Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 499(2): 112-119, 2018 05 05.
Article in English | MEDLINE | ID: mdl-29470982

ABSTRACT

Traumatic brain injury (TBI) is a leading cause of disability and mortality in young adults worldwide. The pathophysiology is not fully understood. Programmed necrosis (necroptosis) is a newly identified mechanism of cell death combining features of both apoptosis and necrosis. Receptor-interacting protein 3 (RIP3) plays an important role in programmed necrosis. However, the effect of RIP3-related pathway in TBI is little to be known. We attempted to explore the significance of RIP3 in regulating TBI in vivo. Significantly, TBI induced over-expression of RIP3 in the hippocampus of mice, as well as RIP1 and phosphorylated mixed lineage kinase domain-like protein (MLKL). Mice after TBI exhibited cognitive dysfunction and activation of glia cells, which were significantly attenuated by RIP3-knockout (KO). Moreover, inflammation and oxidative stress in hippocampus were markedly induced by TBI in wild type (WT) mice. Of note, the reduction of pro-inflammatory cytokines and oxidants was observed in RIP3-deficient mice, which was linked to the blockage of NLR pyrin domain containing 3 (NLRP3)/apoptosis-associated speck-like protein containing a CARD (ASC)/Caspase-1 and kelch-like ECH-associated protein 1 (Keap 1) pathways. Further, TBI induced hippocampus apoptosis, evidenced by the increase of cleaved Caspase-8/-3 and poly (ADP)-ribose polymerase (PARP) in WT mice, whereas being decreased by RIP3-knockout. In addition, RIP3 knockout led to phosphorylation of AMP-activated protein kinase α (AMPKα) in hippocampus of mice after TBI. And of note, the in vitro findings indicated that RIP3-ablation attenuated oxidative stress, inflammation and apoptosis in astrocytes, which was dependent on AMPKα activation. Together, suppressing RIP3 might be served as a therapeutic target against brain injury through inhibiting inflammation, oxidative stress and apoptosis.


Subject(s)
Adenylate Kinase/metabolism , Apoptosis , Brain Injuries, Traumatic/enzymology , Brain Injuries, Traumatic/prevention & control , Inflammation/pathology , Oxidative Stress , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Signal Transduction , Animals , Astrocytes/enzymology , Astrocytes/pathology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Cognition , Constriction, Pathologic , Gene Deletion , Hippocampus/pathology , Mice, Inbred C57BL , Mice, Knockout , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
2.
Neural Regen Res ; 12(7): 1097-1102, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28852391

ABSTRACT

Serum prealbumin is a recognized marker of malnutrition, but its prognostic role in patients with hemorrhagic stroke remains unclear. In this study, we retrospectively reviewed the records of 105 patients with hemorrhagic stroke admitted to Renmin Hospital of Wuhan University, China, from January to December 2015. We collected demographic and radiological data, and recorded serum prealbumin levels at admission and on days 1, 3, 6, 9, and 14-21. The existence of infections and gastrointestinal hemorrhage, and clinical condition at discharge were also recorded. Serum prealbumin levels during hospitalization were significantly lower in patients with infections compared with those without infections, and also significantly lower in patients with gastrointestinal hemorrhage compared with those without. Serum prealbumin levels at discharge were significantly higher in patients with good recovery than in those with poor recovery. We conclude that regular serum prealbumin measurements in patients with hemorrhagic stroke may be a useful indicator for determining clinical status and prognosis, which may therefore help to guide clinical decision-making.

3.
Int J Clin Exp Pathol ; 8(4): 3580-90, 2015.
Article in English | MEDLINE | ID: mdl-26097540

ABSTRACT

The radiotherapy as a local and regional modality is widely applied in treatment of glioma, but most glioblastomas are commonly resistant to irradiation treatment. It remains challengeable to seek out efficient strategies to conquer the resistance of human glioblastoma cells to radiotherapy. Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) is a newly discovered tumor suppressor which involved in regulation of chemosensitivity in various human cancer cells. In the present study, we established a radioresistant U251 cell line (U251R) to investigate the role of LRIG1 in regulation of radiosensitivity in human glioblastoma cells. Significantly decreased expression level of LRIG1 and enhanced expression of EGFR and phosphorylated Akt were detected in U251R cells compared with the parental U251 cells. U251R cells exhibited an advantage in colony formation ability, which accompanied by remarkably reduced X-ray-induced γ-H2AX foci formation and cell apoptosis. LRIG1 overexpression significantly inhibited the colony formation ability of U251R cells and obviously enhanced X-ray-inducedγ-H2AX foci formation and cell apoptosis. In addition, up-regulated expression of LRIG1 suppressed the expression level of EGFR and phosphorylated Akt protein. Our results demonstrated that LRIG1 expression was related to the radiosensitivity of human glioblastoma cells and may play an important role in the regulation of cellular radiosensitivity of human glioblastoma cells through the EGFR/Akt signaling pathway.


Subject(s)
Brain Neoplasms/radiotherapy , Gene Expression Regulation, Neoplastic , Glioblastoma/radiotherapy , Membrane Glycoproteins/metabolism , Signal Transduction , Apoptosis , Cell Line, Tumor , Cell Survival , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Membrane Glycoproteins/genetics , Radiation Tolerance , Radiation, Ionizing
4.
J Huazhong Univ Sci Technolog Med Sci ; 35(2): 259-264, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25877362

ABSTRACT

Although 5-aminolevulinic acid (5-ALA)-mediated photodynamic therapy (PDT) has been demonstrated to be a novel and effective therapeutic modality for some human malignancies, its effect and mechanism on glioma are still controversial. Previous studies have reported that 5-ALA-PDT induced necrosis of C6 rat glioma cells in vitro. The aim of this study was to further investigate the effect and mechanism of 5-ALA-PDT on C6 gliomas implanted in rats in vivo. Twenty-four rats bearing similar size of subcutaneously implanted C6 rat glioma were randomly divided into 3 groups: receiving 5-ALA-PDT (group A), laser irradiation (group B), and mock procedures but without any treatment (group C), respectively. The growth, histology, microvessel density (MVD), and apoptosis of the grafts in each group were determined after the treatments. As compared with groups B and C, the volume of tumor grafts was significantly reduced (P<0.05), MVD was significantly decreased (P<0.001), and the cellular necrosis was obviously increased in group A. There was no significant difference in apoptosis among the three groups. The in vivo studies confirmed that 5-ALA-PDT may be an effective treatment for gliomas by inhibiting the tumor growth. The mechanism underlying may involve increasing the cellular necrosis but not inducing the cellular apoptosis, which may result from the destruction of the tumor microvessels.


Subject(s)
Aminolevulinic Acid/therapeutic use , Brain Neoplasms/drug therapy , Glioma/drug therapy , Microvessels/drug effects , Photochemotherapy , Photosensitizing Agents/therapeutic use , Aminolevulinic Acid/pharmacology , Animals , Brain Neoplasms/blood supply , Brain Neoplasms/pathology , Cell Line, Tumor , Glioma/blood supply , Glioma/pathology , Photosensitizing Agents/pharmacology , Rats , Rats, Wistar , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL