Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Bioact Mater ; 27: 546-559, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37397628

ABSTRACT

Currently, many cancer patients with bone defects are still threatened by tumor recurrence, postoperative bacterial infection, and massive bone loss. Many methods have been studied to endow bone implants with biocompatibility, but it is difficult to find an implant material that can simultaneously solve the problems of anticancer, antibacterial and bone promotion. Here, a multifunctional gelatin methacrylate/dopamine methacrylate adhesive hydrogel coating containing 2D black phosphorus (BP) nanoparticle protected by polydopamine (pBP) is prepared by photocrosslinking to modify the surface of poly (aryl ether nitrile ketone) containing phthalazinone (PPENK) implant. The multifunctional hydrogel coating works in conjunction with pBP, which can deliver drug through photothermal mediation and kill bacteria through photodynamic therapy at the initial phase followed by promotion of osteointegration. In this design, photothermal effect of pBP control the release of doxorubicin hydrochloride loaded via electrostatic attraction. Meanwhile, pBP can generate reactive oxygen species (ROS) to eliminate bacterial infection under 808 nm laser. In the slow degradation process, pBP not only effectively consumes excess ROS and avoid apoptosis induced by ROS in normal cells, but also degrade into PO43- to promote osteogenesis. In summary, nanocomposite hydrogel coatings provide a promising strategy for treatment of cancer patients with bone defects.

2.
Int J Biol Macromol ; 246: 125616, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37391003

ABSTRACT

Naturally-derived aerogels have attracted considerable attention owing to their good biocompatibility, biodegradability and sustainability, but their weak mechanical properties largely limit their applications in various fields. Herein, we proposed the use of a directional freeze-drying method to prepare an anisotropic honeycomb three-dimensional porous aerogel with water-soluble chitosan (CS) as a rigid skeleton and water-soluble biobased epoxy resin as cross-linked hard segments, which had low volume shrinkage and density of 13.9 % and 34.3 mg/cm3, respectively. The resultant aerogel had anisotropic mechanical properties, such as rigidity in the axial direction with a maximum axial modulus of 6.71 MPa, which was 51.6 times larger than that of the pure chitosan aerogel, demonstrating a good compressive elasticity in the radial direction. It also had anisotropic thermal management properties, with a lower thermal conductivity in the radial direction than in the axial direction, down to 0.029 W/mK. The introduction of biobased epoxy resin improved the overall thermal stability, flame retardancy, and increased the biomass content in the aerogel, reducing the carbon footprint of the material. This study paves the way for the construction of a special graded porous, structurally and functionally integrated thermal insulation aerogel, which is of great significance for the development of new thermal insulation materials.


Subject(s)
Chitosan , Porifera , Animals , Epoxy Resins , Anisotropy , Biomass , Desiccation
3.
Materials (Basel) ; 16(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049172

ABSTRACT

As high brittleness limits the application of all epoxy resins (EP), here, it can be modified by high-performance thermoplastic poly(ether nitrile ketone) containing phthalazinone structures (PPENK). Therefore, the influence of different PPENK contents on the mechanical, thermal, and low-temperature properties of EP was comprehensively investigated in this paper. The binary blend of PPENK/EP exhibited excellent properties due to homogeneous mixing and good interaction. The presence of PPENK significantly improved the mechanical properties of EP, showing 131.0%, 14.2%, and 10.0% increases in impact, tensile, and flexural strength, respectively. Morphological studies revealed that the crack deflection and bridging in PPENK were the main toughening mechanism in the blend systems. In addition, the PPENK/EP blends showed excellent thermal and low-temperature properties (-183 °C). The glass transition temperatures of the PPENK/EP blends were enhanced by approximately 50 °C. The 15 phr of the PPENK/EP blends had a low-temperature flexural strength of up to 230 MPa, which was 46.5% higher than EP. Furthermore, all blends exhibited better thermal stability.

4.
Small Methods ; 7(6): e2201593, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36895071

ABSTRACT

Regulating the ranking of polymer in triboelectric series over a wide range is of great help for material's selection of triboelectric nanogenerators (TENGs). Herein, fluorinated poly(phthalazinone ether)s (FPPEs) with tunable molecular structure and aggregate structure are synthesized by co-polycondensation, while the large positive ranking shift in the triboelectric series can be achieved by introducing phthalazinone moieties with strong electron donating capability. FPPE-5, which includes abundant phthalazinone moieties, is more positive than all of the previously reported triboelectric polymers. Hence, the regulating range of FPPEs in this work updates a new record in triboelectric series, which is wider than that of previous works. A peculiar crystallization behavior, capable of trapping and storing more electrons, has been observed in FPPE-2 with 25% phthalazinone moieties. Correspondingly, FPPE-2 is more negative than FPPE-1 without a phthalazinone moiety, which is an unexpected shift against the common changing tendency in triboelectric series. With FPPEs films as the probing material, a tactile TENG sensor is applied to enable material identification via electrical signal polarity. Hence, this study demonstrates a strategy to regulate the series of triboelectric polymers by copolymerization using monomers with distinct electrification capabilities, where both the monomer ratio and the peculiar nonlinear behavior can control triboelectric performance.

5.
ACS Appl Mater Interfaces ; 14(45): 50858-50869, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36331393

ABSTRACT

A vanadium flow battery (VFB) is one of the most promising electrochemical energy storage technologies. However, membranes for VFBs still suffer from high cost or low conductivity and poor stability. Here, we report new quaternized anthrone-containing poly(aryl ether ketone) (QAnPEK) membranes for VFBs. QAnPEK membranes with moderate ion exchange capacity (1.26 mmol g-1) were swelling-induced in H3PO4 (50 wt %) to form wider ion transport pathways that significantly enhanced membrane conductivity (e.g., 0.49 Ω cm2 for the QAnPEK-virgin membrane and 0.12 Ω cm2 for the swelling-induced QAnPEK-90 membrane). The bulky rigid anthrone-containing backbone provided high swelling resistance and enabled QAnPEK membranes to have high ion selectivity. As a result, QAnPEK membranes displayed low area resistance, high ion selectivity, and robust mechanical strength. The QAnPEK-90 membrane yielded excellent energy efficiencies (92.4% at 80 mA cm-2, 85.1% at 200 mA cm-2, and 80.3% at 280 mA cm-2). Moreover, QAnPEK membranes exhibited outstanding in situ and ex situ stability, for example, the VFB with the QAnPEK-40 membrane demonstrated highly stable battery performance for 3000 cycles at 160 mA cm-2. QAnPEK membranes are attractive candidates for VFB application.

6.
Int J Biol Macromol ; 218: 639-653, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35872313

ABSTRACT

As a hydrolytic product of collagen, gelatin is a polypeptide of biological origin. Gelatin hydrogels emerge as promising material candidates for traditional dressings due to good biocompatibility and the ability to keep wounds moist. However, it is difficult to simultaneously achieve gelatin hydrogel with robust mechanical property for long-term usage, reliable tissue adhesion, self-healing and antibacterial properties. Herein, we propose a simply synthesized strategy of a multifunctional gelatin hydrogel dressing, which is constructed by conjugating a newly synthesized 2-(4'-aldehydephenyl)-4-(2',3',4'-trihydroxyphenyl)-2,3-phthalazine-1(2H)-one (THPZB) to gelatin with Schiff base and chelating with Fe3+ ions (termed G/THPZB/Fe hydrogel). The twisted structure of phthalazinone in THPZB leads to entanglement of gelatin molecular chains, which resolves the stiffness-toughness conflict of the hydrogel. Furthermore, the strong tissue adhesion and fast self-healing capability mainly originate from the hydrogen bonding of the pyrogallol in THPZB. In vitro study shows that the hydrogels possess good biocompatibility with L929 cells, hemostatic and antibacterial activity. In the rat model of skin infection, the hydrogel dressing not only have no adverse effects on vital organs, but also can effectively promote wound healing of bacterial infection. Considering that it has multiple functions, G/THPZB/Fe hydrogel can be used as a promising wound dressing for biomedical applications.


Subject(s)
Hydrogels , Urochordata , Adhesives/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bandages , Gelatin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Tissue Adhesions
7.
Polymers (Basel) ; 14(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35566892

ABSTRACT

Sulfonated poly(phthalazinone ether ketones) (SPPEK) with ion exchange capacities from 0.77 to 1.82 mmol·g-1 are synthesized via an electrophilic substitution reaction. Nuclear magnetic resonance and infrared absorption spectroscopy are used to characterize the chemical structure of the obtained polymers for confirming the successful introduction of sulfonic groups. SPPEKs show excellent thermal stability; their temperature required to achieve 5% weight loss is about 360 °C. Accordingly, the obtained membranes possess high ion perm-selectivity, proton conductivity, and low area resistance. Regarding the electrodialysis-related performance of the membranes, the SPPEK-4 membrane has the highest limiting current density (39.8 mA·cm2), resulting from its high content of sulfonic groups. In a desalination test of standard solution, SPPEK-3 and SPPEK-4 membranes exhibit both better salt removal rate and acceptable energy consumption than commercial membrane. Additionally, SPPEK-3 membrane shows outstanding performance in terms of high concentration rate and low energy consumption during saline water treatment, which indicates the feasibility of novel membranes in electrodialysis application.

