Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(13): 9434-9443, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507716

ABSTRACT

Electrocatalytic synthesis of hydrogen peroxide (H2O2) in acidic media is an efficient and eco-friendly approach to produce inherently stable H2O2, but limited by the lack of selective and stable catalysts under industrial-relevant current densities. Herein, we report a diatomic cobalt catalyst for two-electron oxygen reduction to efficiently produce H2O2 at 50-400 mA cm-2 in acid. Electrode kinetics study shows a >95% selectivity for two-electron oxygen reduction on the diatomic cobalt sites. In a flow cell device, a record-high production rate of 11.72 mol gcat-1 h-1 and exceptional long-term stability (100 h) are realized under high current densities. In situ spectroscopic studies and theoretical calculations reveal that introducing a second metal into the coordination sphere of the cobalt site can optimize the binding strength of key H2O2 intermediates due to the downshifted d-band center of cobalt. We also demonstrate the feasibility of processing municipal plastic wastes through decentralized H2O2 production.

2.
Angew Chem Int Ed Engl ; 62(52): e202314414, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37946623

ABSTRACT

The integration of highly active single atoms (SAs) and atom clusters (ACs) into an electrocatalyst is critically important for high-efficiency two-electron oxygen reduction reaction (2e- ORR) to hydrogen peroxide (H2 O2 ). Here we report a tandem impregnation-pyrolysis-etching strategy to fabricate the oxygen-coordinated Fe SAs and ACs anchored on bacterial cellulose-derived carbon (BCC) (FeSAs/ACs-BCC). As the electrocatalyst, FeSAs/ACs-BCC exhibits superior electrocatalytic activity and selectivity toward 2e- ORR, affording an onset potential of 0.78 V (vs. RHE) and a high H2 O2 selectivity of 96.5 % in 0.1 M KOH. In a flow cell reactor, the FeSAs/ACs-BCC also achieves high-efficiency H2 O2 production with a yield rate of 12.51±0.18 mol gcat -1 h-1 and a faradaic efficiency of 89.4 %±1.3 % at 150 mA cm-2 . Additionally, the feasibility of coupling the produced H2 O2 and electro-Fenton process for the valorization of ethylene glycol was explored in detail. The theoretical calculations uncover that the oxygen-coordinated Fe SAs effectively regulate the electronic structure of Fe ACs which are the 2e- ORR active sites, resulting in the optimal binding strength of *OOH intermediate for high-efficiency H2 O2 production.

3.
Nanomicro Lett ; 16(1): 9, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932531

ABSTRACT

Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection. Here, we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen (O) coordination on bacterial cellulose-converted graphitic carbon (Mn-O-C). Evidence of the atomically dispersed Mn-(O-C2)4 moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy. As a result, the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH3 yield rate (RNH3) of 1476.9 ± 62.6 µg h-1 cm-2 at - 0.7 V (vs. reversible hydrogen electrode, RHE) and a faradaic efficiency (FE) of 89.0 ± 3.8% at - 0.5 V (vs. RHE) under ambient conditions. Further, when evaluated with a practical flow cell, Mn-O-C shows a high RNH3 of 3706.7 ± 552.0 µg h-1 cm-2 at a current density of 100 mA cm-2, 2.5 times of that in the H cell. The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C2)4 sites not only effectively inhibit the competitive hydrogen evolution reaction, but also greatly promote the adsorption and activation of nitrate (NO3-), thus boosting both the FE and selectivity of NH3 over Mn-(O-C2)4 sites.

4.
Front Immunol ; 14: 1182553, 2023.
Article in English | MEDLINE | ID: mdl-37520521

ABSTRACT

Dendritic cells (DCs) are sentinel immune cells that form a critical bridge linking the innate and adaptive immune systems. Extensive research addressing the cellular origin and heterogeneity of the DC network has revealed the essential role played by the spatiotemporal activity of key transcription factors. In response to environmental signals DC mature but it is only following the sensing of environmental signals that DC can induce an antigen specific T cell response. Thus, whilst the coordinate action of transcription factors governs DC differentiation, sensing of environmental signals by DC is instrumental in shaping their functional properties. In this review, we provide an overview that focuses on recent advances in understanding the transcriptional networks that regulate the development of the reported DC subsets, shedding light on the function of different DC subsets. Specifically, we discuss the emerging knowledge on the heterogeneity of cDC2s, the ontogeny of pDCs, and the newly described DC subset, DC3. Additionally, we examine critical transcription factors such as IRF8, PU.1, and E2-2 and their regulatory mechanisms and downstream targets. We highlight the complex interplay between these transcription factors, which shape the DC transcriptome and influence their function in response to environmental stimuli. The information presented in this review provides essential insights into the regulation of DC development and function, which might have implications for developing novel therapeutic strategies for immune-related diseases.


