Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
BioData Min ; 17(1): 13, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773619

ABSTRACT

A knowledge graph can effectively showcase the essential characteristics of data and is increasingly emerging as a significant means of integrating information in the field of artificial intelligence. Coronary artery plaque represents a significant etiology of cardiovascular events, posing a diagnostic challenge for clinicians who are confronted with a multitude of nonspecific symptoms. To visualize the hierarchical relationship network graph of the molecular mechanisms underlying plaque properties and symptom phenotypes, patient symptomatology was extracted from electronic health record data from real-world clinical settings. Phenotypic networks were constructed utilizing clinical data and protein‒protein interaction networks. Machine learning techniques, including convolutional neural networks, Dijkstra's algorithm, and gene ontology semantic similarity, were employed to quantify clinical and biological features within the network. The resulting features were then utilized to train a K-nearest neighbor model, yielding 23 symptoms, 41 association rules, and 61 hub genes across the three types of plaques studied, achieving an area under the curve of 92.5%. Weighted correlation network analysis and pathway enrichment were subsequently utilized to identify lipid status-related genes and inflammation-associated pathways that could help explain the differences in plaque properties. To confirm the validity of the network graph model, we conducted coexpression analysis of the hub genes to evaluate their potential diagnostic value. Additionally, we investigated immune cell infiltration, examined the correlations between hub genes and immune cells, and validated the reliability of the identified biological pathways. By integrating clinical data and molecular network information, this biomedical knowledge graph model effectively elucidated the potential molecular mechanisms that collude symptoms, diseases, and molecules.

2.
Gels ; 10(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38391450

ABSTRACT

Aerogels prepared using freeze-drying methods have the potential to be insulation materials or absorbents in the fields of industry, architecture, agriculture, etc., for their low heat conductivity, high specific area, low density, degradability, and low cost. However, their native, poor water resistance caused by the hydrophilicity of their polymer matrix limits their practical application. In this work, a novel, controllable, and efficient templating method was utilized to construct a highly hydrophobic surface for freeze-drying aerogels. The influence of templates on the macroscopic morphology and hydrophobic properties of materials was investigated in detail. This method provided the economical and rapid preparation of a water-resistant aerogel made from polyvinyl alcohol (PVA) and montmorillonite (MMT), putting forward a new direction for the research and development of new, environmentally friendly materials.

3.
Article in English | MEDLINE | ID: mdl-38041745

ABSTRACT

Brucellosis is a zoonosis caused by Brucella, which poses a great threat to human health and animal husbandry. Pathogen surveillance is an important measure to prevent brucellosis, but the traditional method is time-consuming and not suitable for field applications. In this study, a recombinase polymerase amplification-SYBR Green I (RPAS) assay was developed for the rapid and visualized detection of Brucella in the field by targeting BCSP31 gene, a conserved marker. The method was highly specific without any cross-reactivity with other common bacteria and its detection limit was 2.14 × 104 CFU/mL or g of Brucella at 40 °C for 20 min. It obviates the need for costly instrumentation and exhibits robustness towards background interference in serum, meat, and milk samples. In summary, the RPAS assay is a rapid, visually intuitive, and user-friendly detection that is highly suitable for use in resource-limited settings. Its simplicity and ease of use enable swift on-site detection of Brucella, thereby facilitating timely implementation of preventive measures.

4.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37309037

ABSTRACT

Brucella is the causative agent of brucellosis and can be transmitted to humans through aerosolized particles or contaminated food. Brucella abortus (B. abortus), Brucella melitensis (B. melitensis), and Brucella suis (B. suis) are the most virulent of the brucellae, but the traditional detection methods to distinguish them are time-consuming and require high instrumentation. To obtain epidemiological information on Brucella during livestock slaughter and food contamination, we developed a rapid and sensitive triplex recombinant polymerase amplification (triplex-RPA) assay that can simultaneously detect and differentiate between B. abortus, B. melitensis, and B. suis. Three pairs of primers (B1O7F/B1O7R, B192F/B192R, and B285F/B285R) were designed and screened for the establishment of the triplex-RPA assay. After optimization, the assay can be completed within 20 min at 39°C with good specificity and no cross-reactivity with five common pathogens. The triplex-RPA assay has a DNA sensitivity of 1-10 pg and a minimum detection limit of 2.14 × 104-2.14 × 105 CFU g-1 in B. suis spiked samples. It is a potential tool for the detection of Brucella and can effectively differentiate between B. abortus, B. melitensis, and B. suis S2, making it a useful tool for epidemiological investigations.


