Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 258(Pt 2): 128990, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158057

ABSTRACT

Plantago asiatica L. (PAL), a traditional herb, has been used in East Asia for thousands of years. In recent years, polysaccharides extracted from PAL have garnered increased attention due to their outstanding pharmacological and biological properties. Previous research has established that PAL-derived polysaccharides exhibit antioxidant, anti-inflammatory, antidiabetic, antitumor, antimicrobial, immune-regulatory, intestinal health-promoting, antiviral, and other effects. Nevertheless, a comprehensive summary of the research related to Plantago asiatica L. polysaccharides (PALP) has not been reported to date. In this paper, we review the methods for isolation and purification, physiochemical properties, structural features, and biological activities of PALP. To provide a foundation for research and application in the fields of medicine and food, this review also outlines the future development prospects of plantain polysaccharides.


Subject(s)
Plantago , Plantago/chemistry , Antioxidants/pharmacology , Polysaccharides/chemistry , Plant Extracts/pharmacology , Asia, Eastern
2.
Sci Rep ; 13(1): 22542, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110563

ABSTRACT

Urban economic development, congestion relief, and traffic efficiency are all greatly impacted by the thoughtful planning of urban metro station layout. with the urban area of Lanzhou as an example, the suitability of the station locations of the built metro stations of the rail transit lines 1 and 2 in the study area have been evaluated using multi-source heterogeneous spatial data through data collection, feature matrix construction, the use of random forest and K-fold cross-validation, among other methods. The average Gini reduction value was used to examine the contribution rate of each feature indicator based on the examination of model truthfulness. According to the study's findings: (1) K-fold cross-validation was applied to test the random forest model that was built using the built metro stations and particular factors. The average accuracy of the tests and out-of-bag data (OOB) of tenfold cross-validation were 89.62% and 91.285%, respectively. Additionally, the AUC area under the ROC curve was 0.9823, indicating that this time, from the perspective of the natural environment, traffic location, and social factors The 19 elements selected from the views of the urban function structure, social economics, and natural environment are closely associated to the locations of the metro station in the research region, and the prediction the findings are more reliable; (2) It becomes apparent that more than half of the built station sites display excellent agreement with the predicted sites in terms of geographical location by superimposing the built metro station sites with the prediction results and tally up their cumulative prediction probability values within the 300 m buffering zone; (3) Based on the contribution rate of each indicator to the model, transport facilities, companies, population density, night lighting, science, education and culture, residential communities, and road network density are identified as the primary influential factors, each accounting for over 6.6%. Subsequently, land use, elevation, and slope are found to have relatively lower contributions. The results of the research provided important information for the local metro's best location selection and planning.

3.
Appl Environ Microbiol ; 89(12): e0157723, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38019025

ABSTRACT

IMPORTANCE: EvgS/EvgA, one of the five unorthodox two-component systems in Escherichia coli, plays an essential role in adjusting bacterial behaviors to adapt to the changing environment. Multiple resistance regulated by EvgS/EvgA endows bacteria to survive in adverse conditions such as acidic pH, multidrug, and heat. In this minireview, we summarize the specific structures and regulation mechanisms of EvgS/EvgA and its multiple resistance. By discussing several unresolved issues and proposing our speculations, this review will be helpful and enlightening for future directions about EvgS/EvgA.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial
4.
Int J Biol Macromol ; 242(Pt 3): 125070, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37244338

ABSTRACT

H. virescens is a perennial herbaceous plant with highly tolerant to cold weather, but the key genes that respond to low temperature stress still remain unclear. Hence, RNA-seq was performed using leaves of H. virescens treated at 0 °C and 25 °C for 12 h, 36 h, and 60 h, respectively, and a total of 9416 DEGs were significantly enriched into seven KEGG pathways. The LC-QTRAP platform was performed using leaves of H. virescens leaves at 0 °C and 25 °C for 12 h, 36 h, and 60 h, respectively, and a total of 1075 metabolites were detected, which were divided into 10 categories. Additionally, 18 major metabolites, two key pathways, and six key genes were mined using a multi-omics analytical strategy. The RT-PCR results showed that with the extension of treatment time, the expression levels of key genes in the treatment group gradually increased, and the difference between the treatment group and the control group was extremely significant. Notably, the functional verification results showed that the key genes positively regulated cold tolerance of H. virescens. These results can lay a foundation for the in-depth analysis of the mechanism of response of perennial herbs to low temperature stress.