8.
Polymers (Basel) ; 14(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458299

ABSTRACT

Membranes with high conductivity, high selectivity, and high stability are urgently needed for high-power-density vanadium flow batteries (VFBs). Enhancing membrane conductivity presents many challenges, often resulting in sacrificing membrane selectivity and mechanical strength. To overcome this, new robust adamantane-based membranes with enhanced conductivity are constructed for VFB. Low-content basic piperazine (IEC = 0.78 mmol g-1) and hydrophilic hydroxyl groups are introduced into highly rigid, hydrophobic adamantane containing poly(aryl ether ketone) backbone (PAPEK) and then selectively swelled to induce microphase separation and form ion transport pathways. The highly rigid and hydrophobic PAPEK exhibits high swelling resistance and provides the membranes with slight swelling, high selectivity, and high mechanical strength. The selective swelling temperature has a significant influence on the areal resistance of the resulting membrane, e.g., the PAPEK-130 membrane, when selectively swelled at 130 °C, has low areal resistance (0.22 Ω∙cm2), which is approximately two-fifths that of the PAEKK-60 membrane (treated at 60 °C, 0.57 Ω∙cm2). Consequently, the resulting PAPEK membranes exhibit low swelling, high selectivity, and low areal resistance, with the VFB constructed with a PAPEK-90 membrane exhibiting excellent energy efficiency (91.7%, at 80 mA∙cm-2, and 80.0% at 240 mA∙cm-2) and stable cycling performance for 2000 cycles.

9.
Phys Chem Chem Phys ; 24(3): 1760-1769, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34985063

ABSTRACT

Sulfonated N-heterocyclic poly(aryl ether) proton-exchange membranes have potential applications in the fuel-cell field due to their favorable proton conduction capacity and stability. This paper investigates the changes in mass and performance decay, such as proton conduction and mechanical strength, of sulfonated poly(ether ether ketone)s (SPEEKs) and three sulfonated N-heterocyclic poly(aryl ether ketone) (SPPEK, SPBPEK-P-8, and SPPEKK-P) membranes in Fenton's oxidative experiment. The SPEEK membrane exhibited the worst oxidative stability. The oxidative stability of the SPPEK membrane is enhanced due to the introduction of phthalazinone units in the chains. The SPPEKK-P and SPBPEK-P-8 membranes exhibit better radical tolerance than the SPPEK membrane, with proton conductivity retention rates of 66% and 73% for 1 h oxidative treatment, respectively. In addition, the molecular chains of SPPEKK-P and SPBPEK-P-8 exhibit relatively little disruption. The pendant benzenesulfonic groups enhance the steric effects for reducing radical attacks on the ether bonds and reduce the hydration of molecular chains. The introduction of phthalazinone units decreases the rupture points in the main chain. Therefore, the radical tolerance of the membranes is improved. These results provide a reference for the design of highly stable sulfonated heterocyclic poly(aryl ether) membranes.

10.
Macromol Biosci ; 21(11): e2100262, 2021 11.
Article in English | MEDLINE | ID: mdl-34449122

ABSTRACT

Bone-like apatite is a promising coating of poly(ether ether ketone) (PEEK) for bone implantation. Poly(aryl ether nitrile ketone) containing phthalazinone moiety (PPENK) is a novel alternative for its easy synthesis. Here, chitosan/gelatin hybrid hydrogel coating is applied to induce the formation of apatite on the surface of PPENK substrate through biomineralization to improve its biocompatibility and osteogenic property. PPENK possessing allyl groups (PPENK-d) are synthesized and spin-coated on PPENK substrate to impart reactive groups. The hydrogel coating is prepared by the ultraviolet crosslinking of gelatin methacrylate (GelMA) and chitosan methacrylate (CSMA) on PPENK substrate. PPENK-d, GelMA, and CSMA are characterized by 1 H-NMR to confirm the designed structures. The presence of chitosan increases the chelation of calcium ions and thus induces the nucleation of apatite. The microstructural and compositional results reveal that the chitosan-containing hydrogel coating induced apatite coating yields a higher apatite quantity compared to the gelatin hydrogel coating. The apatite coatings on PPENK substrate promote the cytocompatibility and osteogenesis of MC3T3-E1 preosteoblasts in vitro.


Subject(s)
Apatites/chemical synthesis , Cell Differentiation , Chitosan/chemistry , Gelatin/chemistry , Hydrogels/pharmacology , Ketones/chemistry , Osteoblasts/cytology , 3T3 Cells , Animals , Cell Differentiation/drug effects , Hydrogels/chemistry , Mice , Osteogenesis/drug effects
11.
RSC Adv ; 11(24): 14814-14823, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-35424018

ABSTRACT

Polymer electrolytes have attracted considerable research interest due to their advantages of shape control, excellent safety, and flexibility. However, the limited use of traditional polymer electrolytes in electric double-layer capacitors due to their unsatisfactory ionic conductivities and poor mechanical properties makes them difficult to operate for long periods of time in large-scale energy storage. Therefore, we fabricated a high-performance microporous electrolyte based on poly(arylene ether ketone) (PAEK)/poly(ethylene glycol)-grafted poly(arylene ether ketone) (PAEK-g-PEG) using a certain amount of carboxylated chitosan with a high electrolyte uptake rate of 322 wt% and a high ionic conductivity of 2 × 10-2 S cm-1 at room temperature. A symmetric solid-state supercapacitor that uses activated carbon as electrodes and a composite microporous polymer film as the electrolyte shows a high specific capacitance of 134.38 F g-1 at a current density of 0.2 A g-1, while liquid electrolytes demonstrate a specific capacitance of 126.92 F g-1. Energy density of the solid-state supercapacitor was 15.82% higher than that of the liquid supercapacitor at a current density of 5 A g-1. In addition, the solid-state supercapacitor exhibited excellent cycling stability of over 5000 charge/discharge cycles at a current density of 1 A g-1. Furthermore, solid-state supercapacitors display lower self-discharge behavior with an open-circuit potential drop of only 36% within 70 000 s, which is significantly better than that of conventional supercapacitors (52% @ 70 000 s), at a charging current density of 1 mA cm-2. The satisfactory results indicated that the PAEK/PAEK-g-PEG composite microporous polymer film demonstrates high potential as an electrolyte material in practical applications of solid-state and portable energy storage devices.

12.
ACS Omega ; 5(36): 23148-23156, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32954165

ABSTRACT

A polyamide composite forward osmosis (FO) hollow fiber membrane was successfully prepared with a novel copoly(phthalazinone biphenyl ether sulfone) (PPBES) polymer. Effects of different additives including ethylene glycol methyl ether (EGME) and lithium chloride anhydrous (LiCl) in the dope solution on the morphologies and properties of PPBES support membranes and composite FO hollow fiber membranes were investigated. With the increase of EGME content in the dope solution, the water flux of PPBES support membranes and FO hollow fiber membranes decreased. When LiCl was added into the dope solution, the water flux of FO hollow fiber membranes improved significantly with the increase of LiCl content. Additionally, the FO performance of the PPBES membrane was further optimized by adding triethylamine (TEA) in the interfacial polymerization (IP) process. In comparison with other FO membranes, the novel PPBES composite FO hollow fiber membrane displayed a remarkably high water flux of 45.3 L/m2 h and a low specific reverse salt flux of 0.15 g/L.

13.
ACS Appl Mater Interfaces ; 12(36): 40740-40748, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32805848

ABSTRACT

A novel sulfated tin oxide solid superacid granular stacked one-dimensional (1D) hollow nanofiber (SO42-/FSnO2) is proposed as a nanofiller in sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) to manipulate a highly conductive proton nanochannel. It has unique microstructures with an open-end hollow nanofibric morphology and grain-stacked single-layer mesoporous fiber wall, which greatly enlarge the specific surface area and aspect ratio. The diverse acid sites, that is, SO42-, Sn-OH Brönsted, and Sn4+ Lewis superacids, provide a high concentration of strong acidic proton carriers on the nanofiber surface and dynamically abundant hydrogen bonds for rapid proton transfer and interfacial interactions with -SO3H groups in the SPPESK along the 1D hollow nanofiber. As a result, long-range orientated ionic clusters are observed in the SO42-/FSnO2 incorporated membrane, leading to simultaneous enhancement of proton conductivity (226.7 mS/cm at 80 °C), mechanical stability (31.4 MPa for the hydrated membrane), fuel permeation resistance, and single-cell performance (936.5 and 147.3 mW/cm2 for H2/O2 and direct methanol fuel cells, respectively). The superior performance, as compared with that of the zero-dimensional nanoparticle-incorporated membrane, Nafion 115, and previously reported SPPESK-based membranes, suggests a great potential of elaborating superstructural 1D hollow nanofillers for highly conductive proton-exchange membranes.