Subject(s)
Brucella melitensis , Brucella suis , Brucellosis , Humans , Brucella abortus/genetics , Brucella suis/genetics , Brucella melitensis/genetics , Recombinases , Brucellosis/diagnosis , Brucellosis/veterinary , Nucleotidyltransferases
5.
Int J Audiol ; : 1-5, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37083104

ABSTRACT

OBJECTIVE: The objective of this study is to determine the noise effective masking level (EML) and inter-aural attenuation (IA) for click and CE-Chirp signals presented though a Radioear B-81 to elicit the auditory brainstem responses in normally hearing, young adults. DESIGN AND STUDY SAMPLE: A total of 26 conveniently sampled adults (13 male and 13 female, aged 18-25 years; 52 ears), with pure-tone hearing thresholds not >15 dB nHL at octave frequencies from 250 to 8000 Hz, and subjective thresholds for the bone-conducted click and CE-Chirp not >10 dB nHL. RESULTS: At stimulus intensities of 30 and 40 dB nHL, the contralateral EML was 67.86 ± 0.78 and 77.80 ± 0.81 dB SPL (respectively) for the click and 72.11 ± 0.74 and 83.53 ± 0.78 dB SPL (respectively) for the CE-Chirp. At stimulus intensities of 30 and 40 dB nHL, the IA was 3.46 ± 2.34 and 3.38 ± 2.03 dB (respectively) for both the click and the CE-Chirp. CONCLUSION: EML and IA values are reported for click and CE-Chirp signals presented at 30 and 40 dB nHL though a Radioear B-81 to elicit the ABR in normally hearing, young adults.

6.
Front Oncol ; 13: 1171932, 2023.
Article in English | MEDLINE | ID: mdl-38304027

ABSTRACT

Background: Hepatocellular carcinoma (HCC) continues to increase in morbidity and mortality among all types of cancer. DNA methylation, an important epigenetic modification, is associated with cancer occurrence and progression. The objective of this study was to establish a model based on DNA methylation risk scores for identifying new potential therapeutic targets in HCC and preventing cancer progression. Methods: Transcriptomic, clinical, and DNA methylation data on 374 tumor tissues and 50 adjacent normal tissues were downloaded from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma database. The gene expression profiles of the GSE54236 liver cancer dataset, which contains data on 161 liver tissue samples, were obtained from the Gene Expression Omnibus database. We analyzed the relationship between DNA methylation and gene expression levels after identifying the differentially methylated and expressed genes. Then, we developed and validated a risk score model based on the DNA methylation-driven genes. A tissue array consisting of 30 human hepatocellular carcinoma samples and adjacent normal tissues was used to assess the protein and mRNA expression levels of the marker genes by immunohistochemistry and qRT-PCR, respectively. Results: Three methylation-related differential genes were identified in our study: GLS, MEX3B, and GNA14. The results revealed that their DNA methylation levels were negatively correlated with local gene expression regulation. The gene methylation levels correlated strongly with the prognosis of patients with liver cancer. This was confirmed by qRT-PCR and immunohistochemical verification of the expression of these genes or proteins in tumors and adjacent tissues. These results revealed the relationship between the level of relevant gene methylation and the prognosis of patients with liver cancer as well as the underlying cellular and biological mechanisms. This allows our gene signature to provide more accurate and appropriate predictions for clinical applications. Conclusion: Through bioinformatics analysis and experimental validation, we obtained three DNA methylation marker: GLS, MEX3B, and GNA14. This helps to predict the prognosis and may be a potential therapeutic target for HCC patients.