Subject(s)
Gene Expression Profiling , Transcriptome , Temperature , Poaceae , Metabolomics , Cold Temperature , Gene Expression Regulation, Plant
5.
Plants (Basel) ; 12(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37176935

ABSTRACT

Seed vigor is an important aspect of seed quality. High-vigor seeds show rapid and uniform germination and emerge well, especially under adverse environmental conditions. Here, we determined hydrotime model parameters by incubating seeds at different water potentials (0.0, -0.2, -0.4, -0.6, and -0.8 MPa) in the laboratory, for 12 seed lots of Chinese milk vetch (Astragalus sinicus) (CMV), a globally important legume used as forage, green manure, and a rotation crop. Pot experiments were conducted to investigate the seedling emergence performance of 12 CMV seed lots under control, water stress, salinity stress, deep sowing, and cold stress conditions. Meanwhile, the field emergence performance was evaluated on two sowing dates in June and October 2022. Correlation and regression analyses were implemented to explore the relationships between hydrotime model parameters and seedling emergence performance under various environmental conditions. The seed germination percentage did not differ significantly between seed lots when seeds were incubated at 0.0 MPa, whereas it did differ significantly between seed lots at water potentials of -0.2, -0.4, and -0.6 MPa. The emergence percentage, seedling dry weight, and simplified vigor index also differed significantly between the 12 seed lots under various environmental conditions. Ψb(50) showed a significant correlation with germination and emergence performance under various environmental conditions; however, little correlation was observed between θH or σφb and germination and emergence. These results indicate that Ψb(50) can be used to estimate seed vigor and predict seedling emergence performance under diverse environmental conditions for CMV and similar forage legumes. This study will enable seed researchers, plant breeders, and government program directors to target higher seed vigor more effectively for forage legumes.

6.
Chin J Nat Med ; 21(4): 308-320, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37120249

ABSTRACT

Viscum coloratum (Kom.) Nakai is a well-known medicinal plant. However, the optimal harvest time for V. coloratum is unknown. Few studies were performed to analyze compound variation during storage and to improve post-harvest quality control. Our study aimed to comprehensively evaluate the quality of V. coloratum in different growth stages, and determine the dynamic variation of metabolites. Ultra-performance liquid chromatography tandem mass spectrometry was used to quantify 29 compounds in V. coloratum harvested in six growth periods, and the associated biosynthetic pathways were explored. The accumulation of different types of compounds were analyzed based on their synthesis pathways. Grey relational analysis was used to evaluate the quality of V. coloratum across different months. The compound variation during storage was analyzed by a high-temperature high-humidity accelerated test. The results showed that the quality of V. coloratum was the hightest in March, followed by November, and became the lowest in July. During storage, compounds in downstream steps of the biosynthesis pathway were first degraded to produce the upstream compounds and some low-molecular-weight organic acids, leading to an increase followed by a decrease in the content of some compounds, and resulted in a large gap during the degradation time course among different compounds. Due to the rapid rate and large degree of degradation, five compounds were tentatively designated as "early warning components" for quality control. This report provides reference for better understanding the biosynthesis and degradation of metabolites in V. coloratum and lays a theoretical foundation for rational application of V. coloratum and better quality control of V. coloratum during storage.


Subject(s)
Plants, Medicinal , Viscum , Viscum/chemistry , Plants, Medicinal/chemistry , Chromatography, Liquid , Mass Spectrometry , Metabolomics
7.
Microbiol Spectr ; : e0451922, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36975825

ABSTRACT

Infections caused by multidrug-resistant bacteria are becoming increasingly serious. The aminoglycoside antibiotics have been widely used to treat severe Gram-negative bacterial infections. Here, we reported that a class of small molecules, namely, halogenated indoles, can resensitize Pseudomonas aeruginosa PAO1 to aminoglycoside antibiotics such as gentamicin, kanamycin, tobramycin, amikacin, neomycin, ribosomalin sulfate, and cisomicin. We selected 4F-indole as a representative of halogenated indoles to investigate its mechanism and found that the two-component system (TCS) PmrA/PmrB inhibited the expression of multidrug efflux pump MexXY-OprM, allowing kanamycin to act intracellularly. Moreover, 4F-indole inhibited the biosynthesis of several virulence factors, such as pyocyanin, type III secretion system (T3SS), and type VI secretion system (T6SS) exported effectors, and reduced the swimming and twitching motility by suppressing the expression of flagella and type IV pili. This study suggests that the combination of 4F-indole and kanamycin can be more effective against P. aeruginosa PAO1 and affect its multiple physiological activities, providing a novel insight into the reactivation of aminoglycoside antibiotics. IMPORTANCE Infections caused by Pseudomonas aeruginosa have become a major public health crisis. Its resistance to existing antibiotics causes clinical infections that are hard to cure. In this study, we found that halogenated indoles in combination with aminoglycoside antibiotics could be more effective than antibiotics alone against P. aeruginosa PAO1 and preliminarily revealed the mechanism of the 4F-indole-induced regulatory effect. Moreover, the regulatory effect of 4F-indole on different physiological behaviors of P. aeruginosa PAO1 was analyzed by combined transcriptomics and metabolomics. We explain that 4F-indole has potential as a novel antibiotic adjuvant, thus slowing down the further development of bacterial resistance.

8.
Carbohydr Polym ; 301(Pt B): 120323, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36446490

ABSTRACT

Innovative food packaging techniques provide extrinsic systems for ensuring the quality and safety of food products. Recent research has focused on the development of multifunctional nanocomposites towards emerging active and sustainable food packaging (ASFP) systems. Specifically, diverse biomass-derived nanocomposite films (BNFs) are engineered via incorporating functional nanomaterials into the naturally-occurring biopolymers (e.g., polysaccharides and proteins). Such BNFs lead to minimum environmental risks compared to petroleum-derived materials, while exhibit improved physicochemical properties and functionalities, demonstrating great potential for ASFP. This review provides a summary of state-of-art BNFs based on their composition and application. We also highlight the advantages of BNFs for agricultural products. Particularly, the interactions between the biomass matrix and the nanomaterials are discussed to provide insightful rationales for designing high-performance BNFs. We envision that BNFs will not only be emerged as the dominant food packaging materials, but also contribute to the international trade and addressing the global food crisis.


Subject(s)
Food Packaging , Nanocomposites , Biomass , Commerce , Internationality
9.
Molecules ; 27(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36557941

ABSTRACT

A novel macrolactam named oxalactam A (1), three known dipeptides (2-4) as well as other known alkaloids (5-7) were obtained from the endophytic fungus Penicillium oxalicum, which was derived from the tuber of Icacina trichantha (Icacinaceae). All chemical structures were established based on spectroscopic data, chemical methods, ECD calculations, and 13C-DP4+ analysis. Among them, oxalactam A (1) is a 16-membered polyenic macrolactam bearing a new skeleton of 2,9-dimethyl-azacyclohexadecane core and exhibited potent anti-Rhizoctonia solani activity with a MIC value of 10 µg/mL in vitro. The plausible biosynthetic pathway of 1 was also proposed via the alanyl protecting mechanism. Notably, three dipeptides (2-4) were first identified from the endophytic fungus P. oxalicum and the NMR data of cyclo(L-Trp-L-Glu) (2) was reported for the first time. In addition, the binding interactions between compound 1 and the sterol 14α-demethylase enzyme (CYP51) were studied by molecular docking and dynamics technologies, and the results revealed that the 16-membered polyenic macrolactam could be a promising CYP51 inhibitor to develop as a new anti-Rhizoctonia solani fungicide.


