Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
iScience ; 27(5): 109795, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38741711

ABSTRACT

Despite the promising outcomes of immune checkpoint inhibitors (ICIs), resistance to ICI presents a new challenge. Therefore, selecting patients for specific ICI applications is crucial for maximizing therapeutic efficacy. Herein, we curated 69 human esophageal squamous cell cancer (ESCC) patients' tumor microenvironment (TME) single-cell transcriptomic datasets to subtype ESCC. Integrative analyses of the cellular network and transcriptional signatures of T cells and myeloid cells define distinct ESCC subtypes characterized by T cell exhaustion, and interleukin (IL) and interferon (IFN) signaling. Furthermore, this approach classifies ESCC patients into ICI responders and non-responders, as validated by whole tumor transcriptomes and liquid biopsy-based single-cell transcriptomes of anti-PD-1 ICI responders and non-responders. Our study stratifies ESCC patients based on TME transcriptional network, providing novel insights into tumor niche remodeling and potentially predicting ICI responses in ESCC patients.

2.
Cell Rep ; 43(6): 114286, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38796854

ABSTRACT

Tumor cell plasticity contributes to intratumoral heterogeneity and therapy resistance. Through cell plasticity, some lung adenocarcinoma (LUAD) cells transform into neuroendocrine (NE) tumor cells. However, the mechanisms of NE cell plasticity remain unclear. CRACD (capping protein inhibiting regulator of actin dynamics), a capping protein inhibitor, is frequently inactivated in cancers. CRACD knockout (KO) is sufficient to de-repress NE-related gene expression in the pulmonary epithelium and LUAD cells. In LUAD mouse models, Cracd KO increases intratumoral heterogeneity with NE gene expression. Single-cell transcriptomic analysis showed that Cracd KO-induced NE cell plasticity is associated with cell de-differentiation and stemness-related pathway activation. The single-cell transcriptomic analysis of LUAD patient tumors recapitulates that the distinct LUAD NE cell cluster expressing NE genes is co-enriched with impaired actin remodeling. This study reveals the crucial role of CRACD in restricting NE cell plasticity that induces cell de-differentiation of LUAD.


Subject(s)
Adenocarcinoma of Lung , Cell Plasticity , Lung Neoplasms , Neuroendocrine Cells , Animals , Humans , Mice , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neuroendocrine Cells/metabolism , Neuroendocrine Cells/pathology , Microfilament Proteins/genetics , Microfilament Proteins/metabolism
3.
J Exp Med ; 221(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38411616

ABSTRACT

Diffuse-type gastric adenocarcinoma (DGAC) is a deadly cancer often diagnosed late and resistant to treatment. While hereditary DGAC is linked to CDH1 mutations, the role of CDH1/E-cadherin inactivation in sporadic DGAC tumorigenesis remains elusive. We discovered CDH1 inactivation in a subset of DGAC patient tumors. Analyzing single-cell transcriptomes in malignant ascites, we identified two DGAC subtypes: DGAC1 (CDH1 loss) and DGAC2 (lacking immune response). DGAC1 displayed distinct molecular signatures, activated DGAC-related pathways, and an abundance of exhausted T cells in ascites. Genetically engineered murine gastric organoids showed that Cdh1 knock-out (KO), KrasG12D, Trp53 KO (EKP) accelerates tumorigenesis with immune evasion compared with KrasG12D, Trp53 KO (KP). We also identified EZH2 as a key mediator promoting CDH1 loss-associated DGAC tumorigenesis. These findings highlight DGAC's molecular diversity and potential for personalized treatment in CDH1-inactivated patients.