7.
Front Cardiovasc Med ; 9: 791963, 2022.
Article in English | MEDLINE | ID: mdl-35369328

ABSTRACT

Background: The extracellular volume fraction (ECV) derived from cardiac magnetic resonance imaging (MRI) is extensively used to evaluate myocardial fibrosis. However, due to the limited histological verification in healthy individuals, it remains unclear whether the size of cardiomyocytes may play a potential role in the physiological changes of ECV. The aim of this study was to examine the association between cardiomyocyte size and myocardial ECV by using a healthy porcine model. Methods: Sixteen domestic healthy pigs were anesthetized and underwent cardiac MRI with mechanical controlled breathing. Intravenous contrast medium was introduced at a dose of 0.2-0.25 mmol/kg. The interventricular septum ECV was calculated using an established MRI procedure, which was based on the pre- and post-contrast T1 values of the heart and individual blood hematocrit. The cardiomyocyte breadth (CmyB) in cross section was measured by hematoxylin and eosin staining to reflect the cardiomyocyte size. Results: Data were successfully acquired from 14 pigs. The CmyB was obtained from the myocardial tissues corresponding to the region of interest on cardiac MRI. The mean ± SD of the ECV was 0.253 ± 0.043, and the mean ± SD of the CmyB was 10.02 ± 0.84 µm. The ECV exhibited a negative correlation with the CmyB (r = -0.729, p = 0.003). Conclusion: The myocardial ECV detected by cardiac MRI is negatively correlated with the CmyB in healthy pigs, demonstrating that the size of cardiomyocytes is potentially associated with the ECV under physiological conditions.

8.
Article in English | MEDLINE | ID: mdl-35178106

ABSTRACT

BACKGROUND: The occurrence and development of hepatocellular carcinoma (HCC) are closely related to immune function, as is the capacity of hepatoma cells to escape. Immunosurveillance is a key mechanism. Catgut implantation at acupoint (CIAA) is a promising acupuncture improvement method that can regulate immunity and has been widely used in the clinical treatment of a variety of diseases. The aim of this study is to observe the therapeutic effect of CIAA on HCC and to investigate the potential mechanism of immune escape. MATERIALS AND METHODS: A total of 40 mice were randomly divided into three groups: the HCC model group (n = 15), the CIAA treatment group (n = 15), and the control group (n = 10). HCC was chemically induced in 30 mice by the combination of DEN, carbon tetrachloride, and ethanol for 150 days. Among them, 15 were selected for CIAA treatment to ascertain the therapeutic effect. The mRNA expression levels of AFP, IL-10, PD-1, and CTLA-4 in three groups were examined by using RT-PCR. AFP and AKT expressions were measured by using western blotting. PD1, CTLA-4, IL-10, CD4+, and CD8+ protein expression levels were evaluated by using IHC. The mortality rate, body weight, and psychological conditions of three groups were also compared. RESULTS: The mRNA and protein expression levels of AFP, PD-1, CTLA-4, and IL-10 were significantly downregulated in the CIAA-treated mice in comparison with HCC mice. IHC assay shows that CD4+ and CD8+ expression levels were notably upregulated after CIAA treatment. Western blotting assay shows that AKT pathway was deactivated in CIAA-treated mice. CIAA notably reduced the mortality rate and inhibited weight loss caused by HCC and improved the overall psychological condition of the mice. CONCLUSIONS: Taken together, our data corroborate the effective potency of CIAA in the treatment of HCC by and inhibiting immune escape and deactivating the AKT pathway.

9.
Exp Biol Med (Maywood) ; 246(23): 2511-2521, 2021 12.
Article in English | MEDLINE | ID: mdl-34342551

ABSTRACT

Chronic kidney disease (CKD) is a major contributor to the development of heart failure with preserved ejection fraction (HFpEF), whereas the underlying mechanism of cardiorenal HFpEF is still elusive. The aim of this study was to investigate the role of cardiac fibrosis in a rat model of cardiorenal HFpEF and explore whether treatment with Telmisartan, an inhibitor of renin-angiotensin-aldosterone system (RAAS), can ameliorate cardiac fibrosis and preserve diastolic function in cardiorenal HFpEF. Male rats were subjected to 5/6 subtotal nephrectomy (SNX) or sham operation (Sham), and rats were allowed four weeks to recover and form a stable condition of CKD. Telmisartan or vehicle was then administered p.o. (8 mg/kg/d) for 12 weeks. Blood pressure, brain natriuretic peptide (BNP), echocardiography, and cardiac magnetic resonance imaging were acquired to evaluate cardiac structural and functional alterations. Histopathological staining, real-time polymerase chain reaction (PCR) and western blot were performed to evaluate cardiac remodeling. SNX rats showed an HFpEF phenotype with increased BNP, decreased early to late diastolic transmitral flow velocity (E/A) ratio, increased left ventricular (LV) hypertrophy and preserved ejection fraction (EF). Pathology revealed increased cardiac fibrosis in cardiorenal HFpEF rats compared with the Sham group, while chronic treatment with Telmisartan significantly decreased cardiac fibrosis, accompanied by reduced markers of fibrosis (collagen I and collagen III) and profibrotic cytokines (α-smooth muscle actin, transforming growth factor-ß1, and connective tissue growth factor). In addition, myocardial inflammation was decreased after Telmisartan treatment, which was in a linear correlation with cardiac fibrosis. Telmisartan also reversed LV hypertrophy and E/A ratio, indicating that Telmisartan can improve LV remodeling and diastolic function in cardiorenal HFpEF. In conclusion, cardiac fibrosis is central to the pathology of cardiorenal HFpEF, and RAAS modulation with Telmisartan is capable of alleviating cardiac fibrosis and preserving diastolic dysfunction in this rat model.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Cardio-Renal Syndrome/drug therapy , Fibrosis/drug therapy , Heart Failure/drug therapy , Telmisartan/pharmacology , Animals , Antihypertensive Agents/pharmacology , Blood Flow Velocity/drug effects , Blood Pressure/drug effects , Cardio-Renal Syndrome/pathology , Diastole/drug effects , Disease Models, Animal , Echocardiography , Fibrosis/pathology , Heart Failure/pathology , Hypertrophy, Left Ventricular/drug therapy , Male , Natriuretic Peptide, Brain/analysis , Rats , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , Stroke Volume/drug effects , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
10.
J Cancer ; 11(18): 5309-5317, 2020.
Article in English | MEDLINE | ID: mdl-32742477