Subject(s)
Fungicides, Industrial , Penicillium , Molecular Docking Simulation , Penicillium/chemistry , Fungicides, Industrial/pharmacology , Dipeptides/metabolism , Molecular Structure
10.
Front Plant Sci ; 13: 938859, 2022.
Article in English | MEDLINE | ID: mdl-36119608

ABSTRACT

Helictotrichon virescens is a perennial herbaceous plant with a life expectancy of about 10 years. It has high cold and heat resistance and can successfully survive over winter in the habitats with a temperature range of -25 to 25°C. Therefore, this study aimed to identify the key genes regulating low-temperature stress responses in H. virescens and analyze cold tolerant at molecular level. This study used RNA sequencing (RNA-Seq) and weighted gene co-expression network analysis (WGCNA) to identify the hub genes associated with cold tolerance in H. virescens. RT-PCR was conducted, homologous genes were identified, and related bioinformatics were analyzed to verify the identified hub genes. Moreover, WGCNA analysis showed that only the brown module had the highest correlation with the active-oxygen scavenging enzymes [peroxide (POD), superoxide dismutase (SOD), and catalase (CAT)]. The expression levels of three hub genes in the brown module (Cluster-37118.47362, cluster-37118.47713, and cluster-37118.66740) were significantly higher under low-temperature stress than those under control conditions. Furthermore, gene ontology (GO) and KEGG annotations showed that the three hub genes were mainly enriched in the metabolism pathways of sphingolipids, selenocompounds, glyoxylate, and dicarboxylate, carotenoids biosynthesis, and other biological pathways. The results of this study also showed that the subcellular localization prediction results showed that the cold tolerance hub genes were all localized to the plasma membrane. By constructing a protein interaction network, it was found that the hub gene Cluster-37118.66740 interacted with Sb09g003460.1 and Sb04g020180.1 proteins in Sorghum bicolor. By constructing phylogenetic trees of the four species of H. virescens, Sorghum bicolo, Oryza sativa Japonica, and Arabidopsis thaliana, the results showed that, the hub gene Cluster 37118.66740 (of H. virescens) and Os03g0340500 (of Oryza sativa Japonica) belonged to the same ancestral branch and were in the same subfamily. Thus, this study provides methodology and guidance to identify the cold tolerance genes for other herbage and their cold tolerant molecular mechanisms at molecular level.

11.
J Pharm Anal ; 12(2): 243-252, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35582400

ABSTRACT

Viscum coloratum (Kom.) Nakai is a well-known medicinal hemiparasite widely distributed in Asia. The synthesis and accumulation of its metabolites are affected by both environmental factors and the host plants, while the latter of which is usually overlooked. The purpose of this study was to comprehensively evaluate the effects of host and habitat on the metabolites in V. coloratum through multiple chemical and biological approaches. The metabolite profile of V. coloratum harvested from three different host plants in two habitats were determined by multiple chemical methods including high-performance liquid chromatography-ultraviolet (HPLC-UV), gas chromatography-flame ionization detector (GC-FID) and ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF/MS). The differences in antioxidant efficacy of V. coloratum were determined based on multiple in vitro models. The multivariate statistical analysis and data fusion strategy were applied to analyze the differences in metabolite profile and antioxidant activity of V. coloratum. Results indicated that the metabolite profile obtained by various chemical approaches was simultaneously affected by host and environment factors, and the environment plays a key role. Meanwhile, three main differential metabolites between two environment groups were identified. The results of antioxidant assay indicated that the environment has greater effects on the biological activity of V. coloratum than the host. Therefore, we conclude that the integration of various chemical and biological approaches combined with multivariate statistical and data fusion analysis, which can determine the influences of host plant and habitat on the metabolites, is a powerful strategy to control the quality of semi-parasitic herbal medicine.