Subject(s)
Ascites , Carcinogenesis , Humans , Animals , Mice , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Stomach , Cadherins/genetics , Enhancer of Zeste Homolog 2 Protein/genetics
4.
bioRxiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131761

ABSTRACT

Tumor cell plasticity contributes to intratumoral heterogeneity and therapy resistance. Through cell plasticity, lung adenocarcinoma (LUAD) cells transform into neuroendocrinal (NE) tumor cells. However, the mechanisms of NE cell plasticity remain unclear. CRACD, a capping protein inhibitor, is frequently inactivated in cancers. CRACD knock-out (KO) de-represses NE-related gene expression in the pulmonary epithelium and LUAD cells. In LUAD mouse models, Cracd KO increases intratumoral heterogeneity with NE gene expression. Single-cell transcriptomic analysis showed that Cracd KO-induced NE plasticity is associated with cell de-differentiation and activated stemness-related pathways. The single-cell transcriptomes of LUAD patient tumors recapitulate that the distinct LUAD NE cell cluster expressing NE genes is co-enriched with SOX2, OCT4, and NANOG pathway activation, and impaired actin remodeling. This study reveals an unexpected role of CRACD in restricting NE cell plasticity that induces cell de-differentiation, providing new insights into cell plasticity of LUAD.

5.
Gastroenterology ; 165(3): 613-628.e20, 2023 09.
Article in English | MEDLINE | ID: mdl-37257519

ABSTRACT

BACKGROUND & AIMS: Despite recent progress in identifying aberrant genetic and epigenetic alterations in esophageal squamous cell carcinoma (ESCC), the mechanism of ESCC initiation remains unknown. METHODS: Using CRISPR/Cas 9-based genetic ablation, we targeted 9 genes (TP53, CDKN2A, NOTCH1, NOTCH3, KMT2D, KMT2C, FAT1, FAT4, and AJUBA) in murine esophageal organoids. Transcriptomic phenotypes of organoids and chemokine released by organoids were analyzed by single-cell RNA sequencing. Tumorigenicity and immune evasion of organoids were monitored by allograft transplantation. Human ESCC single-cell RNA sequencing data sets were analyzed to classify patients and find subsets relevant to organoid models and immune evasion. RESULTS: We established 32 genetically engineered esophageal organoids and identified key genetic determinants that drive ESCC initiation. A single-cell transcriptomic analysis uncovered that Trp53, Cdkn2a, and Notch1 (PCN) triple-knockout induces neoplastic features of ESCC by generating cell lineage heterogeneity and high cell plasticity. PCN knockout also generates an immunosuppressive niche enriched with exhausted T cells and M2 macrophages via the CCL2-CCR2 axis. Mechanistically, CDKN2A inactivation transactivates CCL2 via nuclear factor-κB. Moreover, comparative single-cell transcriptomic analyses stratified patients with ESCC and identified a specific subtype recapitulating the PCN-type ESCC signatures, including the high expression of CCL2 and CD274/PD-L1. CONCLUSIONS: Our study unveils that loss of TP53, CDKN2A, and NOTCH1 induces esophageal neoplasia and immune evasion for ESCC initiation and proposes the CCL2 blockade as a viable option for targeting PCN-type ESCC.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Animals , Mice , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Immune Evasion/genetics , Mutation , LIM Domain Proteins/genetics
6.
bioRxiv ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-36993615

ABSTRACT

Diffuse-type gastric adenocarcinoma (DGAC) is a deadly cancer often diagnosed late and resistant to treatment. While hereditary DGAC is linked to CDH1 gene mutations, causing E-Cadherin loss, its role in sporadic DGAC is unclear. We discovered CDH1 inactivation in a subset of DGAC patient tumors. Analyzing single-cell transcriptomes in malignant ascites, we identified two DGAC subtypes: DGAC1 (CDH1 loss) and DGAC2 (lacking immune response). DGAC1 displayed distinct molecular signatures, activated DGAC-related pathways, and an abundance of exhausted T cells in ascites. Genetically engineered murine gastric organoids showed that Cdh1 knock-out (KO), KrasG12D, Trp53 KO (EKP) accelerates tumorigenesis with immune evasion compared to KrasG12D, Trp53 KO (KP). We also identified EZH2 as a key mediator promoting CDH1 loss-associated DGAC tumorigenesis. These findings highlight DGAC's molecular diversity and potential for personalized treatment in CDH1-inactivated patients.

