Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plant Divers ; 46(3): 406-415, 2024 May.
Article in English | MEDLINE | ID: mdl-38798721

ABSTRACT

Bamboo plants are an essential component of tropical ecosystems, yet their vulnerability to climate extremes, such as drought, is poorly understood due to limited knowledge of their hydraulic properties. Cephalostachyum pergracile, a commonly used tropical bamboo species, exhibited a substantially higher mortality rate than other co-occurring bamboos during a severe drought event in 2019, but the underlying mechanisms remain unclear. This study investigated the leaf and stem hydraulic traits related to drought responses, including leaf-stem embolism resistance (P50leaf; P50stem) estimated using optical and X-ray microtomography methods, leaf pressure-volume and water-releasing curves. Additionally, we investigated the seasonal water potentials, native embolism level (PLC) and xylem water source using stable isotope. We found that C. pergracile exhibited strong resistance to embolism, showing low P50leaf, P50stem, and turgor loss point, despite its rapid leaf water loss. Interestingly, its leaves displayed greater resistance to embolism than its stem, suggesting a lack of effective hydraulic vulnerability segmentation (HVS) to protect the stem from excessive xylem tension. During the dry season, approximately 49% of the water was absorbed from the upper 20-cm-deep soil layer. Consequently, significant diurnal variation in leaf water potentials and an increase in midday PLC from 5.87 ± 2.33% in the wet season to 12.87 ± 4.09% in the dry season were observed. In summary, this study demonstrated that the rapid leaf water loss, high reliance on surface water, and a lack of effective HVS in C. pergracile accelerated water depletion and increased xylem embolism even in the typical dry season, which may explain its high mortality rate during extreme drought events in 2019.

2.
Tree Physiol ; 44(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38691446

ABSTRACT

Legumes account for a significant proportion of plants in the terrestrial ecosystems. Nitrogen (N)-fixing capability of certain legumes is a pivotal trait that contributes to their ecological dominance. Yet, the functional traits and trait relationships between N-fixer and non-N-fixer legumes are poorly understood. Here, we investigated 27 functional traits associated with morphology, nutrients, hydraulic conductance and photosynthesis in 42 woody legumes (19 N-fixers and 23 non-N-fixers) in a common garden. Our results showed that N-fixers had higher specific leaf area, photosynthetic phosphorus (P)-use efficiency, leaf N, and iron concentrations on both area and mass basis, N/P ratio, and carbon (C) to P ratio, but lower wood density, area-based maximum photosynthetic rate (Aa), photosynthetic N-use efficiency, leaf mass- and area-based P and molybdenum and area-based boron concentrations, and C/N ratio, compared with non-N-fixers. The mass-based maximum photosynthetic rate (Am), stomatal conductance (gs), intrinsic water-use efficiency (WUEi), mass- and area-based leaf potassium and mass-based boron concentrations, leaf hydraulic conductance (Kleaf), and whole-shoot hydraulic conductance (Kshoot) showed no difference between N-fixers and non-N-fixers. Significant positive associations between all hydraulic and photosynthetic trait pairs were found in N-fixers, but only one pair (Kshoot-Aa) in non-N-fixers, suggesting that hydraulic conductance plays a more important role in mediating photosynthetic capacity in N-fixers compared with non-N-fixers. Higher mass-based leaf N was linked to lower time-integrated gs and higher WUEi among non-N-fixer legumes or all legumes pooled after phylogeny was considered. Moreover, mass-based P concentration was positively related to Am and gs in N-fixers, but not in non-N-fixers, indicating that the photosynthetic capacity and stomatal conductance in N-fixers were more dependent on leaf P status than in non-N-fixers. These findings expand our understanding of the trait-based ecology within and across N-fixer and non-N-fixer legumes in tropics.


Subject(s)
Fabaceae , Nitrogen , Photosynthesis , Plant Leaves , Photosynthesis/physiology , Plant Leaves/physiology , Plant Leaves/metabolism , Fabaceae/physiology , Fabaceae/metabolism , Nitrogen/metabolism , Nitrogen Fixation , Phosphorus/metabolism , Water/metabolism , Carbon/metabolism
3.
Plant Divers ; 46(2): 265-273, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38807905

ABSTRACT

To determine the invasiveness of invasive plants, many studies have compared photosynthetic traits or strategies between invasive and native species. However, few studies have compared the photosynthetic dynamics between invasive and native species during light fluctuations. We compared photosynthetic induction, relaxation dynamics and leaf traits between the invasive species, Tithonia diversifolia and two native species, Clerodendrum bungei and Blumea balsamifera, in full-sun and shady habitats. The photosynthetic dynamics and leaf traits differed among species. T. diversifolia showed a slower induction speed and stomatal opening response but had higher average intrinsic water-use efficiency than the two native species in full-sun habitats. Thus, the slow induction response may be attributed to the longer stomatal length in T. diversifolia. Habitat had a significant effect on photosynthetic dynamics in T. diversifolia and B. balsamifera but not in C. bungei. In shady habitat, T. diversifolia had a faster photosynthetic induction response than in full-sun habitat, leading to a higher average stomatal conductance during photosynthetic induction in T. diversifolia than in the two native species. In contrast, B. balsamifera had a larger stomatal length and slower photosynthetic induction and relaxation response in shady habitat than in full-sun habitat, resulting in higher carbon gain during photosynthetic relaxation. Nevertheless, in both habitats, T. diversifolia had an overall higher carbon gain during light fluctuations than the two native species. Our results indicated that T. diversifolia can adopt more effective response strategies under fluctuating light environments to maximize carbon gain, which may contribute to its successful invasion.

4.
Tree Physiol ; 44(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-38102768

ABSTRACT

Leaf nutrient resorption and drought resistance are crucial for the growth and survival of plants. However, our understanding of the relationships between leaf nutrient resorption and plant drought resistance is still limited. In this study, we investigated the nitrogen and phosphorus resorption efficiencies (NRE and PRE), leaf structural traits, leaf osmotic potential at full hydration (Ψosm), xylem water potential at 50% loss of xylem-specific hydraulic conductivity (P50) and seasonal minimum water potential (Ψmin) for 18 shrub and tree species in a semiarid savanna ecosystem, in Southwest China. Our results showed that NRE and PRE exhibited trade-off against drought resistance traits (Ψosm and P50) across woody species. Moreover, this relationship was modulated by leaf structural investment. Species with low structural investment (e.g., leaf mass per area, leaf dry mass content and leaf construction cost [LCC]) tend to have high NRE and PRE, while those with high LCCs show high drought resistance, showing more negative Ψosm and P50.These results indicate that species with a lower leaf structural investment may have a greater need to recycle their nutrients, thus exhibiting higher nutrient resorption efficiencies, and vice versa. In conclusion, nutrient resorption efficiency may be a crucial adaptation strategy for coexisting plants in semiarid ecosystems, highlighting the importance of understanding the complex relationships between nutrient cycling and plant survival strategies.


Subject(s)
Ecosystem , Grassland , Drought Resistance , Nitrogen/analysis , Phosphorus/analysis , Plants , Trees , China , Water , Plant Leaves/chemistry
5.
Tree Physiol ; 43(12): 2109-2120, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37672225

ABSTRACT

Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees.


Subject(s)
Embolism , Trees , Trees/physiology , Xylem/physiology , Plant Leaves/physiology , Photosynthesis/physiology , Water/physiology
6.
World J Clin Cases ; 10(20): 7130-7137, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-36051122