12.
BMC Genomics ; 23(1): 280, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35392804

ABSTRACT

BACKGROUND: Helictotrichon virescens is a perennial grass that is primarily distributed in high altitude areas of 2000 ~ 4500 m. It is widely cultivated in the Qinghai-Tibet Plateau of China, strongly resistant to cold, and an essential part of the wild herbs in this region. However, the molecular mechanism of the response of H. virescens to low temperature stress and the key regulatory genes for specific biological processes are poorly understood. RESULTS: Physiological and transcriptome analyses were used to study the cold stress response mechanism in H virescens. During the low temperature stress period, the content of chlorophyll a and b decreased more and more with the delay of the treatment time. Among them, the difference between the controls was not significant, and the difference between the control and the treatment was significant. At the same time, the expression of related differential genes was up-regulated during low temperature treatment. In addition, the plant circadian pathway is crucial for their response to cold stress. The expression of differentially expressed genes that encode LHY and HY5 were strongly up-regulated during cold stress. CONCLUSIONS: This study should help to fully understand how H. virescens responds to low temperatures. It answers pertinent questions in the response of perennial herbs to cold stress, i.e., how light and low temperature signals integrate to regulate plant circadian rhythms and Decrease of content of chlorophylls (which can be also accompanied with decrease of total quantity of reaction centers) leads to an increase in photosynthetic damage.


Subject(s)
Gene Expression Regulation, Plant , Transcriptome , Chlorophyll A , Cold Temperature , Cold-Shock Response/genetics , Gene Expression Profiling , Poaceae/genetics , Stress, Physiological/genetics , Temperature
13.
ACS Appl Bio Mater ; 5(3): 1319-1329, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35262325

ABSTRACT

Functional bionanocomposites have evoked immense research interests in many fields including biomedicine, food packaging, and environmental applications. Supramolecular self-assembled bionanocomposite materials fabricated by biopolymers and two-dimensional (2D) nanomaterials have particularly emerged as a compelling material due to their biodegradable nature, hierarchical structures, and designable multifunctions. However, construction of these materials with tunable properties has been still challenging. Here, we report a self-assembled, flexible, and antioxidative collagen nanocomposite film (CNF) via regulating supramolecular interactions of type I collagen and tannic acid (TA)-functionalized 2D synthetic clay nanoplatelets Laponite (LAP). Specifically, TA-coordinated LAP (LAP-TA) complexes were obtained via chelation and hydrogen bonding between TA and LAP clay nanoplatelets and further used to stabilize the triple-helical confirmation and fibrillar structure of the collagen via hydrogen bonding and electrostatic interactions, forming a hierarchical microstructure. The obtained transparent CNF not only exhibited the reinforced thermal stability, enzymatic resistance, tensile strength, and hydrophobicity but also good water vapor permeability and antioxidation. For example, the tensile strength was improved by over 2000%, and the antioxidant property was improved by 71%. Together with the simple fabrication process, we envision that the resulting CNF provides greater opportunities for versatile bionanocomposites design and fabrication serving as a promising candidate for emerging applications, especially food packaging and smart wearable devices.


Subject(s)
Nanocomposites , Polyphenols , Clay , Collagen , Food Packaging , Nanocomposites/chemistry
14.
Med Sci Monit ; 28: e933447, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35027526

ABSTRACT

BACKGROUND H2A histone family member Z (H2AFZ) is a special subtype in the H2A histone family, which participates in the regulation of gene transcription. Nevertheless, little is known about the role of H2AFZ in the tumor microenvironment and genetic factors associated with lung cancer. MATERIAL AND METHODS The expression of H2AFZ in LUAD was analyzed via Tumor Immune Estimation Resource (TIMER), the Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) databases at the mRNA level. To detect the protein expression level of H2AFZ, immunohistochemistry (IHC) was performed using LUAD tissues and non-tumor lung tissues. Kaplan-Meier survival analysis and Cox regression analysis were conducted to identify the effect of H2AFZ expression on overall survival (OS) based on TCGA-LUAD and the GEO dataset GSE68465 cohorts, and our LUAD patient cohort was used for validation. Identification of signaling pathways associated with the expression of H2AFZ was performed using Gene Set Enrichment Analysis (GSEA). The influences of expression of H2AFZ on tumor immune-infiltrating cell (TIICs) were assessed via TIMER and CIBERSORT. RESULTS The expression of H2AFZ was increased in LUAD tissues at both mRNA and protein levels. In addition, high expression of H2AFZ predicted poor OS and might be an independent prognostic predictor in LUAD patients. Moreover, H2AFZ affected the relative proportion of TIICs and was positively associated with Myeloid-derived suppressor cells (MDSC) infiltration level in LUAD. CONCLUSIONS H2AFZ was upregulated in LUAD and related to poor prognosis of LUAD patients; thus, it could be an underlying prognostic biomarker correlated with immune infiltration in LUAD.