7.
bioRxiv ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824935

ABSTRACT

Despite the promising outcomes of immune checkpoint blockade (ICB), resistance to ICB presents a new challenge. Therefore, selecting patients for specific ICB applications is crucial for maximizing therapeutic efficacy. Herein we curated 69 human esophageal squamous cell cancer (ESCC) patients' tumor microenvironment (TME) single-cell transcriptomic datasets to subtype ESCC. Integrative analyses of the cellular network transcriptional signatures of T cells, myeloid cells, and fibroblasts define distinct ESCC subtypes characterized by T cell exhaustion, Interferon (IFN) a/b signaling, TIGIT enrichment, and specific marker genes. Furthermore, this approach classifies ESCC patients into ICB responders and non-responders, as validated by liquid biopsy single-cell transcriptomics. Our study stratifies ESCC patients based on TME transcriptional network, providing novel insights into tumor niche remodeling and predicting ICB responses in ESCC patients.

8.
bioRxiv ; 2023 May 17.
Article in English | MEDLINE | ID: mdl-36824957

ABSTRACT

The mechanisms underlying immune evasion and immunotherapy resistance in small cell lung cancer (SCLC) remain unclear. Herein, we investigate the role of CRACD tumor suppressor in SCLC. We found that CRACD is frequently inactivated in SCLC, and Cracd knockout (KO) significantly accelerates SCLC development driven by loss of Rb1, Trp53, and Rbl2. Notably, the Cracd-deficient SCLC tumors display CD8+ T cell depletion and suppression of antigen presentation pathway. Mechanistically, CRACD loss silences the MHC-I pathway through EZH2. EZH2 blockade is sufficient to restore the MHC-I pathway and inhibit CRACD loss-associated SCLC tumorigenesis. Unsupervised single-cell transcriptomic analysis identifies SCLC patient tumors with concomitant inactivation of CRACD, impairment of tumor antigen presentation, and downregulation of EZH2 target genes. Our findings define CRACD loss as a new molecular signature associated with immune evasion of SCLC cells and proposed EZH2 blockade as a viable option for CRACD-negative SCLC treatment.

9.
Cell Death Differ ; 30(1): 195-207, 2023 01.
Article in English | MEDLINE | ID: mdl-36171331

ABSTRACT

Despite remarkable efficacy, targeted treatments often yield a subpopulation of residual tumor cells in part due to non-genetic adaptions. Previous mechanistic understanding on the emergence of these drug-tolerant persisters (DTPs) has been limited to epigenetic and transcriptional reprogramming. Here, by comprehensively interrogating therapy-induced early dynamic protein changes in diverse oncogene-addicted non-small cell lung cancer models, we identified adaptive MCL1 increase as a new and universal mechanism to confer apoptotic evasion and DTP formation. In detail, acute MAPK signaling disruption in the presence of genotype-based tyrosine kinase inhibitors (TKIs) prompted mitochondrial accumulation of pro-apoptotic BH3-only protein BIM, which sequestered MCL1 away from MULE-mediated degradation. A small-molecule combination screen uncovered that PI3K-mTOR pathway blockade prohibited MCL1 upregulation. Biochemical and immunocytochemical evidence indicated that mTOR complex 2 (mTORC2) bound and phosphorylated MCL1, facilitating its interaction with BIM. As a result, short-term polytherapy combining antineoplastic TKIs with PI3K, mTOR or MCL1 inhibitors sufficed to prevent DTP development and promote cancer eradication. Collectively, these findings support that upfront and transient targeting of BIM-dependent, mTORC2-regulated adaptive MCL1 preservation holds enormous promise to improve the therapeutic index of molecular targeted agents.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Apoptosis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , TOR Serine-Threonine Kinases , Phosphatidylinositol 3-Kinases
11.
Results Probl Cell Differ ; 70: 625-663, 2022.
Article in English | MEDLINE | ID: mdl-36348125

ABSTRACT

Actin is a highly conserved protein in mammals. The actin dynamics is regulated by actin-binding proteins and actin-related proteins. Nuclear actin and these regulatory proteins participate in multiple nuclear processes, including chromosome architecture organization, chromatin remodeling, transcription machinery regulation, and DNA repair. It is well known that the dysfunctions of these processes contribute to the development of cancer. Moreover, emerging evidence has shown that the deregulated actin dynamics is also related to cancer. This chapter discusses how the deregulation of nuclear actin dynamics contributes to tumorigenesis via such various nuclear events.


Subject(s)
Actins , Neoplasms , Animals , Humans , Actins/metabolism , Chromatin Assembly and Disassembly , DNA Repair , Neoplasms/genetics , Gene Expression , Mammals
12.
Leukemia ; 36(4): 1048-1057, 2022 04.
Article in English | MEDLINE | ID: mdl-35034955

ABSTRACT

Activating mutations in EZH2, the catalytic component of PRC2, promote cell proliferation, tumorigenesis, and metastasis through enzymatic or non-enzymatic activity. The EZH2-Y641 gain-of-function mutation is one of the most significant in diffuse large B-cell lymphoma (DLBCL). Although EZH2 kinase inhibitors, such as EPZ-6438, provide clinical benefit, certain cancer cells are resistant to the enzymatic inhibition of EZH2 because of the inability to functionally target mutant EZH2, or because of cells' dependence on the non-histone methyltransferase activity of EZH2. Consequently, destroying mutant EZH2 protein may be more effective in targeting EZH2 mutant cancers that are dependent on the non-catalytic activity of EZH2. Here, using extensive selectivity profiling, combined with genetic and animal model studies, we identified USP47 as a novel regulator of mutant EZH2. Inhibition of USP47 would be anticipated to block the function of mutated EZH2 through induction of EZH2 degradation by promoting its ubiquitination. Moreover, targeting of USP47 leads to death of mutant EZH2-positive cells in vitro and in vivo. Taken together, we propose targeting USP47 with a small molecule inhibitor as a novel potential therapy for DLBCL and other hematologic malignancies characterized by mutant EZH2 expression.


Subject(s)
Hematologic Neoplasms , Histones , Animals , Cell Line, Tumor , Deubiquitinating Enzymes/genetics , Enhancer of Zeste Homolog 2 Protein , Gene Expression Regulation, Neoplastic , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Histones/metabolism , Humans , Methylation , Polycomb Repressive Complex 2/genetics
13.
Leukemia ; 36(1): 210-220, 2022 01.
Article in English | MEDLINE | ID: mdl-34326465

ABSTRACT

Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell's intracellular degradation machinery, while sparing non-mutated JAK2. We employed a chemical genetics screen, followed by extensive selectivity profiling and genetic studies, to identify the deubiquitinase (DUB), JOSD1, as a novel regulator of mutant JAK2. JOSD1 interacts with and stabilizes JAK2-V617F, and inactivation of the DUB leads to JAK2-V617F protein degradation by increasing its ubiquitination levels, thereby shortening its protein half-life. Moreover, targeting of JOSD1 leads to the death of JAK2-V617F-positive primary acute myeloid leukemia (AML) cells. These studies provide a novel therapeutic approach to achieving selective targeting of mutated JAK2 signaling in MPN.


Subject(s)
Deubiquitinating Enzymes/antagonists & inhibitors , Janus Kinase 2/genetics , Leukemia, Myeloid, Acute/drug therapy , Mutation , Myeloproliferative Disorders/drug therapy , Small Molecule Libraries/pharmacology , Aged , Aged, 80 and over , Apoptosis , Cell Proliferation , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Middle Aged , Myeloproliferative Disorders/enzymology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Phosphorylation , Prognosis , Tumor Cells, Cultured
16.
J Med Genet ; 57(9): 605-609, 2020 09.
Article in English | MEDLINE | ID: mdl-31862729

ABSTRACT

BACKGROUND: Ovarian clear cell carcinoma (OCCC) arises from endometriosis and represents a difficult-to-treat gynaecological malignancy, in part, because its spatial intratumour heterogeneity and temporal evolutionary trajectories have not been explicitly defined. METHODS: We performed whole-genome sequencing on six pathologically confirmed patients with OCCC. An R package named KataegisPortal was developed to identify and annotate loci of localised hypermutations. Immunohistochemical staining was conducted on a tissue microarray containing 143 OCCC specimens. RESULTS: Multiregion analysis demonstrated considerable degrees of subclonal diversification, ascribable to dynamic mutagenic processes, as well as macroevolutionary events including the acquisition of aneuploidy and chromoplexy. KataegisPortal unveiled APOBEC-mediated kataegis in the early phases of OCCC pathogenesis. We further showed evidence that APOBEC3A and APOBEC3B were frequently expressed in OCCC and possibly regulated by the MAPK pathway. Notably, APOBEC3B-expressing OCCC displayed favourable prognosis and appreciable immunogenicity manifested by marked cytotoxic T-cell infiltration. CONCLUSIONS: These results point to an appealing model of punctuated tumour evolution underlying OCCC neoplastic transformation and progression, which may pose formidable challenges of early detection and intervention, and indicate the intratumour heterogeneity of cancer-driving alterations, yielding important implications for molecular diagnosis and targeted treatment of this lethal disease.


Subject(s)
Adenocarcinoma, Clear Cell/genetics , Cytidine Deaminase/genetics , Minor Histocompatibility Antigens/genetics , Ovarian Neoplasms/genetics , Proteins/genetics , Adenocarcinoma, Clear Cell/pathology , Adult , Aged , Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/genetics , Endometriosis , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Ovarian Neoplasms/pathology
17.
Cell Metab ; 30(6): 1107-1119.e8, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31607564

ABSTRACT

Phosphoglycerate mutase 1 (PGAM1) plays a pivotal role in cancer metabolism and tumor progression via its metabolic activity and interaction with other proteins like α-smooth muscle actin (ACTA2). Allosteric regulation is considered to be an innovative strategy to discover a highly selective and potent inhibitor targeting PGAM1. Here, we identified a novel PGAM1 allosteric inhibitor, HKB99, via structure-based optimization. HKB99 acted to allosterically block conformational change of PGAM1 during catalytic process and PGAM1-ACTA2 interaction. HKB99 suppressed tumor growth and metastasis and overcame erlotinib resistance in non-small-cell lung cancer (NSCLC). Mechanistically, HKB99 enhanced the oxidative stress and altered multiple signaling pathways including the activation of JNK/c-Jun and suppression of AKT and ERK. Collectively, the study highlights the potential of PGAM1 as a therapeutic target in NSCLC and reveals a distinct mechanism by which HKB99 inhibits both metabolic activity and nonmetabolic function of PGAM1 by allosteric regulation.


Subject(s)
Actins/metabolism , Anthracenes/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Enzyme Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Phosphoglycerate Mutase/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Anthracenes/therapeutic use , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Enzyme Inhibitors/therapeutic use , Female , Humans , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Mice, Nude , Sulfonamides/therapeutic use
18.
Elife ; 82019 05 03.
Article in English | MEDLINE | ID: mdl-31050342

ABSTRACT

PAX8 is a prototype lineage-survival oncogene in epithelial ovarian cancer. However, neither its underlying pro-tumorigenic mechanisms nor potential therapeutic implications have been adequately elucidated. Here, we identified an ovarian lineage-specific PAX8 regulon using modified cancer outlier profile analysis, in which PAX8-FGF18 axis was responsible for promoting cell migration in an autocrine fashion. An image-based drug screen pinpointed that PAX8 expression was potently inhibited by small-molecules against histone deacetylases (HDACs). Mechanistically, HDAC blockade altered histone H3K27 acetylation occupancies and perturbed the super-enhancer topology associated with PAX8 gene locus, resulting in epigenetic downregulation of PAX8 transcripts and related targets. HDAC antagonists efficaciously suppressed ovarian tumor growth and spreading as single agents, and exerted synergistic effects in combination with standard chemotherapy. These findings provide mechanistic and therapeutic insights for PAX8-addicted ovarian cancer. More generally, our analytic and experimental approach represents an expandible paradigm for identifying and targeting lineage-survival oncogenes in diverse human malignancies.