ABSTRACT

BACKGROUND: Portal vein thrombosis (PVT) is a condition caused by hemodynamic disorders. It may be noted in the portal vein system when there is an inflammatory stimulus in the abdominal cavity. However, PVT is rarely reported after hepatectomy. At present, related guidelines and major expert opinions tend to consider vitamin K antagonists or low-molecular weight heparin (LMWH) as the standard treatment. But based on research, direct oral anticoagulants may be more effective and safe for noncirrhotic PVT and are also beneficial by reducing the recurrence rate of PVT. CASE SUMMARY: A 51-year-old woman without any history of disease felt discomfort in her right upper abdomen for 20 d, with worsening for 7 d. Contrast-enhanced computed tomography (CECT) of the upper abdomen showed right liver intrahepatic cholangiocarcinoma with multiple intrahepatic metastases but not to the left liver. Therefore, she underwent right hepatic and caudate lobectomy. One week after surgery, the patient underwent a CECT scan, due to nausea, vomiting, and abdominal distension. Thrombosis in the left branch and main trunk of the portal vein and near the confluence of the splenic vein was found. After using LMWH for 22 d, CECT showed no filling defect in the portal vein system. CONCLUSION: Although PVT after hepatectomy is rare, it needs to be prevented during the perioperative period.

7.
Tree Physiol ; 42(7): 1337-1349, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35157087

ABSTRACT

Evergreen and deciduous species coexist in tropical dry forests and savannas, but differ in physiological mechanisms and life-history strategies. Hydraulic conductivity and mechanical support are two major functions of the xylems of woody plant species related to plant growth and survival. In this study, we measured sapwood-specific hydraulic conductivity (Ks), leaf-specific hydraulic conductivity (KL), modulus of rupture (MOR) and elasticity (MOE), xylem anatomical traits and fiber contents in the xylems of 20 woody species with contrasting leaf phenology (evergreen vs deciduous) in a Chinese savanna. Our results showed that deciduous species had significantly higher Ks and KL but lower MOR and MOE than evergreen species. Evergreen species experienced more negative seasonal minimum water potential (Pmin) than deciduous species during the dry season. Furthermore, we found trade-offs between xylem hydraulic efficiency and mechanical strength across species and within the evergreen and deciduous groups, and these trade-offs were modulated by structural and chemical traits. Both Ks and KL were significantly related to hydraulic weighted vessel diameter (Dh) across all species and within the deciduous group. Both MOR and MOE were significantly related to wood density, neutral detergent fiber and acid detergent fiber across species and within evergreen and deciduous groups. Our findings demonstrated that Chinese evergreen and deciduous savanna species diverged in xylem hydraulic and mechanical functions, reflecting conservative and acquisitive life-history strategies for evergreen and deciduous species, respectively. This study provides new information with which to understand the hydraulic and biomechanical properties and ecological strategies of savanna species in long-term dry-hot environments.


Subject(s)
Grassland , Trees , China , Detergents , Plant Leaves/physiology , Trees/physiology , Water , Xylem
8.
Tree Physiol ; 42(4): 740-753, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35020937

ABSTRACT

Extreme drought events are becoming frequent globally, resulting in widespread plant mortality and forest dieback. Although savanna vegetation cover ~20% of the earth's land area, their responses to extreme drought have been less studied than that of forests. Herein, we quantified branch dieback, individual mortality and the associated physiological responses of four evergreen shrubs (Tarenna depauperate Hutch., Maytenus esquirolii (H. Lév.) C.Y. Cheng, Murraya exotica L., Jasminum nudiflorum Lindl.) in a savanna ecosystem in Southwest China to an incidence of extreme drought during 2019 and 2020. We found that 80-100% of the individuals of these species exhibited branch dieback, whereas individual mortality was only found in T. depauperate (4.5%). All species showed high resistance to stem embolism (P50, water potential at 50% loss of hydraulic conductivity ranged from -5.62 to -8.6 MPa), whereas the stem minimum water potentials reached -7.6 to ca -10.0 MPa during the drought. The low water potential caused high native embolism levels (percentage loss of hydraulic conductivity (PLC) 23-65%) in terminal branches, and the remaining stems maintained 15-35% PLC at the end of the drought. Large within-individual variations in stem vulnerability to embolism were detected, and shedding of vulnerable branches could be a mechanism for shrubs to reduce water and carbon consumption. Overall, the content of total nonstructural carbohydrates (NSC) and their components in the stem were generally comparable to or higher than those in the rainy season in three of the four species. Because the leaves were turgor-less for most time during the drought, high NSC levels during the drought could be due to recycling of NSC from dead branches or translocation from roots. Our results suggest high tolerance of savanna shrub species to extreme drought, which could be facilitated by high embolism resistance in some stems and shedding of vulnerable branches to maintain individual water and carbon balance.


Subject(s)
Droughts , Embolism , Carbohydrates , Carbon , Ecosystem , Grassland , Incidence , Plant Leaves/physiology , Trees/physiology , Water , Xylem/physiology
9.
Front Microbiol ; 13: 1088581, 2022.
Article in English | MEDLINE | ID: mdl-36620038

ABSTRACT

Using composted soil samples, a metagenomic library consisting of 36,000 clones was constructed. Then, a novel lipase, Lip54q, which belongs to the VIII family of lipolytic enzymes, was identified from the metagenomic library by functional screening. To explore the enzymatic properties of Lip54q, lip54q was heterologous expressed in Escherichia coli with a high expression level of recombinant protein up to 720 mg/L. The recombinant enzyme showed the highest activity (28,160 U/mg) against a C10 substrate at pH 9.0 and 47°C, and was stable at temperatures ≤50°C and pH 8.0-11.0. Of particular interest, the surfactants, Tween-20, Tween-80 and Tritonx-100, exhibited strong promoting effects on Lip54q activities regardless of whether low concentrations (0.1%) or high concentrations (10%) were used. Application studies of Lip54q using six commercial detergents indicated that the enzyme had strong tolerance and immersion resistance to all six detergents. The results of oil-stain removal experiments suggested that addition of the enzyme to various commercial detergents could significantly improve the abilities of these detergents to remove oil-stains. Furthermore, the results of a molecular docking analysis of Lip54q showed that both the C10 substrate and linoleic acid molecules could form hydrogen bond interactions with the catalytic amino acids, Ser-268, Glu-168, and Asp-192, in the catalytic center of the enzyme, and the hydrogen bond distances were shorter. The electrostatic attraction between the enzyme and the substrate formed by the hydrogen bond with a shorter distance is stronger, which is conducive to the formation of a more stable complex between the enzyme and the substrate, thus increasing the activity of the enzyme to such substrate. These results 1ay a good foundation for application of this enzyme in the detergent industry in the future.

10.
Ecol Lett ; 24(11): 2350-2363, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34409716

ABSTRACT

Hydraulic failure caused by severe drought contributes to aboveground dieback and whole-plant death. The extent to which dieback or whole-plant death can be predicted by plant hydraulic traits has rarely been tested among species with different leaf habits and/or growth forms. We investigated 19 hydraulic traits in 40 woody species in a tropical savanna and their potential correlations with drought response during an extreme drought event during the El Niño-Southern Oscillation in 2015. Plant hydraulic trait variation was partitioned substantially by leaf habit but not growth form along a trade-off axis between traits that support drought tolerance versus avoidance. Semi-deciduous species and shrubs had the highest branch dieback and top-kill (complete aboveground death) among the leaf habits or growth forms. Dieback and top-kill were well explained by combining hydraulic traits with leaf habit and growth form, suggesting integrating life history traits with hydraulic traits will yield better predictions.


Subject(s)
Droughts , Water , Habits , Plant Leaves , Trees
11.
AoB Plants ; 13(3): plab016, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34007437

ABSTRACT

Liana abundance and biomass are increasing in neotropical and Asian tropical seasonal forests over the past decades. Stem mechanical properties and hydraulic traits influence the growth and survival of plants, yet the differences in stem mechanical and hydraulic performance between congeneric lianas and trees remain poorly understood. Here, we measured 11 stem mechanical and hydraulic traits for 10 liana species and 10 tree species from Bauhinia grown in a tropical common garden. Our results showed that Bauhinia lianas possessed lower stem mechanical strength as indicated by both modulus of elasticity and modulus of rupture, and higher stem potential hydraulic conductivity than congeneric trees. Such divergence was mainly attributed to the differentiation in liana and tree life forms. Whether the phylogenetic effect was considered or not, mechanical strength was positively correlated with wood density, vessel conduit wall reinforcement and sapwood content across species. Results of principle component analysis showed that traits related to mechanical safety and hydraulic efficiency were loaded in the opposite direction, suggesting a trade-off between biomechanics and hydraulics. Our results provide evidence for obvious differentiation in mechanical demand and hydraulic efficiency between congeneric lianas and trees.