Subject(s)
Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/genetics , Histones/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Cohort Studies , Humans , Prognosis , Reproducibility of Results , Tumor Microenvironment/genetics
15.
Bioengineered ; 12(1): 5996-6009, 2021 12.
Article in English | MEDLINE | ID: mdl-34494924

ABSTRACT

Gliomas account for the highest cases of primary brain malignancies. Whereas previous studies have demonstrated the roles of CDC28 Protein Kinase Regulatory Subunit 2 (CKS2) in various cancer types, its functions in lower grade gliomas (LGGs) remain elusive. This study aimed to profile the expression and functions of CKS2 in LGG. Multiple online databases such as The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), Gene Expression Profiling Interactive Analysis 2nd edition (GEPIA2), Tumor Immune Estimation Resource 2nd edition (TIMER2.0) as well as Gene Expression Omnibus (GEO) were used in this study. Immunohistochemistry (IHC) was performed to evaluate CKS2 protein expression. Our data demonstrated upregulation of CKS2 in LGG tissues at both mRNA and protein level, especially in grade III gliomas. Similarly, there was increased expression of CKS2 in isocitrate dehydrogenase 1 (IDH1) wildtype gliomas. In addition, increased DNA copy number and DNA hypomethylation might be associated with the upregulation of the CKS2 in LGG. Using the Kaplan-Meier survival analysis and the Cox regression analysis, CKS2 was shown to be independently associated with poor prognosis of LGG patients. Receiver operating characteristic (ROC) analysis revealed that CKS2 could effectively predict the 1-, 3- and 5-year survival rates of LGG patients. Enrichment analyses revealed that CKS2 was mainly involved in the regulation of the cell cycle in LGG. Taken together, our study demonstrated that CKS2 might be a candidate prognostic biomarker for LGG and could predict the survival rates of LGG patients.Abbreviations: LGG: lower grade glioma; CKS2: CDC28 protein kinase regulatory subunit 2; TCGA: The Cancer Genome Atlas; CGGA: the Chinese Glioma Genome Atlas; GEO: Gene Expression Omnibus; GEPIA: Gene Expression Profiling Interactive Analysis; TIMER: Tumor Immune Estimation Resource; IHC: immunohistochemistry; qRT-PCR: quantitative real-time polymerase chain reaction; PBS: phosphate buffered saline; DAB: diaminobenzidine tetrachloride; OS: overall survival; CAN: copy number alteration; IDH: Isocitrate dehydrogenase; GSEA: Gene Set Enrichment Analysis; DEG: differentially expressed gene; KEGG: Kyoto encyclopedia of genes and genomes; GO: Gene ontology; BP: biological process; CC: cellular component; MF: molecular function; NES: normalized enrichment score; NOM: nominal; FDR: false discovery rate.


Subject(s)
Brain Neoplasms , CDC2-CDC28 Kinases , Cell Cycle Proteins , Glioma , Adult , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , CDC2-CDC28 Kinases/analysis , CDC2-CDC28 Kinases/genetics , CDC2-CDC28 Kinases/metabolism , Cell Cycle Proteins/analysis , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Computational Biology , Female , Glioma/diagnosis , Glioma/genetics , Glioma/metabolism , Glioma/mortality , Humans , Immunohistochemistry , Male , Prognosis
16.
Mol Cells ; 44(4): 267-278, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33820882