Subject(s)
Gene Expression Regulation , Transcriptome , Cell Differentiation , Dendritic Cells
5.
Angew Chem Int Ed Engl ; 62(39): e202308044, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37483078

ABSTRACT

The electrochemical conversion of nitrate pollutants into value-added ammonia is a feasible way to achieve artificial nitrogen cycle. However, the development of electrocatalytic nitrate-to-ammonia reduction reaction (NO3 - RR) has been hampered by high overpotential and low Faradaic efficiency. Here we develop an iron single-atom catalyst coordinated with nitrogen and phosphorus on hollow carbon polyhedron (denoted as Fe-N/P-C) as a NO3 - RR electrocatalyst. Owing to the tuning effect of phosphorus atoms on breaking local charge symmetry of the single-Fe-atom catalyst, it facilitates the adsorption of nitrate ions and enrichment of some key reaction intermediates during the NO3 - RR process. The Fe-N/P-C catalyst exhibits 90.3 % ammonia Faradaic efficiency with a yield rate of 17980 µg h-1 mgcat -1 , greatly outperforming the reported Fe-based catalysts. Furthermore, operando SR-FTIR spectroscopy measurements reveal the reaction pathway based on key intermediates observed under different applied potentials and reaction durations. Density functional theory calculations demonstrate that the optimized free energy of NO3 - RR intermediates is ascribed to the asymmetric atomic interface configuration, which achieves the optimal electron density distribution. This work demonstrates the critical role of atomic-level precision modulation by heteroatom doping for the NO3 - RR, providing an effective strategy for improving the catalytic performance of single atom catalysts in different electrochemical reactions.

6.
Chem Sci ; 14(24): 6558-6563, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37350822

ABSTRACT

Catalytic depolymerization represents a promising approach for the closed-loop recycling of plastic wastes. Here, we report a knowledge-driven catalyst development for poly(ethylene terephthalate) (PET) recycling, which not only achieves more than 23-fold enhancement in specific activity but also reduces the alkali concentration by an order of magnitude compared with the conventional hydrolysis. Substituted binuclear zinc catalysts are developed to regulate biomimetic intramolecular PET hydrolysis. Hammett studies and density functional theory (DFT) calculations indicate that the substituents modify the charge densities of the active centers, and an optimal substituent should slightly increase the electron richness of the zinc sites to facilitate the formation of a six-membered ring intermediate. The understanding of the structure-activity relationship leads to an advanced catalyst with a specific activity of 778 ± 40 gPET h-1 gcatal-1 in 0.1 M NaOH, far outcompeting the conventional hydrolysis using caustic bases (<33.3 gPET h-1 gcatal-1 in 1-5 M NaOH). This work opens new avenues for environmentally benign PET recycling.

7.
RSC Adv ; 13(20): 13840-13844, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37152556

ABSTRACT

The use of electrochemical water is a very attractive and environmentally friendly solution for hydrogen fuel production. Platinum (Pt) catalysts are considered to be the most active catalyst for the hydrogen evolution reaction (HER) but suffer from low efficiency and slow kinetics. Herein, Pt nanoparticles dispersed Ni(OH)2 nanosheets (Pt-Ni(OH)2-X) with different deposition times were designed and developed via a vapour-phase hydrothermal method, followed by a pulsed laser deposition method. The Pt-Ni(OH)2-5 only needs overpotentials of 247.5 ± 43 and 512.5 ± 18 mV to reach current densities of 10 and 100 mA cm-2, respectively, outperforming the commercial Pt/C at a current density of 100 mA cm-2. Furthermore, the infrared spectrum revealed that the adsorption of water molecules becomes stronger at the surface of the Pt-Ni(OH)2-5 nanosheets, and the hydrogen protons overflow onto the Pt surface and facilitate the HER process. This work suggests that moderate Pt nanoparticle dispersed Ni(OH)2 nanosheet help to promote the hydrogen production process.

8.
RSC Adv ; 13(15): 9839-9844, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36998524

ABSTRACT

Electrochemical nitrate reduction reaction (NO3 -RR) to synthesize valuable ammonia (NH3) is considered as a green and appealing alternative to enable an artificial nitrogen cycle. However, as there are other NO3 -RR pathways present, selectively guiding the reaction pathway towards NH3 is currently challenged by the lack of efficient catalyst. Here, we demonstrate a novel electrocatalyst for NO3 -RR consisting of Au doped Cu nanowires on a copper foam (CF) electrode (Au-Cu NWs/CF), which delivers a remarkable NH3 yield rate of 5336.0 ± 159.2 µg h-1 cm-2 and an exceptional faradaic efficiency (FE) of 84.1 ± 1.0% at -1.05 V (vs. RHE). The 15N isotopic labelling experiments confirm that the yielded NH3 is indeed from the Au-Cu NWs/CF catalyzed NO3 -RR process. The XPS analysis and in situ infrared spectroscopy (IR) spectroscopy characterization results indicated that the electron transfer between the Cu and Au interface and oxygen vacancy synergistically decreased the reduction reaction barrier and inhibited the generation of hydrogen in the competitive reaction, resulting in a high conversion, selectivity and FE for NO3 -RR. This work not only develops a powerful strategy for the rational design of robust and efficient catalysts by defect engineering, but also provides new insights for selective nitrate electroreduction to NH3.

9.
J Am Chem Soc ; 145(8): 4819-4827, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36790150

ABSTRACT

Heterogeneous catalysts containing diatomic sites are often hypothesized to have distinctive reactivity due to synergistic effects, but there are limited approaches that enable the convenient production of diatomic catalysts (DACs) with diverse metal combinations. Here, we present a general synthetic strategy for constructing a DAC library across a wide spectrum of homonuclear (Fe2, Co2, Ni2, Cu2, Mn2, and Pd2) and heteronuclear (Fe-Cu, Fe-Ni, Cu-Mn, and Cu-Co) bimetal centers. This strategy is based on an encapsulation-pyrolysis approach, wherein a porous material-encapsulated macrocyclic complex mediates the structure of DACs by preserving the main body of the molecular framework during pyrolysis. We take the oxygen reduction reaction (ORR) as an example to show that this DAC library can provide great opportunities for electrocatalyst development by unlocking an unconventional reaction pathway. Among all investigated sites, Fe-Cu diatomic sites possess exceptional high durability for ORR because the Fe-Cu pairs can steer elementary steps in the catalytic cycle and suppress the troublesome Fenton-like reactions.

10.
Angew Chem Int Ed Engl ; 62(13): e202217473, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36738169

ABSTRACT

Atomically dispersed metal catalysts show potential advantages in N2 reduction reaction (NRR) due to their excellent activity and efficient metal utilization. Unfortunately, the reported catalysts usually exhibit unsatisfactory NRR activity due to their poor N2 adsorption and activation. Herein, we report a novel Sn atomically dispersed protuberance (ADP) by coordination with substrate C and O to induce positive charge accumulation on Sn site for improving its N2 adsorption, activation and NRR performance. The extended X-ray absorption fine structure (EXAFS) spectra confirmed the local coordination structure of the Sn ADPs. NRR activity was significantly promoted via Sn ADPs, exhibiting a remarkable NH3 yield (RNH3 ) of 28.3 µg h-1 mgcat -1 (7447 µg h-1 mgSn -1 ) at -0.3 V. Furthermore, the enhanced N2 Hx intermediates was verified by in situ experiments, yielding consistent results with DFT calculation. This work opens a new avenue to regulate the activity and selectivity of N2 fixation.