12.
Mol Med Rep ; 15(2): 635-642, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28000867

ABSTRACT

Dexmedetomidine (DXM) is a selective α2-adrenoceptor (α2­AR) and imidazoline receptor (IR) agonist that has been reported to regulate inflammatory responses mediated by diverse signaling pathways through α2­AR. The majority of the reported receptors or downstream molecules have been demonstrated to locate with caveolin­1, a protein suggested to participate in regulating Toll­like receptor 4 (TLR4)­mediated inflammatory responses and the pathogen endocytosis capability of macrophages. The present study hypothesized that DXM may influence these pathways by regulating the expression of caveolin­1 and mediating the subsequent effects. Using a cecal­ligation and puncture­induced rat sepsis model, it was initially observed that pre­emptive DXM is able to upregulate and stabilize the amount of caveolin­1 expression, which may be partly antagonized by both α2­AR and the IR antagonist atepamezole (APZ). The pathophysiological parameters indicated that DXM is able to inhibit secondary lung injury, in addition to the rise of body temperature and arterial lactate accumulation, however it marginally increased arterial glucose and the murine sepsis score, which can be largely antagonized by APZ. The overall effect was beneficial and improved the 24­h cumulative survival rate of rats with sepsis. In conclusion, preemptive clinical sedative doses of DXM may upregulate the expression of caveolin­1 downregulated by sepsis, which may contribute to the inhibition of inflammatory pathways such as TLR4­mediated pathways. Furthermore, DXM may favor the improvement of short­term outcomes by the regulation of other metabolic pathways.


Subject(s)
Caveolin 1/metabolism , Dexmedetomidine/pharmacology , Hypnotics and Sedatives/pharmacology , Lung/metabolism , Sepsis/pathology , Up-Regulation/drug effects , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Adrenergic alpha-2 Receptor Antagonists/therapeutic use , Animals , Blood Gas Analysis , Body Temperature/drug effects , Caveolin 1/genetics , Disease Models, Animal , Imidazoles/pharmacology , Imidazoles/therapeutic use , Lung/pathology , Male , Rats , Rats, Sprague-Dawley , Sepsis/drug therapy , Sepsis/mortality , Toll-Like Receptor 4/metabolism
13.
Front Plant Sci ; 7: 2075, 2016.
Article in English | MEDLINE | ID: mdl-28149302

ABSTRACT

Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a "safety valve" to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia, drought-deciduous Terminthia paniculata, and winter-deciduous Lannea coromandelica, to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50leaf-stem) was positive in P. weinmanniifolia and L. coromandelica, whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains the hydraulic safety of the more carbon-costly stems by sacrificing cheaper and more vulnerable leaves, while the evergreen species exhibits a hydraulic strategy of drought tolerance with strong stomatal regulation. In contrast, the drought-deciduous species lacks vulnerability segmentation and sheds leaves at the expense of top shoots during peak drought. This study demonstrates that even sympatric tree species that differ in leaf phenology can exhibit divergent adaptive hydraulic safety strategies.

14.
Ying Yong Sheng Tai Xue Bao ; 27(5): 1383-1392, 2016 May.
Article in Chinese | MEDLINE | ID: mdl-29732798

ABSTRACT

Quantitative analysis of the relationships between the distribution of natural plant communities and environmental factors was studied using two-way indicator species analysis (TWINSPAN) and detrended canonical correspondence analysis (DCCA) methods, in the Saihanba National Nature Reserve in Hebei Province. The results showed that the natural plant communities in the Saihanba Reserve could be classified into eight types, i.e., Sanguisorba officinalis + Carex heterostachya + Trollius chinensis community, S. officinalis + Elymus sibiricus + Geranium platyanthum community, C. lanceolata + Ophiopogon chingii community, Spiraea pubescens - Tripolium vulgare community, Armeniaca sibirica + S. pubescens - T. vulgare + C. lanceolata community, Quercus mongolica + Betula costata - Lespedeza bicolor + S. pubescens - C. lanceolata community, Betula platyphylla + Populus davidiana - Corylus mandshurica + Rosa davurica - Phlomis umbrosa + C. lanceolata + Thalictrum aquilegifolium community and Picea asperata + B. platyphylla - Rosa davurica + Salix taishanensis var. hebeinica - C. lanceolata + Commelina diffusa community. DCCA analysis indicated that slope position and soil nutrients were the main influence factors for the spatial distribution of natural plant communities in the Saihanba National Nature Reserve. Topographic, spatial and soil factors accounted for 34.02% of the variation of species pattern. Of the variation, soil factors accounted for 15.67%, topographic factors 10.05% and spatial factors 6.00%. In the interactions among all factor combinations (2.30%), the interaction between soil and topographic factors was the largest (0.93%), and the interaction among soil, topographic and spatial factors was the least (0.16%). The unexplained portion accounted for 65.98% of spatial distribution, which might be due to anthropogenic disturbance or interspecific competition.


Subject(s)
Ecosystem , Poaceae/classification , Trees/classification , China , Soil
15.
Tree Physiol ; 36(6): 736-47, 2016 06.
Article in English | MEDLINE | ID: mdl-26446267

ABSTRACT

Water storage in the stems of woody plants contributes to their responses to short-term water shortages. To estimate the contribution of water storage to the daily water budget of trees, time lags of sap flow between different positions of trunk are used as a proxy of stem water storage. In lianas, another large group of woody species, it has rarely been studied whether stored water functions in their daily water use, despite their increasing roles in the carbon and water dynamics of tropical forests caused by their increasing abundance. We hypothesized that lianas would exhibit large time lags due to their extremely long stems, wide vessels and large volume of parenchyma in the stem. We examined time lags in sap flow, diel changes of stem volumetric water content (VWC) and biophysical properties of sapwood of 19 lianas and 26 co-occurring trees from 27 species in 4 forests (karst, tropical seasonal, flood plain and savanna) during a wet season. The plants varied in height/length from <5 to >60 m. The results showed that lianas had significantly higher saturated water content (SWC) and much lower wood density than trees. Seven of 19 liana individuals had no time lags; in contrast, only 3 of 26 tree individuals had no time lags. In general, lianas had shorter time lags than trees in our data set, but this difference was not significant for our most conservative analyses. Across trees and lianas, time lag duration increased with diurnal maximum changeable VWC but was independent of the body size, path length, wood density and SWC. The results suggest that in most lianas, internal stem water storage contributes little to daily water budget, while trees may rely more on stored water in the stem.


Subject(s)
Trees/metabolism , Plant Transpiration/physiology , Trees/physiology , Water/metabolism
16.
Comput Methods Programs Biomed ; 103(2): 87-96, 2011 Aug.
Article in English | MEDLINE | ID: mdl-20599287

ABSTRACT

OBJECTIVES: IDD info, a new software for managing survey data of Iodine Deficiency Disorders (IDD), is presented in this paper. IDD Info aims to create IDD project databases, process, analyze various national or regional surveillance data and form final report. It has series measures of choosing database from existing ones, revising it, choosing indicators from pool to establish database and adding indicators to pool. It also provides simple tools to scan one database and compare two databases, to set IDD standard parameters, to analyze data by single indicator and multi-indicators, and finally to form typeset report with content customized. METHODS: IDD Info was developed using Chinese national IDD surveillance data of 2005. Its validity was evaluated by comparing with survey report given by China CDC. RESULTS: The IDD Info is a professional analysis tool, which succeeds in speeding IDD data analysis up to about 14.28% with respect to standard reference routines. It consequently enhances analysis performance and user compliance. CONCLUSIONS: IDD Info is a practical and accurate means of managing the multifarious IDD surveillance data that can be widely used by non-statisticians in national and regional IDD surveillance.


Subject(s)
Goiter, Endemic/epidemiology , Iodine/deficiency , Population Surveillance/methods , Software , China , Databases, Factual , Humans , Incidence , Malnutrition
SELECTION OF CITATIONS
SEARCH DETAIL
...