ABSTRACT

Depressive disorder (DD) is the leading cause of disability worldwide and is the most prevalent mood disorder. Accumulative evidence from epidemiological studies has shown that DD is a risk factor for cancer. However, the role and molecular mechanism of DD in hepatocellular carcinoma (HCC) are still unknown. In this study, 30 mice were randomly divided into two groups: the HCC group and the HCC-DD group. The DD mouse model of HCC was established by induction with reserpine every other day and with monthly doses of diethylnitrosamine (DEN). All of the molecular studies were based on primary cell culture, and the effects of DD on HCC cell proliferation and migration and cancer stem cell (CSC) self-renewal were determined by colony formation, wound healing, and sphere culture assays. We found that the CSC markers ABCG2 and CD133 were upregulated in HCC-DD primary cells compared with HCC primary cells. Moreover, HCC-DD primary cells were more aggressive in terms of metastasis and self-renewal than HCC primary cells. Further study revealed that DD promoted tumor growth and metastasis by activating the AKT signaling pathway followed by an increased ABCG2 expression. Taken together, our novel findings indicate that DD promotes proliferation, self-renewal, and metastasis by upregulating ABCG2 in the AKT pathway.

11.
Int J Med Sci ; 17(13): 1897-1908, 2020.
Article in English | MEDLINE | ID: mdl-32788868

ABSTRACT

Retinal dehydrogenase 5 (RDH5) is an important enzyme in the visual cycle. Several studies have reported that the RDH family may play crucial roles in tumor prognosis. However, the role of RDH5 in tumor prognosis is still unclear. We examined the mRNA level of RDH5 by using q-PCR in hepatocellular carcinoma (HCC) and adjacent non-cancerous tissues. The proliferation rate of HCC cells was detected by MTS assay, and the invasive ability was examined by transwell and scratch wound assays. The YAP protein localization and expression were visualized by immunofluorescence in two different cell lines. CpG islands in the promoter region were predicted by using the methprimer database. Clinical characteristics of a patient cohort data came from The Cancer Genome Atlas database. RDH5 was significantly downregulated in hepatocellular carcinoma tissues, and low RDH5 expression was associated with metastasis and poor patient prognosis. Functional assays revealed that the RDH5 promoter is methylated in HCC cell lines. Moreover, overexpressing RDH5 can suppress metastasis by reversing the epithelial-mesenchymal transition (EMT) process, and RDH5 also inhibits cell proliferation in HCC cell lines. Furthermore, suppressing RDH5 can activate the Hippo/YAP signaling pathway and promote the nuclear translocation of YAP. Clinical data demonstrated that RDH5 is an independent prognostic factor in HCC. In our study, we provided the first evidence that RDH5 plays a crucial role in suppressing proliferation and metastasis, and the RDH5 promoter is methylated in hepatocellular carcinoma. And as an important regulator, RDH5 can suppress the Hippo/YAP signaling pathway. Taken together, it revealed that RDH5 might be a potential therapeutic target in HCC patients.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Cycle Proteins/genetics , Liver Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Retinal Dehydrogenase/genetics , Transcription Factors/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , CpG Islands/genetics , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic/genetics , Hippo Signaling Pathway , Humans , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Metastasis , Prognosis , Promoter Regions, Genetic/genetics , Signal Transduction/genetics
12.
Med Sci Monit ; 26: e923624, 2020 May 31.
Article in English | MEDLINE | ID: mdl-32474568