ABSTRACT

Metallothionein (MT1M) belongs to a family of cysteine-rich cytosolic protein and has been reported to be a tumor suppressor gene in multiple cancers. However, its role in esophageal carcinoma carcinogenesis remains unclear. In this study, MT1M expression was correlated with tumor type, stage, drinking and smoking history, as well as patient survival. We also studied the regulation and biological function of MT1M in esophageal squamous cell carcinoma (ESCC). We have found that MT1M is significantly downregulated in ESCC tissues compared with adjacent non-cancer tissues. Furthermore, restoration of expression by treatment with the demethylation agent A + T showed that MT1M downregulation might be closely related to hypermethylation in its promoter region. Over-expression of MT1M in ESCC cells significantly altered cell morphology, induced apoptosis, and reduced colony formation, cell viability, migration and epithelial-mesenchymal transition. Moreover, based on reactive oxygen species (ROS) levels, a superoxide dismutase 1 (SOD1) activity assay and protein analysis, we verified that the tumor-suppressive function of MT1M was at least partially caused by its upregulation of ROS levels, downregulation of SOD1 activity and phosphorylation of the SOD1 downstream pathway PI3K/AKT. In conclusion, our results demonstrated that MT1M was a novel tumor-suppressor in ESCC and may be disrupted by promoter CpG methylation during esophageal carcinogenesis.


Subject(s)
Metallothionein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Biomarkers, Tumor , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Esophageal Neoplasms , Female , Humans , Male , Middle Aged , Superoxide Dismutase-1/metabolism
17.
Biomacromolecules ; 22(2): 504-513, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33274639

ABSTRACT

Unraveling the interaction mechanisms of type I collagen with various inorganic nanoparticles is of pivotal importance to construct collagen-based bionanocomposites with hierarchical structures for biomedical, pharmaceutical, and other industrial applications. In this study, synthetic two-dimensional Laponite nanoplatelets (LAP NPs) are surface-functionalized with tetrakis(hydroxymethyl) phosphonium sulfate (THPS) for reinforcing their incorporation with type I collagen matrix by focusing on the influences of the interactions on the hierarchical structures of the collagen. Our results indicate that the LAP NPs can be successfully surface-functionalized with THPS via covalent bonds between the amine-functionalized NPs and the hydroxymethyl groups of THPS. Moreover, the resulting NPs can be well dispersed into the collagen matrix and evenly bound onto the collagen fiber strands and between the collagen fibrils, preserving the native D-periodic banding patterns of the collagen fibrils. The formation of covalent and hydrogen bonds between the collagen and the functionalized NPs can stabilize the intrinsic triple-helical conformation of the collagen, conferring the resulting collagen-based nanocomposites with improved thermal stability and enhanced mechanical properties. We anticipate that a fundamental understanding of the interactions between the collagen and functionalized inorganic nanoparticles would contribute to the design, fabrication, and further application of hierarchical collagen-based bionanocomposites with multifunctions.


Subject(s)
Collagen Type I , Nanocomposites , Clay , Silicates
18.
Chirality ; 32(5): 524-534, 2020 05.
Article in English | MEDLINE | ID: mdl-32083786

ABSTRACT

R-/S-2-(2-hydroxypropanamido)-5-trifluoromethyl benzoic acid (R-/S-HFBA) is a novel COX inhibitor with remarkable anti-inflammatory and antiplatelet aggregation activities, but no gastrointestinal toxicity. In our previous study, the different pharmacokinetic profiles of the two enantiomers in rats were observed after administration of R-HFBA and S-HFBA. Stereoselective protein binding of the two enantiomers may be a reason for the different pharmacokinetic behaviors. In this study, we developed and validated an UPLC-MS/MS method for determining stereoselective binding of HFBA enantiomers to rat, dog, and human plasma in vitro. Chromatographic separation was achieved by gradient elution with a flow rate of 0.4 mL/min. MS/MS detection was operated in positive electrospray using multiple reaction monitoring (MRM) mode. The method was proved to be linear over the concentration range of 0.005 to 10 µg/mL with a lower limit of quantification of 0.005 µg/mL. The developed method was successfully employed to the plasma protein binding study of HFBA enantiomers. Equilibrium dialysis method was applied to assess drug-plasma protein interactions. The results showed that the enantiomers were both extensively bound to three species plasma and protein binding of R-/S-HFBA was concentration dependent. R-HFBA and S-HFBA showed significant species difference among rat, dog, and human plasma and stereoselective plasma protein binding.


Subject(s)
Benzoic Acid/chemistry , Benzoic Acid/metabolism , Blood Proteins/metabolism , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Animals , Dogs , Humans , Protein Binding , Rats , Stereoisomerism
19.
RSC Adv ; 10(46): 27267-27279, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-35516918

ABSTRACT

R-/S-2-(2-Hydroxypropanamido)-5-trifluoromethyl benzoic acid (R-/S-HFBA), as a novel COX inhibitor, was firstly reported to have remarkable anti-inflammatory and antiplatelet aggregation activities by our group. In our previous study, stereoselective differences in pharmacokinetics were found between HFBA enantiomers after oral and intravenous administration of each enantiomer to rats. The discrepancies might be associated with the excretion and metabolism of the two enantiomers. In this research, an UHPLC-MS/MS method was established and validated for quantification of R-/S-HFBA in rats urine, feces and bile samples in excretion study. Moreover, an ultra high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) method was employed to understand the metabolism of R-/S-HFBA in rats. Results showed that the total cumulative excretion of R-/S-HFBA in three routes were 65.8% and 58.5% of the dose, respectively. The urinary excretion of R-/S-HFBA was the main route, which accounted for 40.2% and 31.7% respectively; the cumulative biliary excretion of R-/S-HFBA were 11.3% and 7.4%; the cumulative amounts of R-/S-HFBA excreted directly via feces without absorption from the gastrointestinal tract were 14.3% and 19.4%, respectively. R-/S-HFBA existed stereoselective discrepancy in excretion. In addition, 8 metabolites of S-HFBA were detected and tentatively identified including glucuronidation, glycine and N-acetyl conjugation while R-HFBA existed 7 metabolites without glycine conjugation. Formation of metabolites of R-/S-HFBA also exhibited stereoselectivity. In summary, these new findings on excretion and metabolism of R-/S-HFBA provided valuable information for stereoselective pharmacokinetics and were greatly helpful for further investigation, such as safety and mechanism of action.

20.
Naunyn Schmiedebergs Arch Pharmacol ; 393(6): 967-978, 2020 06.
Article in English | MEDLINE | ID: mdl-31802171

ABSTRACT

R-/S-2-(2-hydroxypropanamido) benzoic acid (R-/S-HPABA), marine-derived anti-inflammatory antiplatelet drugs, were initially synthesised in our group. However, preliminary research showed that R-/S-HPABA were eliminated rapidly because of extensive hydroxylation metabolism of phenyl ring in vivo. In order to reduce significant hydroxylation metabolism to improve pharmacological activity and bioavailability, trifluoromethyl group was incorporated into R-/S-HPABA to synthesise R-/S-2-(2-hydroxypropanamido)-5-trifluoromethyl benzoic acid (R-/S-HFBA), respectively. The purposes of this study were to report the synthesis of R-/S-HFBA and compare the anti-inflammatory antiplatelet effect and pharmacokinetic properties of R-/S-HFBA with those of R-/S-HPABA. Carrageenan-induced rat paw edema assay was used for the evaluation of the anti-inflammatory activity. R-/S-HFBA showed better results in inhibiting edema and were able to prolong the anti-inflammatory effect after carrageenan injection. The antiplatelet aggregation activity of R-/S-HFBA and R-/S-HPABA was studied on arachidonic acid-induced platelet aggregation of rabbit platelet-rich plasma. The aggregation inhibition rate of R-/S-HFBA was significantly (p < 0.05) higher than that of R-/S-HPABA, respectively. Molecular docking study revealed that R-/S-HFBA possess more potent binding affinity with COX-1/COX-2 than R-/S-HPABA, respectively, and that the presence of trifluoromethyl group leads to increase in activity of R-/S-HFBA. R-/S-HFBA also afford more favorable pharmacokinetic properties than R-/S-HPABA, respectively, such as higher Cmax, larger AUC0-∞, and longer t1/2, which, as expected, are more metabolically stable.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Molecular Docking Simulation , Platelet Aggregation Inhibitors/chemical synthesis , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Male , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/pharmacology , Rabbits , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...