14.
Colloids Surf B Biointerfaces ; 194: 111173, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32563919

ABSTRACT

Poly(ether ether ketone) (PEEK) is a polyaryletherketone commonly used for bone implants, but it is difficult to modify the PEEK surface. Conversely, poly(phthalazinone ether nitrile ketone) (PPENK) is a polyaryletherketone whose surface can be modified by using chemical reactions owing to its cyano group. In this paper, two types of materials, P-BMP-2 and PH-BMP-2, were prepared by covalent immobilization and heparin binding of rhBMP-2 respectively to enhance the osteogenic activity of PPENK. X-ray photoelectron spectroscopy and water contact-angle measurement were used to demonstrate the hydrolysis of the cyano groups on PPENK, amine group grafting and immobilization of rhBMP-2. Immunohistochemical staining and evaluation of loading and release behaviour were used to demonstrate the existence of rhBMP-2 on PPENK surfaces. The biological activity of MC3T3-E1 preosteoblast cells on the samples were evaluated using cell adhesion, viability and proliferation tests. The genetic expression of genes associated with osteogenic activity was assessed by reverse transcription polymerase chain reaction. Based on the obtained in vitro experimental results, both P-BMP-2 and PH-BMP-2 exhibit good cytocompatibility and promote differentiation of MC3T3-E1 preosteoblast cells. In particular, the favourable biocompatibility can be obtained using the heparin-binding method.


Subject(s)
Bone Morphogenetic Protein 2 , Ketones , Osteogenesis , 3T3 Cells , Animals , Cell Differentiation , Ethers , Mice , Nitriles , Recombinant Proteins , Surface Properties
15.
Nat Commun ; 10(1): 2107, 2019 05 08.
Article in English | MEDLINE | ID: mdl-31068596

ABSTRACT

Aromatic N-heterocyclic compounds are very important chemicals, which are currently produced mostly from petroleum. Here we report that a pyridazine-based compound 6-(4-hydroxy-3-methoxyphenyl)pyridazin-3(2H)-one (GSPZ) can be efficiently synthesized by the Friedel-Crafts reaction of guaiacol and succinic anhydride, both of which can be derived from biomass. GSPZ is then treated with bio-based epichlorohydrin to prepare the epoxy resin precursor GSPZ-EP. With 4,4'-diaminodiphenylmethane as curing agent, GSPZ-EP possesses higher glass transition temperature (187 oC vs. 173 oC) and shows a 140%, 70 and 93% increase in char yield (in N2), storage modulus (30 oC) and Young's modulus, respectively when compared with a standard petroleum-based bisphenol A epoxy resin. Moreover, the cured GSPZ-EP shows good intrinsic flame retardancy properties and is very close to the V-0 rating of UL-94 test. This work opens the door for production of aromatic N-heterocyclic compounds, which can be derived from biomass and employed to construct high performance polymers.

16.
Membranes (Basel) ; 9(1)2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30609727

ABSTRACT

This paper discusses the effect of the chemical structure of sulfonated poly(aryl ether sulfone) on the performance of composite nanofiltration membranes. The composite nanofiltration membranes were fabricated by coating sulfonated poly(aryl ether sulfone) solution onto the top surface of poly(phthalazinone ether sulfone ketone) support membranes. Three kinds of sulfonated poly(aryl ether sulfone)s with different amounts of phthalazinone moieties, namely, sulfonated poly(phthalazinone ether sulfone) (SPPES), sulfonated poly(phthalazinone biphenyl ether sulfone) (SPPBES), and sulfonated poly(phthalazinone hydroquinone ether sulfone)s (SPPHES), were used as coating materials. The solvents used in preparing the coating solution were investigated and optimized. The separation properties, thermal stability, and chlorine resistance of composite membranes were determined. The structures and morphologies of membranes were characterized with FTIR and SEM, respectively. The membrane prepared from SPPES with more phthalazinone moiety groups showed high water flux and salt rejection. The salt rejection of composite membranes followed the order SPPES > SPPHES > SPPBES. The rejection of the three composite membranes decreased slightly with the solution temperature rising from 20 to 90 °C, while the composite membrane with SPPES as the active layer showed a higher increase in flux than others. The results indicate that SPPES composite membranes show better thermal stability than others.