ABSTRACT

BACKGROUND Artemisia annua exerts powerful effects in non-small cell lung carcinoma (NSCLC). Some studies have shown that Artemisia annua possesses the characteristics of new therapeutic drugs for NSCLC patients. However, the underlying molecular mechanism of Artemisia annua anti-NSCLC is not yet fully elucidated because Artemisia annua contains hundreds of ingredients. This study aimed to conduct network pharmacological analysis on the mechanism of action of Artemisia annua against NSCLC. MATERIAL AND METHODS The active ingredients and corresponding potential targets of Artemisia annua were searched and screened in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Then through The Cancer Genome Atlas (TCGA) and the National Center for Biotechnology Information (NCBI) databases to establish NSCLC related targets. Based on the matching results of Artemisia annua potential targets and NSCLC targets, a protein-protein interaction (PPI) network was constructed to analyze the interactions between these targets and topologically screen the central targets. Furthermore, Gene Ontology (GO) biological functions analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathways enrichment were carried out. RESULTS There were 19 main active ingredients of Artemisia annua screened for target prediction; 40 NSCLC-related common targets were identified via multiple NSCLC databases. The node area and corresponding degree value of AKT1, MYC, CCND1, VEGFA, JUN, MAPK1, EGFR, and ESR1 were large and could be easily found in the PPI network. The aforementioned results were further verified by the analysis of GO biological function and KEGG enrichment analysis. CONCLUSIONS The network pharmacology analysis reveals the molecular biological mechanism of Artemisia annua anti-NSCLC via multiple active components, multi-channels, and multi-targets. This suggests that Artemisia annua might be developed as a promising anti-NSCLC drug.


Subject(s)
Artemisia annua/chemistry , Artemisia annua/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , China , Databases, Factual , Databases, Genetic , Drugs, Chinese Herbal/pharmacology , Humans , Lung Neoplasms/drug therapy , Medicine, Chinese Traditional/methods , Molecular Docking Simulation , Plant Extracts/pharmacology , Protein Interaction Maps , Signal Transduction/drug effects
13.
J Vet Res ; 64(2): 253-261, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32587912

ABSTRACT

INTRODUCTION: The plate counting method widely used at present to discern viable from non-viable Brucella in the host or cell is time-consuming and laborious. Therefore, it is necessary to establish a rapid, simple method for detecting and counting viable Brucella organisms. MATERIAL AND METHODS: Using propidium monoazide (PMA) to inhibit amplification of DNA from dead Brucella, a novel, rapid PMA-quantitative PCR (PMA-qPCR) detection method for counting viable Brucella was established. The standard recombinant plasmid with the target BCSP31 gene fragment inserted was constructed for drawing a standard curve. The reaction conditions were optimised, and the sensitivity, specificity, and repeatability were analysed. RESULTS: The optimal exposure time and working concentration of PMA were 10 min and 15 µg/mL, respectively. The correlation coefficient (R2) of the standard curve was 0.999. The sensitivity of the method was 103 CFU/mL, moreover, its specificity and repeatability also met the requirements. The concentration of B. suis measured by the PMA-qPCR did not differ significantly from that measured by the plate counting method, and the concentrations of viable bacteria in infected cells determined by the two methods were of the same order of magnitude. CONCLUSION: In this study, a rapid and simple PMA-qPCR counting method for viable Brucella was established, which will facilitate related research.