11.
Cell Mol Immunol ; 20(1): 65-79, 2023 01.
Article in English | MEDLINE | ID: mdl-36471114

ABSTRACT

The cytokine granulocyte-macrophage-colony stimulating factor (GM-CSF) possesses the capacity to differentiate monocytes into macrophages (MØs) with opposing functions, namely, proinflammatory M1-like MØs and immunosuppressive M2-like MØs. Despite the importance of these opposing biological outcomes, the intrinsic mechanism that regulates the functional polarization of MØs under GM-CSF signaling remains elusive. Here, we showed that GM-CSF-induced MØ polarization resulted in the expression of cytokine-inducible SH2-containing protein (CIS) and that CIS deficiency skewed the differentiation of monocytes toward immunosuppressive M2-like MØs. CIS deficiency resulted in hyperactivation of the JAK-STAT5 signaling pathway, consequently promoting downregulation of the transcription factor Interferon Regulatory Factor 8 (IRF8). Loss- and gain-of-function approaches highlighted IRF8 as a critical regulator of the M1-like polarization program. In vivo, CIS deficiency induced the differentiation of M2-like macrophages, which promoted strong Th2 immune responses characterized by the development of severe experimental asthma. Collectively, our results reveal a CIS-modulated mechanism that clarifies the opposing actions of GM-CSF in MØ differentiation and uncovers the role of GM-CSF in controlling allergic inflammation.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Macrophages , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Monocytes/metabolism , Cytokines/metabolism , Interferon Regulatory Factors/metabolism , Cell Differentiation
12.
Adv Sci (Weinh) ; 9(35): e2204043, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36310149

ABSTRACT

Direct electrocatalytic oxidation of benzene has been regarded as a promising approach for achieving high-value phenol product, but remaining a huge challenge. Here an oxygen-coordinated nickel single-atom catalyst (Ni-O-C) is reported with bifunctional electrocatalytic activities toward the two-electron oxygen reduction reaction (2e- ORR) to H2 O2 and H2 O2 -assisted benzene oxidation to phenol. The Ni-(O-C2 )4 sites in Ni-O-C ar proven to be the catalytic active centers for bifunctional 2e- ORR and H2 O2 -assisted benzene oxidation processes. As a result, Ni-O-C can afford a benzene conversion as high as 96.4 ± 3.6% with a phenol selectivity of 100% and a Faradaic efficiency (FE) of 80.2 ± 3.2% with the help of H2 O2 in 0.1 m KOH electrolyte at 1.5 V (vs RHE). A proof of concept experiment with Ni-O-C concurrently as cathode and anode in a single electrochemical cell demonstrates a benzene conversion of 33.4 ± 2.2% with a phenol selectivity of 100% and a FE of 44.8 ± 3.0% at 10 mA cm-2 .

13.
Nano Lett ; 22(4): 1557-1565, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35104146

ABSTRACT

The electrochemical reduction of CO2 to produce carbon-based fuels and chemicals possesses huge potentials to alleviate current environmental problems. However, it is confronted by great challenges in the design of active electrocatalysts with low overpotentials and high product selectivity. Here we report the atomic tuning of a single-Fe-atom catalyst with phosphorus (Fe-N/P-C) on commercial carbon black as a robust electrocatalyst for CO2 reduction. The Fe-N/P-C catalyst exhibits impressive performance in the electrochemical reduction of CO2 to CO, with a high Faradaic efficiency of 98% and a high mass-normalized turnover frequency of 508.8 h-1 at a low overpotential of 0.34 V. On the basis of ex-situ X-ray absorption spectroscopy measurements and DFT calculations, we reveal that the tuning of P in single-Fe-atom catalysts reduces the oxidation state of the Fe center and decreases the free-energy barrier of *CO intermediate formation, consequently maintaining the electrocatalytic activity and stability of single-Fe-atom catalysts.

14.
Immunol Cell Biol ; 100(3): 160-173, 2022 03.
Article in English | MEDLINE | ID: mdl-35048402

ABSTRACT

The role of RNA-binding proteins of the CCCH-containing family in regulating proinflammatory cytokine production and inflammation is increasingly recognized. We have identified ZC3H12C (Regnase-3) as a potential post-transcriptional regulator of tumor necrosis factor expression and have investigated its role in vivo by generating Zc3h12c-deficient mice that express green fluorescent protein instead of ZC3H12C. Zc3h12c-deficient mice develop hypertrophic lymph nodes. In the immune system, ZC3H12C expression is mostly restricted to the dendritic cell (DC) populations, and we show that DC-restricted ZC3H12C depletion is sufficient to cause lymphadenopathy. ZC3H12C can regulate Tnf messenger RNA stability via its RNase activity in vitro, and we confirmed the role of Tnf in the development of lymphadenopathy. Finally, we found that loss of ZC3H12C did not impact the outcome of skin inflammation in the imiquimod-induced murine model of psoriasis, despite Zc3h12c being identified as a risk factor for psoriasis susceptibility in several genome-wide association studies. Our data suggest a role for ZC3H12C in DC-driven skin homeostasis.