Subject(s)
Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Ovarian Neoplasms/drug therapy , PAX8 Transcription Factor/genetics , Acetylation/drug effects , Cell Line, Tumor , Cell Lineage/genetics , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylases/genetics , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Tissue Array Analysis
19.
Int J Cancer ; 144(4): 788-801, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30411339

ABSTRACT

Somatic KEAP1-NRF2 pathway alterations are frequently detected in both lung adenocarcinomas and squamous cell carcinomas. However, the biological characteristics and molecular subtypes of KEAP1/NRF2-mutant lung cancer remain largely undefined. Here, we performed a stepwise, integrative analytic and experimental interrogation of primary tumors and cancer cell lines harboring KEAP1 or NFE2L2 (encoding NRF2) gene mutations. First, we discovered that KEAP1/NRF2-mutant lung cancer presented APOBEC-mediated mutational signatures, impaired tumor angiogenesis, elevated hypoxic stress and deficient immune-cell infiltrates. Second, gene expression-based subtyping revealed three molecular subsets of KEAP1/NRF2-mutant lung adenocarcinomas and two molecular subsets of KEAP1/NRF2-mutant lung squamous cell carcinomas, each associated with distinguishing genetic, differentiation, immunological and clinicopathological properties. Third, single-sample prediction allowed for de novo identification of KEAP1/NRF2-active tumors within KEAP1/NRF2-wild-type samples. Our data demonstrate that KEAP1/NRF2-mutant lung cancer is a microenvironmentally distinct, biologically heterogeneous, and clinically underestimated disease. These new pathological and molecular insights may accelerate the development of efficacious therapeutic strategies against human malignancies featured by KEAP1-NRF2 pathway activation.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Squamous Cell/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Lung Neoplasms/genetics , Mutation , NF-E2-Related Factor 2/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Lung/metabolism , Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , Tumor Microenvironment/genetics
20.
Clin Cancer Res ; 24(23): 6066-6077, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30061362

ABSTRACT

PURPOSE: The induced death signals following oncogene inhibition underlie clinical efficacy of molecular targeted therapies against human cancer, and defects of intact cell apoptosis machinery often lead to therapeutic failure. Despite potential importance, other forms of regulated cell death triggered by pharmacologic intervention have not been systematically characterized. EXPERIMENTAL DESIGN: Pyroptotic cell death was assessed by immunoblot analysis, phase-contrast imaging, scanning electron microscopy, and flow cytometry. Tumor tissues of patients with lung cancer were analyzed using IHC. Functional impact of pyroptosis on drug response was investigated in cell lines and xenograft models. RESULTS: We showed that diverse small-molecule inhibitors specifically targeting KRAS-, EGFR-, or ALK-driven lung cancer uniformly elicited robust pyroptotic cell death, in addition to simultaneously invoking cellular apoptosis. Upon drug treatment, the mitochondrial intrinsic apoptotic pathway was engaged and the mobilized caspase-3 protease cleaved and activated gasdermin E (GSDME, encoded by DFNA5), which permeabilized cytoplasmic membrane and executed cell-lytic pyroptosis. GSDME displayed ubiquitous expression in various lung cancer cell lines and clinical specimens, including KRAS-mutant, EGFR-altered, and ALK-rearranged adenocarcinomas. As a result, cooccurrence and interplay of apoptosis and pyroptosis were widespread in lung cancer cells, succumbing to genotype-matched regimens. We further demonstrated that pyroptotic cell death partially contributed to the drug response in a subset of cancer models. CONCLUSIONS: These results pinpoint GSDME-dependent pyroptosis as a previously unrecognized mechanism of action for molecular targeted agents to eradicate oncogene-addicted neoplastic cells, which may have important implications for the clinical development and optimal application of anticancer therapeutics.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Pyroptosis/drug effects , Receptors, Estrogen/metabolism , Signal Transduction/drug effects , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Gene Editing , Gene Targeting , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Models, Biological , Pyroptosis/genetics , RNA, Guide, Kinetoplastida , Receptors, Estrogen/genetics , Tomography, X-Ray Computed , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL