the pressure sensor (FFm). The mean ± standard deviations of the FF difference (FFm - FFs) were 0.03 ± 0.06 without skull and 0.01 ± 0.05 with skull.


Subject(s)
Microbubbles , Middle Cerebral Artery , Middle Cerebral Artery/diagnostic imaging , Phantoms, Imaging , Contrast Media , Ultrasonography
10.
J Clin Sleep Med ; 20(5): 765-775, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38174863

ABSTRACT

STUDY OBJECTIVES: Obstructive sleep apnea (OSA) is associated with acute nocturnal hemodynamic and neurohormonal abnormalities that may increase the risk of coronary events, especially during the nighttime. This study sought to investigate the day-night pattern of acute ST-segment elevation myocardial infarction (STEMI) onset in patients with OSA and its impact on cardiovascular adverse events. METHODS: We prospectively enrolled 397 patients with STEMI, for which the time of onset of chest pain was clearly identified. All participants were categorized into non-OSA (n = 280) and OSA (n = 117) groups. The association between STEMI onset time and major adverse cardiovascular and cerebrovascular events was estimated by Cox proportional hazards regression. RESULTS: STEMI onset occurred from midnight to 5:59 am in 33% of patients with OSA, as compared with 15% in non-OSA patients (P < .01). For individuals with OSA, the relative risk of STEMI from midnight to 5:59 am was 2.717 [95% confidence interval (CI) 1.616 - 4.568] compared with non-OSA patients. After a median of 2.89 ± 0.78 years follow-up, symptom onset time was found to be significantly associated with risk of major adverse cardiovascular and cerebrovascular events in patients with OSA, while there was no significant association observed in non-OSA patients. Compared with STEMI presenting during noon to 5:59 pm, the hazard ratios for major adverse cardiovascular and cerebrovascular events in patients with OSA were 4.683 (95% CI 2.024 - 21.409, P = .027) for midnight to 5:59 am and 6.964 (95% CI 1.379 - 35.169, P = .019) for 6 pm to midnight, whereas the hazard ratios for non-OSA patients were 1.053 (95% CI 0.394 - 2.813, P = .917) for midnight to 5:59 am and 0.745 (95% CI 0.278 - 1.995, P = .558) for 6 pm to midnight. CONCLUSIONS: Patients with OSA exhibited a peak incidence of STEMI between midnight and 5:59 am, which showed an independent association with cardiovascular adverse events. CITATION: Wang Y, Buayiximu K, Zhu T, et al. Day-night pattern of acute ST-segment elevation myocardial infarction onset in patients with obstructive sleep apnea. J Clin Sleep Med. 2024;20(5):765-775.


Subject(s)
ST Elevation Myocardial Infarction , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/physiopathology , Male , Female , Middle Aged , ST Elevation Myocardial Infarction/complications , ST Elevation Myocardial Infarction/epidemiology , ST Elevation Myocardial Infarction/physiopathology , Prospective Studies , Risk Factors , Aged , Time Factors , Circadian Rhythm/physiology
11.
Mol Nutr Food Res ; 68(3): e2300602, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38054637

ABSTRACT

SCOPE: Inflammation and pyroptosis play important roles in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated the therapeutic potential of ketogenic diet (KD) in EAE. METHODS AND RESULTS: The administration of KD reduces demyelination and microglial activation in the spinal cord of EAE mice. Meanwhile, KD decreases the levels of Th1 and Th17 associated cytokines/transcription factors production (T-bet, IFN-γ, RORγt, and IL-17) and increases those of Th2 and Treg cytokines/transcription factors (GATA3, IL-4, Foxp3, and IL-10) in the spinal cord and spleen. Corresponding, KD reduces the expression of chemokines in EAE, which those chemokines associate with T-cell infiltration into central nervous system (CNS). In addition, KD inhibits the GSDMD activation in microglia, oligodendrocyte, CD31+ cells, CCR2+ cells, and T cells in the spinal cord. Moreover, KD significantly decreases the ratios of p-JAK2/JAK2, p-STAT3/STAT3, and p-STAT4/STAT4, as well as GSDMD in EAE mice. CONCLUSIONS: this study demonstrates that KD reduces the activation and differentiation of T cells in the spinal cord and spleen and prevents T cell infiltration into CNS of EAE via modulating the GSDMD and STAT3/4 pathways, suggesting that KD is a potentially effective strategy in the treatment of MS.


Subject(s)
Diet, Ketogenic , Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Th1 Cells , Cytokines/metabolism , Chemokines/therapeutic use , Transcription Factors , Mice, Inbred C57BL , Th17 Cells
12.
Mol Phylogenet Evol ; 191: 107993, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103706

ABSTRACT

Brisingida Fisher 1928 is one of the seven currently recognised starfish orders, and one of the least known taxa as being exclusive deep-sea inhabitants. Modern deep-sea expeditions revealed their common occurrences in various deep-sea settings including seamounts, basins and hydrothermal vent peripheral, underlining the necessity of clarifying their global diversity and phylogeny. In this study, we present a comprehensive molecular phylogeny of Brisingida which encompasses the highest taxonomic diversity to date. DNA sequences (COI, 16S, 12S and 28S) were obtained from 225 specimens collected in the global ocean, identified as 58 species spanning 15 of the 17 extant genera. Phylogenetic relationship was inferred using both maximum likelihood and Bayesian inference methods, revealing polyphyletic families and genera and indicating nonnegligible bias in prior morphology-based systematics. Based on the new phylogeny, a novel classification of the order, consisting of 5 families and 17 genera, is proposed. Families Odinellidae, Brisingasteridae and Novodiniidae (sensu Clark and Mah, 2001) were resurrected to encompass the genera Odinella, Brisingaster and Novodinia. Brisingidae and Freyellidae were revised to include 11 and 3 genera, respectively. A new genus and species, two new subgenera and seven new combinations are described and a key to each genus and family is provided. Transformations of morphological traits were evaluated under the present phylogenetic hypothesis. A series of paedomorphic characters were found in many genera and species, which led to a high degree of homoplasy across phylogenetically distant groups. Our results provide new insights in the phylogeny and ontogeny of the order, and highlight the necessity to evaluate character convergence under sound phylogenetic hypothesis.


Subject(s)
Echinodermata , Starfish , Humans , Animals , Echinodermata/genetics , Starfish/genetics , Phylogeny , Bayes Theorem , Base Sequence
13.
Langmuir ; 39(48): 17146-17153, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37976427

ABSTRACT

BiOCl/Bi2Fe4O9 photocatalyst was prepared by a coprecipitation-hydrothermal method. The heterojunction structure generated by the composite of BiOCl and Bi2Fe4O9 reduced the electron-hole recombination efficiency and improved the degradation rate of RhB. At 240 min, 20% BiOCl/Bi2Fe4O9 represented the excellent degradation effect on 10 mg/L RhB; the degradation efficiency reached 99.56%; and the reaction rate constant was 0.01534 min-1, which was 5.76 times and 6.06 times that of Bi2Fe4O9 and BiOCl, respectively. The main active substance of the photocatalytic degradation of dyes was superoxide radical O2-·. Five cycles of the experiment proved the relative stability of BiOCl/Bi2Fe4O9.

14.
Cardiol J ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37772349

ABSTRACT

BACKGROUD: Left ventricular remodeling (LVR) is a major predictor of adverse outcomes in patients with acute ST-elevation myocardial infarction (STEMI). This study aimed to prospectively evaluate LVR in patients with STEMI who were successfully treated with primary percutaneous coronary intervention (PCI) and examine the relationship between early left ventricular dilation and late LVR. METHODS: Overall 301 consecutive patients with STEMI who underwent primary PCI were included. Serial echocardiography was performed on the first day after PCI, on the day of discharge, at 1 month, and 6 months after discharge. RESULTS: Left ventricular remodeling occurred in 57 (18.9%) patients during follow-up. Left ventricular end-diastolic volume (LVEDV) reduced from day 1 postoperative to discharge in the LVR group compared with that in the non-LVR (n-LVR) group. The rates of change in LVEDV (ΔLVEDV%) were -5.24 ± 16.02% and 5.05 ± 16.92%, respectively (p < 0.001). LVEDV increased in patients with LVR compared with n-LVR at 1-month and 6-month follow-ups (ΔLVEDV% 13.05 ± 14.89% vs. -1.9 ± 12.03%; 26.46 ± 14.05% vs. -3.42 ± 10.77%, p < 0.001). Receiver operating characteristic analysis showed that early changes in LVEDV, including ΔLVEDV% at discharge and 1-month postoperative, predicted late LVR with an area under the curve value of 0.80 (95% confidence interval 0.74-0.87, p < 0.0001). CONCLUSIONS: Decreased LVEDV at discharge and increased LVEDV at 1-month follow-up were both associated with late LVR at 6-month. Comprehensive and early monitoring of LVEDV changes may help to predict LVR.

15.
BMC Biol ; 21(1): 151, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37424015

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) accelerates atherosclerosis, but the mechanisms remain unclear. Tyrosine sulfation has been recognized as a key post-translational modification (PTM) in regulation of various cellular processes, and the sulfated adhesion molecules and chemokine receptors have been shown to participate in the pathogenesis of atherosclerosis via enhancement of monocyte/macrophage function. The levels of inorganic sulfate, the essential substrate for the sulfation reaction, are dramatically increased in patients with CKD, which indicates a change of sulfation status in CKD patients. Thus, in the present study, we detected the sulfation status in CKD patients and probed into the impact of sulfation on CKD-related atherosclerosis by targeting tyrosine sulfation function. RESULTS: PBMCs from individuals with CKD showed higher amounts of total sulfotyrosine and tyrosylprotein sulfotransferase (TPST) type 1 and 2 protein levels. The plasma level of O-sulfotyrosine, the metabolic end product of tyrosine sulfation, increased significantly in CKD patients. Statistically, O-sulfotyrosine and the coronary atherosclerosis severity SYNTAX score positively correlated. Mechanically, more sulfate-positive nucleated cells in peripheral blood and more abundant infiltration of sulfated macrophages in deteriorated vascular plaques in CKD ApoE null mice were noted. Knockout of TPST1 and TPST2 decreased atherosclerosis and peritoneal macrophage adherence and migration in CKD condition. The sulfation of the chemokine receptors, CCR2 and CCR5, was increased in PBMCs from CKD patients. CONCLUSIONS: CKD is associated with increased sulfation status. Increased sulfation contributes to monocyte/macrophage activation and might be involved in CKD-related atherosclerosis. Inhibition of sulfation may suppress CKD-related atherosclerosis and is worthy of further study.


Subject(s)
Atherosclerosis , Sulfotransferases , Mice , Animals , Sulfotransferases/chemistry , Sulfotransferases/genetics , Sulfotransferases/metabolism , Proteins/metabolism , Tyrosine/metabolism , Mice, Knockout , Receptors, Chemokine/metabolism , Atherosclerosis/complications , Protein Processing, Post-Translational
16.
Food Funct ; 14(15): 7247-7269, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37466915

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disorder characterized by demyelination and neurodegeneration in the central nervous system (CNS); severe symptoms lead MS patients to use complementary treatments. Ketogenic diet (KD) shows wide neuroprotective effects, but the precise mechanisms underlying the therapeutic activity of KD in MS are unclear. The present study established a continuous 24 days experimental autoimmune encephalomyelitis (EAE) mouse model with or without KD. The changes in motor function, pathological hallmarks of EAE, the status of microglia, neuroinflammatory response and intracellular signaling pathways in mice were detected by the rotarod test, histological analysis, real-time PCR (RT-PCR) and western blotting. Our results showed that KD could prevent motor deficiency, reduce clinical scores, inhibit demyelination, improve pathological lesions and suppress microglial activation in the spinal cord of EAE mice. Meanwhile, KD shifted microglial polarization toward the protective M2 phenotype and modified the inflammatory milieu by downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-1ß and IL-6, as well as upregulating the release of anti-inflammatory cytokines such as TGF-ß. Furthermore, KD decreased the expression levels of CCL2, CCR2, CCL3, CCR1, CCR5, CXCL10 and CXCR3 in the spinal cord and spleen with reduced monocyte/macrophage infiltration in the CNS. In addition, KD inhibits NLRP3 activation in the microglia, as revealed by the significantly decreased co-expression of NLRP3+ and Iba-1+ in the KD + EAE group. Further studies demonstrated that KD suppresses inflammatory response and M1 microglial polarization by inhibiting the TLR4/MyD88/NF-κB/NLRP3 pathway, the JAK1/STAT1 pathway, HDAC3 and P2X7R activation, as well as up-regulation of JAK3/STAT6.


Subject(s)
Diet, Ketogenic , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Multiple Sclerosis/genetics , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Cytokines/genetics , Cytokines/metabolism , Mice, Inbred C57BL
17.
J Clin Hypertens (Greenwich) ; 25(7): 610-617, 2023 07.
Article in English | MEDLINE | ID: mdl-37378546

ABSTRACT

The clinical significance of central beyond brachial blood pressure (BP) remains unclear. In patients who underwent coronary angiography, the authors explored whether elevated central BP would be associated with coronary arterial disease (CAD) irrespective of the status of brachial hypertension. From March 2021 to April 2022, 335 patients (mean age 64.9 years, 69.9% men) hospitalized for suspected CAD or unstable angina were screened in an ongoing trial. CAD was defined if a coronary stenosis of ≥50%. According to the presence of brachial (non-invasive cuff systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg) and central (invasive systolic BP ≥130 mmHg) hypertension, patients were cross-classified as isolated brachial hypertension (n = 23), isolated central hypertension (n = 93), and concordant normotension (n = 100) or hypertension (n = 119). In continuous analyses, both brachial and central systolic BPs were significantly related to CAD with similar standardized odds ratios (OR, 1.47 and 1.45, p < .05). While categorical analyses showed that patients with isolated central hypertension or concordant hypertension had a significantly higher prevalence of CAD and the Gensini score than those with concordant normotension. Multivariate-adjusted OR (95% confidence interval [CI]) for CAD was 2.24 (1.16 to 4.33, p = .009) for isolated central hypertension and 3.02 (1.58 to 5.78, p < .001) for concordant hypertension relative to concordant normotension. The corresponding OR (95% CI) of a high Gensini score was 2.40 (1.26-4.58) and 2.17 (1.19-3.96), respectively. In conclusion, regardless of the presence of brachial hypertension, elevated central BP was associated with the presence and severity of CAD, indicating that central hypertension is an important risk factor for coronary atherosclerosis.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Hypertension , Male , Humans , Middle Aged , Aged , Female , Hypertension/complications , Hypertension/epidemiology , Coronary Angiography , Brachial Artery/diagnostic imaging , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/epidemiology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/diagnostic imaging , Blood Pressure/physiology , Risk Factors
18.
Biomedicines ; 11(5)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239092

ABSTRACT

The global outbreak of SARS-CoV-2/COVID-19 provided the stage to accumulate an enormous biomedical data set and an opportunity as well as a challenge to test new concepts and strategies to combat the pandemic. New research and molecular medical protocols may be deployed in different scientific fields, e.g., glycobiology, nanopharmacology, or nanomedicine. We correlated clinical biomedical data derived from patients in intensive care units with structural biology and biophysical data from NMR and/or CAMM (computer-aided molecular modeling). Consequently, new diagnostic and therapeutic approaches against SARS-CoV-2 were evaluated. Specifically, we tested the suitability of incretin mimetics with one or two pH-sensitive amino acid residues as potential drugs to prevent or cure long-COVID symptoms. Blood pH values in correlation with temperature alterations in patient bodies were of clinical importance. The effects of biophysical parameters such as temperature and pH value variation in relation to physical-chemical membrane properties (e.g., glycosylation state, affinity of certain amino acid sequences to sialic acids as well as other carbohydrate residues and lipid structures) provided helpful hints in identifying a potential Achilles heel against long COVID. In silico CAMM methods and in vitro NMR experiments (including 31P NMR measurements) were applied to analyze the structural behavior of incretin mimetics and SARS-CoV fusion peptides interacting with dodecylphosphocholine (DPC) micelles. These supramolecular complexes were analyzed under physiological conditions by 1H and 31P NMR techniques. We were able to observe characteristic interaction states of incretin mimetics, SARS-CoV fusion peptides and DPC membranes. Novel interaction profiles (indicated, e.g., by 31P NMR signal splitting) were detected. Furthermore, we evaluated GM1 gangliosides and sialic acid-coated silica nanoparticles in complex with DPC micelles in order to create a simple virus host cell membrane model. This is a first step in exploring the structure-function relationship between the SARS-CoV-2 spike protein and incretin mimetics with conserved pH-sensitive histidine residues in their carbohydrate recognition domains as found in galectins. The applied methods were effective in identifying peptide sequences as well as certain carbohydrate moieties with the potential to protect the blood-brain barrier (BBB). These clinically relevant observations on low blood pH values in fatal COVID-19 cases open routes for new therapeutic approaches, especially against long-COVID symptoms.

19.
Nutr Metab (Lond) ; 20(1): 14, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894935

ABSTRACT

BACKGROUND: The associations between obesity and abnormalities of upper and lower extremity arteries remain to be elucidated. This study is aimed to investigate whether general obesity and abdominal obesity are associated with upper and lower extremity artery diseases in a Chinese community population. METHODS: This cross-sectional study included 13,144 participants in a Chinese community population. The associations between obesity parameters and abnormalities of upper and lower extremity arteries were evaluated. Multiple logistic regression analysis was used to assess the independence of associations between obesity indicators and abnormalities of peripheral arteries. Nonlinear relationship between body mass index (BMI) and risk of ankle-brachial index (ABI) ≤ 0.9 was evaluated using a restricted cubic spline model. RESULTS: The prevalence of ABI ≤ 0.9 and interarm blood pressure difference (IABPD) ≥ 15 mmHg in the subjects was 1.9% and 1.4% respectively. Waist circumference (WC) was independently associated with ABI ≤ 0.9 (OR 1.014, 95% CI 1.002-1.026, P = 0.017). Nevertheless, BMI was not independently associated with ABI ≤ 0.9 using linear statistical models. Meanwhile, BMI and WC were independently associated with IABPD ≥ 15 mmHg respectively (OR 1.139, 95% CI 1.100-1.181, P < 0.001, and OR 1.058, 95% CI 1.044-1.072, P < 0.001). Furthermore, prevalence of ABI ≤ 0.9 was displayed with a U-shaped pattern according to different BMI (< 20, 20 to < 25, 25 to < 30, and ≥ 30). Compared with BMI 20 to < 25, risk of ABI ≤ 0.9 was significantly increased when BMI < 20 or ≥ 30 respectively (OR 2.595, 95% CI 1.745-3.858, P < 0.001, or OR 1.618, 95% CI 1.087-2.410, P = 0.018). Restricted cubic spline analysis indicated a significant U-shaped relationship between BMI and risk of ABI ≤ 0.9 (P for non-linearity < 0.001). However, prevalence of IABPD ≥ 15 mmHg was significantly increased with incremental BMI (P for trend < 0.001). Compared with BMI 20 to < 25, the risk of IABPD ≥ 15 mmHg was significantly increased when BMI ≥ 30 (OR 3.218, 95% CI 2.133-4.855, P < 0.001). CONCLUSIONS: Abdominal obesity is an independent risk factor for upper and lower extremity artery diseases. Meanwhile, general obesity is also independently associated with upper extremity artery disease. However, the association between general obesity and lower extremity artery disease is displayed with a U-shaped pattern.

20.
Mitochondrial DNA B Resour ; 8(3): 368-370, 2023.
Article in English | MEDLINE | ID: mdl-36926641

ABSTRACT

The genus Thaumatocrinus is composed of species displaying 10 undivided arms arising from 10 radials. Thaumatocrinus naresi is also considered to be a 10-arm species, but individuals with 9 arms were also reported. Here, we report the mitochondrial genome of T. naresi with 9 arms collected from the western Pacific. The genome is 16,047 bp in length with a 67.84% AT content. It contains 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. Phylogenetic analysis shows that T. naresi forms an independent lineage within Comatulida.

SELECTION OF CITATIONS
SEARCH DETAIL
...