Subject(s)
Lymphadenopathy , Psoriasis , Animals , Dendritic Cells , Genome-Wide Association Study , Inflammation/pathology , Lymph Nodes/pathology , Lymphadenopathy/pathology , Mice , Mice, Inbred C57BL , Skin/pathology
15.
ACS Appl Mater Interfaces ; 13(48): 57362-57371, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34817150

ABSTRACT

Catalytic hydrolysis of ammonia borane (AB) provides an effective way to generate pure H2 at ambient temperature for fuel cells. Pt-based catalysts usually exhibit great initial activity toward this reaction but deactivate quickly. Here, we report that the metal-support interactions in Pt/Co3O4 nanocages can simultaneously accelerate the H2 generation and enhance the catalyst's stability. The Pt/Co3O4 catalyst is made for the first time by embedding Pt clusters (∼1.2 nm) in a high-surface-area Co3O4 nanocage to maximize the metal-support interface. The turnover frequency of the Pt/Co3O4 catalyst is about nine times higher than that of commercial Pt/C and outperforms almost all other Pt-based catalysts. X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, in situ spectroscopy, and density functional theory calculations suggest that the Co3O4 nanocages with rich oxygen vacancies facilitate the adsorption and dissociation of H2O to give electropositive H (Hδ+), while the in situ embedded Pt clusters can accelerate the formation of electronegative H (Hδ-) from AB. Subsequently, the Hδ+ and Hδ- spill over to the abundant interfacial sites and bond into H2. In addition to this dual-function synergy effect, the strong metal-support electronic interactions between Co3O4 and Pt benefit the desorption of poisonous B-containing byproducts from Pt sites. This effect together with cluster anchoring leads to a fivefold enhancement in durability compared to commercial Pt/C. The metal-support interactions revealed in this study provide more options for catalyst design toward facile H2 production from chemical hydrogen storage materials.

16.
Trends Immunol ; 42(12): 1113-1127, 2021 12.
Article in English | MEDLINE | ID: mdl-34728143

ABSTRACT

Dendritic cells (DCs) are key immune sentinels that orchestrate protective immune responses against pathogens or cancers. DCs have evolved into multiple phenotypically, anatomically, and functionally distinct cell types. One of these DC types, Type 1 conventional DCs (cDC1s), are uniquely equipped to promote cytotoxic CD8+ T cell differentiation and, therefore, represent a promising target for harnessing antitumor immunity. Indeed, recent studies have highlighted the importance of cDC1s in tumor immunotherapy using immune checkpoint inhibitors. Here, we review the progress in defining the key developmental and functional attributes of cDC1s and the approaches to optimizing the potency of cDC1s for anticancer immunity.


Subject(s)
Dendritic Cells , Neoplasms , Humans , Immunotherapy , Lymphocyte Activation
17.
ACS Omega ; 6(41): 27140-27149, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34693134

ABSTRACT

In this work, the propagation of CH4/air deflagration flames in three semi-confined ducts with different obstacles was numerically investigated using large eddy simulation (LES). The shape of the premixed flame, flow field structure, and overpressure characteristics of the interaction between the flame and the obstacle are simulated accurately in three ducts with obstacles of different heights. The results show that the structure of the flame is changed by the presence of obstacles, and a change in the shape of the hemispherical conical brush appears, and a flame vortex is generated by the entrapment of unburned premixed gas on the left side of the obstacles. In the process of CH4/air deflagration, the existence of obstacles would lead to the change in combustion velocity and overpressure relief velocity and then have a certain influence on the peak of overpressure and the shape of the premixed flame.

18.
Signal Transduct Target Ther ; 6(1): 342, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531370

ABSTRACT

While some individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present mild-to-severe disease, many SARS-CoV-2-infected individuals are asymptomatic. We sought to identify the distinction of immune response between asymptomatic and moderate patients. We performed single-cell transcriptome and T-cell/B-cell receptor (TCR/BCR) sequencing in 37 longitudinal collected peripheral blood mononuclear cell samples from asymptomatic, moderate, and severe patients with healthy controls. Asymptomatic patients displayed increased CD56briCD16- natural killer (NK) cells and upregulation of interferon-gamma in effector CD4+ and CD8+ T cells and NK cells. They showed more robust TCR clonal expansion, especially in effector CD4+ T cells, but lack strong BCR clonal expansion compared to moderate patients. Moreover, asymptomatic patients have lower interferon-stimulated genes (ISGs) expression in general but large interpatient variability, whereas moderate patients showed various magnitude and temporal dynamics of the ISGs expression across multiple cell populations but lower than a patient with severe disease. Our data provide evidence of different immune signatures to SARS-CoV-2 in asymptomatic infections.


Subject(s)
COVID-19 , Carrier State/immunology , Lymphocytes/immunology , SARS-CoV-2/immunology , Single-Cell Analysis , Transcriptome/immunology , Adolescent , Adult , COVID-19/genetics , COVID-19/immunology , Female , Humans , Male , Middle Aged , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/genetics
19.
Sci Immunol ; 6(63): eabf7268, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533976

ABSTRACT

Dendritic cells (DCs) and macrophages are at the forefront of immune responses, modifying their transcriptional programs in response to their tissue environment or immunological challenge. Posttranslational modifications of histones, such as histone H3 lysine-27 trimethylation (H3K27me3) by the Polycomb repressive complex 2 (PRC2), are tightly associated with epigenetic regulation of gene expression. To explore whether H3K27me3 is involved in either the establishment or function of the mononuclear phagocyte system, we selectively deleted core components of PRC2, either EZH2 or SUZ12, in CD11c-expressing myeloid cells. Unexpectedly, EZH2 deficiency neither prevented the deposition and maintenance of H3K27me3 in DCs nor hindered DC/macrophage homeostasis. In contrast, SUZ12 deficiency markedly impaired the capacity of DCs and macrophages to maintain H3K27me3. SUZ12 ablation induced a rapid loss of the alveolar macrophage and Langerhans cell networks under both steady state and inflammatory conditions because these cells could no longer proliferate to facilitate their self-renewal. Despite the reduced H3K27me3, DC development and function were unaffected by SUZ12 ablation, suggesting that PRC2-mediated gene repression was dispensable for DC homeostasis. Thus, the role of SUZ12 highlights the fundamentally different homeostatic mechanisms used by tissue-resident myeloid cells versus DCs.


Subject(s)
Dendritic Cells/immunology , Homeostasis/immunology , Myeloid Cells/immunology , Polycomb Repressive Complex 2/immunology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Polycomb Repressive Complex 2/deficiency
20.
J Cardiovasc Pharmacol ; 78(5): e690-e702, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34369901

ABSTRACT

ABSTRACT: This study aimed to investigate the effects of protopanaxadiol and protopanaxatriol ginsenosides on aconitine-induced cardiomyocyte injury and their regulatory mechanisms. The effects of ginsenosides on aconitine-induced cardiomyocyte damage were initially evaluated using H9c2 cells, and the molecular mechanisms were elucidated using molecular docking and western blotting. The changes in enzyme content, reactive oxygen species (ROS), calcium (Ca2+) concentration, and apoptosis were determined. Furthermore, an aconitine-induced cardiac injury rat model was established, the cardiac injury and serum physiological and biochemical indexes were measured, and the effects of ginsenoside were observed. The results showed that ginsenoside Rb1 significantly increased aconitine-induced cell viability, and its binding conformation with protein kinase B (AKT) protein was the most significant. In vitro and in vivo, Rb1 protects cardiomyocytes from aconitine-induced injury by regulating oxidative stress levels and maintaining Ca2+ concentration homeostasis. Moreover, Rb1 activated the PI3K/AKT pathway, downregulated Cleaved caspase-3 and Bax, and upregulated Bcl-2 expression. In conclusion, Rb1 protected H9c2 cells from aconitine-induced injury by maintaining Ca2+ homeostasis and activating the PI3K/AKT pathway to induce a cascade response of downstream proteins, thereby protecting cardiomyocytes from damage. These results suggested that ginsenoside Rb1 may be a potential cardiac protective drug.


Subject(s)
Calcium/metabolism , Ginsenosides/pharmacology , Heart Diseases/prevention & control , Myocytes, Cardiac/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Sapogenins/pharmacology , Aconitine , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Cardiotoxicity , Cell Line , Disease Models, Animal , Heart Diseases/chemically induced , Heart Diseases/enzymology , Heart Diseases/pathology , Homeostasis , Male , Molecular Docking Simulation , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...