17.
RSC Adv ; 9(45): 26097-26108, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-35531006

ABSTRACT

Novel poly(phthalazinone ether ketone)-based amphoteric ion exchange membranes with improved ion selectivity, stability and water transport resistance were prepared for vanadium redox flow battery (VRB) applications. The preparation method ensured the absence of electrostatic interaction. A small amount of sulfonated poly(phthalazinone ether ketone) (SPPEK) with different ion exchange capacity (IEC) values was mixed with brominated poly(phthalazinone ether ketone) (BPPEK) to prepare base membranes with the solution casting method, and they were aminated in trimethylamine to obtain the resulting membranes (Q/S-x, x represents the IEC value of SPPEK). Compared with the AEM counterpart (QBPPEK) prepared from the amination of the BPPEK membrane, Q/S-1.37 showed lower swelling ratio and area resistance (R). The R value of Q/S-1.37 (0.58 Ω cm2) was close to that of Nafion115. The VO2+ and V3+ permeability values of Q/S-x were 96.7-97.6% and 98.5-99.2% less than those of Nafion115, respectively, demonstrating the excellent ion selectivity of Q/S-x. Compared with Nafion115 and QBPPEK, Q/S-1.37 displayed 90.0% and 92.1% decrease in the static water transport volume and 93.2% and 66.7% decrease in the cycling transport rate, respectively, revealing good water transport resistance. Compared with Nafion115, Q/S-1.37 exhibited an increase of 1.0-5.7% in the coulombic efficiency (CE) and an increase of 2.5-8.7% in the energy efficiency (EE) at 20-200 mA cm-2. Q/S-x showed better chemical stability in VO2 + solutions than QBPPEK. VRB with Q/S-1.37 could be steadily operated for 400 h without sudden capacity and efficiency drop, while VRB with QBPPEK could hold for only around 250 h. Q/S-1.37 retained higher CE, EE and capacity retention than Nafion115, displaying good long-term stability. Thus, the Q/S-x are promising for use in commercial VRBs.

18.
RSC Adv ; 8(57): 32899-32908, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-35547674

ABSTRACT

Major problems currently limiting the widespread application of phthalonitrile resins are the high precursor melting point and volatility of the curing agent. Herein, a novel self-curing triphenol A-based phthalonitrile resin precursor (TPPA-Ph) was successfully synthesized by reacting α,α,α'-tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene (TPPA) with 4-nitrophthalonitrile (NPh) via nucleophilic substitution. The presence of residual phenolic hydroxyl groups in the TPPA-Ph precursor promoted the curing reaction of phthalonitrile resin in the absence of an additional curing reagent. Self-cured TPPA-Ph resins exhibited relatively low melting points (less than 100 °C), high thermal stability, and a wide processing window (116 °C). Furthermore, the TPPA-Ph precursors contained phenolic hydroxyl and cyano groups that can be used as flexibilizers and curing agents to optimize other phthalonitrile resins. Resorcinol-based phthalonitrile resin (DPPH) cured with various amounts of TPPA-Ph possessed excellent thermal and thermo-oxidative stability with a 5% weight loss temperature exceeding 530 °C, T gs above 380 °C, and a wide processing window and time. Therefore, as a novel precursor and curing agent for phthalonitrile resins, the triphenol A-based phthalonitrile resin is an ideal resin matrix for high-performance composites with broad application prospects in aerospace, shipping, machinery, and other high-tech fields.

19.
Chem Commun (Camb) ; 52(39): 6553-6, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27103254

ABSTRACT

Here, we present a new strategy to improve the rigidity of through the introduction of 8-membered ring locking into the flexible spiro-carbon pivot point to produce an interlocked polycyclic structure. This locked version of shows simultaneous increases in both permeability and selectivity that place it well above the Robeson upper bound for a number of important gas pairs. Molecular modelling demonstrates that the locked version of is much more rigid.

SELECTION OF CITATIONS
SEARCH DETAIL
...