14.
Zhongguo Zhong Yao Za Zhi ; 45(1): 163-168, 2020 Jan.
Article in Chinese | MEDLINE | ID: mdl-32237426

ABSTRACT

This study aimed to explore the main active ingredients and potential targets of Solanum nigrum(SN), so as to reveal the potential molecular mechanism of SN in the treatment of hepatocellular carcinoma(HCC) based on network pharmacology and molecular docking. First,the main active ingredients and predictive targets of SN were collected in the traditional Chinese medicine systems pharmacology database and analysis platform(TCMSP). Then,the targets relating to HCC were collected through retrieval of integrated bio-pharmacological network database for traditional Korean medicine(PharmDB-K), oncogenomic database of hepatocellular carcinoma(OncoDB.hcc). The common targets of disease-drug component were selected through intersection between predictive targets and disease targets. Next, based on the String platform, protein-protein interaction network(PPI) model of the potential anti-HCC targets was constructed using the software Cytoscape 3.7.1. ClueGO and CluePedia APP in Cytoscape were used to analyze the gene function of SN in the treatment of HCC, and construct the main active ingredients-potential targets-signal pathways topology network of SN. Finally,DISCOVERY STUDIO software was applied in verifying the molecular docking between the key active ingredient and potential protein target. The results showed that there were 4 main active ingredients of SN, involving 22 potential targets relating to HCC and 7 signal pathways relating to potential anti-HCC targets of SN. Network analysis showed that SN may play a therapeutic role in HCC by acting on key targets, such as EGFR, TP53, MYC, CCND1 and CTNNB1. Molecular docking results showed that quercetin and EGFR could bind stably and interact through amino acid residues LEU718, LYS745 and GLN791. This study revealed the potential active ingredients and the possible molecular mechanism of SN for treatment of HCC, providing scientific basis for follow-up exploration of the molecular mechanism of SN against HCC.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Drugs, Chinese Herbal/pharmacology , Liver Neoplasms/drug therapy , Molecular Docking Simulation , Solanum nigrum/chemistry , Humans
15.
J Interferon Cytokine Res ; 40(5): 268-278, 2020 05.
Article in English | MEDLINE | ID: mdl-32233931

ABSTRACT

Interleukin-1 receptor antagonist (IL-1Ra) is an antagonist of IL-1ß binding IL-1ß receptors but does not induce intracellular responses or signal transduction. In this study, the full-length complementary DNA (cDNA) of the IL-1Ra gene (OaIL-1Ra) was identified from sheep (Ovis aries) using rapid amplification of cDNA ends PCR and submitted to GenBank with the accession number KC425613. The OaIL-1Ra cDNA comprised an open reading frame of 525 bp encoding a protein of 19765.8 Da, a 5'-untranslated region (UTR) of 27 bp, and a 3'-UTR of 676 bp with a poly(A) tail. Recombinant OaIL-1Ra with bioactivity was expressed in a prokaryotic expression system, and a monoclonal antibody against native OaIL-1Ra was prepared. Through Western blot analyses, the OaIL-1Ra protein was widely expressed in lung, heart, spleen, liver, kidney, muscle, intestine, lymphonodi, rumen, and white blood cells, with the highest levels in liver and spleen. The expression of OaIL-1Ra in primary cultured white blood cells of sheep were highly induced in a time-dependent manner when challenged with different bacteria. These results implied that OaIL-1Ra is associated with immune responses during bacterial infections.


Subject(s)
Interleukin 1 Receptor Antagonist Protein/metabolism , Receptors, Interleukin-1/antagonists & inhibitors , Animals , Interleukin 1 Receptor Antagonist Protein/genetics , Male , Receptors, Interleukin-1/genetics , Sheep
16.
Front Pharmacol ; 11: 620159, 2020.
Article in English | MEDLINE | ID: mdl-33633569

ABSTRACT

The increase of blood pressure is accompanied by the changes in the morphology and function of vascular endothelial cells. Vascular endothelial injury and hypertension actually interact as both cause and effect. A large number of studies have proved that inflammation plays a significant role in the occurrence and development of hypertension, but the potential mechanism between inflammation and hypertensive endothelial injury is still ambiguous. The purpose of this study was to explore the association between the activation of NLRP3 inflammasome and hypertensive endothelial damage, and to demonstrate the protective effect of sinapine thiocyanate (ST) on endothelia in hypertension. The expression of NLRP3 gene was silenced by tail vein injection of adeno-associated virus (AAVs) in spontaneously hypertensive rats (SHRs), indicating that activation of NLRP3 inflammasome accelerated hypertensive endothelial injury. ST not only protected vascular endothelial function in SHRs by inhibiting the activation of NLRP3 inflammasome and the expression of related inflammatory mediators, but also improved AngII-induced huvec injury. In summary, our results show that alleviative NLRP3 inflammasome activation attenuates hypertensive endothelial damage and ST ameliorates vascular endothelial dysfunction in hypertension via inhibiting activation of the NLRP3 inflammasome.

17.
BMC Vet Res ; 15(1): 304, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31438945

ABSTRACT

BACKGROUND: Brucellosis is a worldwide zoonotic infectious disease that is transmitted in various ways and causes great harm to humans and animals. The brucellosis pathogen is Brucella, which mainly resides in macrophage cells and survives and replicates in host cells. However, the mechanisms underlying Brucella survival in macrophage cells have not been thoroughly elucidated to date. Peroxiredoxin 6 (Prdx6) is a bifunctional protein that shows not only GSH peroxidase activity but also phospholipase A2 activity and plays important roles in combating oxidative damage and regulating apoptosis. RESULTS: Recombinant mouse (Mus musculus) Prdx6 (MmPrdx6) was expressed and purified, and monoclonal antibodies against MmPrdx6 were prepared. Using the Brucella suis S2 strain to infect RAW264.7 murine macrophages, the level of intracellular Prdx6 expression first decreased and later increased following infection. Overexpressing Prdx6 in macrophages resulted in an increase in B. suis S2 strain levels in RAW264.7 cells, while knocking down Prdx6 reduced the S2 levels in cells. CONCLUSIONS: Host Prdx6 can increase the intracellular survival of B. suis S2 strain and plays a role in Brucella infection.


Subject(s)
Brucella suis/physiology , Brucellosis/microbiology , Peroxiredoxin VI/metabolism , Animals , Female , Gene Expression Regulation/physiology , Gene Knockdown Techniques , Macrophages/metabolism , Mice , Mice, Inbred BALB C , RAW 264.7 Cells
18.
AJR Am J Roentgenol ; 213(4): 859-866, 2019 10.
Article in English | MEDLINE | ID: mdl-31237781

ABSTRACT

OBJECTIVE. The objective of our study was to assess the accuracy of glomerular filtration rate (GFR) evaluation in patients with obstructive hydronephrosis using dynamic contrast-enhanced MR renography (DCE-MRR). MATERIALS AND METHODS. A group of 28 adult volunteers were enrolled in this study: 13 without hydronephrosis, eight with low-grade hydronephrosis, and seven with high-grade hydronephrosis. The GFR obtained from DCE-MRR (GFRMRR) and the GFR obtained from renal scintigraphy (GFRRS) were compared with the reference GFR (GFRRef) acquired using the two plasma sample method. The correlation and agreement between GFRMRR and GFRRef, GFRRS and GFRRef, and single-kidney GFRMRR (skGFRMRR) and single-kidney GFRRS (skGFRRS) were assessed. The interrater reliability of DCE-MRR and the interrater reliability of renal scintigraphy (RS) were measured. RESULTS. Both GFRMRR and GFRRS correlated well with GFRRef. In patients with hydronephrosis, DCE-MRR and RS overestimated GFR by 12.8 ± 13.9 mL/min (mean ± SD) and 11.5 ± 12.3 mL/min, respectively. The skGFRRS was higher than skGFRMRR by 5.7 ± 3.8 mL/min in high-grade hydronephrotic kidneys (p = 0.004). Good interrater reliability was observed for skGFRMRR (intraclass correlation coefficient [ICC] = 0.82-0.92) and skGFRRS (ICC = 0.79-0.90) for both nonhydronephrotic kidneys and hydronephrotic kidneys. The overall mean SDs of repeated measurements from three investigators were 4.0 and 3.8 mL/min for skGFRMRR and skGFRRS, respectively. CONCLUSION. Both DCE-MRR and RS tend to overestimate GFR in patients with hydronephrosis. RS-derived skGFR is slightly higher than that of DCE-MRR in kidneys with high-grade hydronephrosis. DCE-MRR is comparable to RS and may serve as an alternative noninvasive method for GFR measurement.


Subject(s)
Glomerular Filtration Rate , Hydronephrosis/diagnostic imaging , Hydronephrosis/physiopathology , Magnetic Resonance Imaging/methods , Contrast Media , Female , Gadolinium DTPA , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Radioisotope Renography , Radiopharmaceuticals , Reproducibility of Results , Technetium Tc 99m Pentetate
19.
Biomed Pharmacother ; 115: 108816, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31096144

ABSTRACT

OBJECTIVE: Inflammation and immune responses are crucial factors associated with the onset and progression of stroke. Interleukin-11 (IL-11) is a hematopoietic IL-6 family cytokine that functions as an anti-inflammatory agent against various inflammatory diseases. However, its roles in stroke remain unknown. In this study, we investigated the effects of IL-11 on cerebral ischemia-reperfusion injury in a model of focal cerebral ischemia. METHODS: Mice were randomly divided into five groups the vehicle group, the middle cerebral artery occlusion (MCAO) group, the MCAO plus adenosine monophosphate-activated protein kinase (AMPK) inhibitor compound C group, the MCAO plus IL-11 treatment group, and the MCAO plus IL-11 treatment and compound C group. Focal cerebral ischemia was induced by occluding the left middle cerebral artery, and reperfusion was achieved by withdrawing the suture 2 h after ischemia. The protein expression levels of IL-11 were measured using Western blot analysis, and its location was detected using immunohistochemistry and immunofluorescence staining. The infarct volume was examined using 2,3,5-triphenyl tetrazolium chloride (TTC) staining, and the neurobehavioral progression was assessed using the neurological scoring system. The expression of astrocytes and microglia was detected using immunochemistry, and real-time quantitative PCR was used for the gene quantification of inflammatory cytokines. The extent of cerebral ischemia-reperfusion injury was tested using Nissl staining and the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay. The expression of the apoptotic proteins Bax, Bcl-2 and cleaved caspase-3 were detected using Western blot analysis, and the oxidative stress was also measured. RESULTS: The expression of IL-11 mRNA and protein significantly decreased after cerebral ischemia. Immunohistochemical staining showed a large amount of IL-11 in the cerebral cortex of the mice in the vehicle group, whereas the immunoreactivity of IL-11 remained weak for 24 h in the MCAO group. Immunofluorescent staining further confirmed that IL-11 was mainly expressed in the neurons. It was suggested that IL-11 (20 µg/kg) treatment ameliorated infarction and reduced neurological scores. In addition, IL-11 proved to reduce neuropathic damage, glial activation, and the expression of proinflammatory cytokines and increase the expression of anti-inflammatory cytokines after cerebral ischemia. IL-11 was also able to alleviate oxidative stress caused by cerebral ischemia, and AMPK inhibition enhanced the alleviation. Moreover, IL-11 was found to inhibit apoptosis caused by cerebral ischemia, which could also be facilitated by AMPK inhibitors. SIGNIFICANCE: Our research suggests that IL-11 is decreased during cerebral ischemia-reperfusion injury, but IL-11 treatment can improve neurological function and reduce the cerebral infarct volume, which can trigger stroke in mice. AMPK inhibition can further promote the protective effect of IL-11 in stroke. Overall, we demonstrate that IL-11 is of therapeutic interest in controlling stroke and managing cerebral ischemia-reperfusion injury.


Subject(s)
Apoptosis/drug effects , Brain Infarction/metabolism , Interleukin-11/pharmacology , Reperfusion Injury/prevention & control , Animals , Brain Infarction/pathology , Brain Infarction/prevention & control , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Interleukin-11/genetics , Interleukin-11/metabolism , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Random Allocation
20.
J Vet Res ; 63(1): 99-105, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30989141

ABSTRACT

INTRODUCTION: Peroxiredoxin 6 (Prdx6) is a bifunctional protein with glutathione peroxidase activity and phospholipase A2 activity. Previous studies have shown a significant positive correlation between the intracellular survival ability of Brucella and Prdx6. Here, the Prdx6 enzyme with a single activity was constructed to facilitate study of the relationship between the single function of Prdx6 and Brucella infection. MATERIAL AND METHODS: The target open reading frame (ORF) DNAs of Prdx6 with a single active centre were prepared using gene splicing by overlap extension PCR (SOE-PCR), and the recombinant eukaryotic expression plasmids inserted by Prdx6 with the single activity centre were constructed and transfected into murine Raw264.7 macrophages. The glutathione peroxidase activity and phospholipase A2 activity of the constructed Prdx6 were examined. RESULTS: The core centres (Ser32 and Cys47) of Prdx6 were successfully mutated by changing the 94th nucleotide from T to G and the 140th nucleotide from G to C in the two enzyme activity cores, respectively. The constructed recombinant plasmids of Prdx6 with the single active centre were transfected into murine macrophages showing the expected single functional enzyme activity, which MJ33 or mercaptosuccinate inhibitors were able to inhibit. CONCLUSION: The constructed mutants of Prdx6 with the single activity cores will be a benefit to further study of the biological function of Prdx6 with different enzyme activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...