Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Heliyon ; 10(15): e34975, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39144956

ABSTRACT

Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.

3.
Poult Sci ; 103(6): 103705, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598913

ABSTRACT

Compared to high-yield commercial laying hens, Chinese indigenous chicken breeds have poor egg laying capacity due to the lack of intensive selection. However, as these breeds have not undergone systematic selection, it is possible that there is a greater abundance of genetic variations related to egg laying traits. In this study, we assessed 5 egg number (EN) traits at different stages of the egg-laying period: EN1 (from the first egg to 23 wk), EN2 (from 23 to 35 wk), EN3 (from 35 to 48 wk), EN4 (from the first egg to 35 wk), and EN5 (from the first egg to 48 wk). To investigate the molecular mechanisms underlying egg number traits in a Chinese local chicken breed, we conducted a genome-wide association study (GWAS) using data from whole-genome sequencing (WGS) of 399 Laiwu Black chickens. We obtained a total of 3.01 Tb of raw data with an average depth of 7.07 × per individual. A total of 86 genome-wide suggestive or significant single-nucleotide polymorphisms (SNP) contained within a set of 45 corresponding candidate genes were identified and found to be associated with stages EN1-EN5. The genes vitellogenin 2 (VTG2), lipase maturation factor 1 (LMF1), calcium voltage-gated channel auxiliary subunit alpha2delta 3 (CACNA2D3), poly(A) binding protein cytoplasmic 1 (PABPC1), programmed cell death 11 (PDCD11) and family with sequence similarity 213 member A (FAM213A) can be considered as the candidate genes associated with egg number traits, due to their reported association with animal reproduction traits. Noteworthy, results suggests that VTG2 and PDCD11 are not only involved in the regulation of EN3, but also in the regulation of EN5, implies that VTG2 and PDCD11 have a significant influence on egg production traits. Our study offers valuable genomic insights into the molecular genetic mechanisms that govern egg number traits in a Chinese indigenous egg-laying chicken breed. These findings have the potential to enhance the egg-laying performance of chickens.


Subject(s)
Chickens , Genome-Wide Association Study , Animals , Chickens/genetics , Chickens/physiology , Genome-Wide Association Study/veterinary , Female , Whole Genome Sequencing/veterinary , Polymorphism, Single Nucleotide , Oviposition/genetics
4.
Front Cell Dev Biol ; 12: 1357370, 2024.
Article in English | MEDLINE | ID: mdl-38577504

ABSTRACT

As a crucial component of the male reproductive system, the epididymis plays multiple roles, including sperm storage and secretion of nutritive fluids for sperm development and maturation. The acquisition of fertilization capacity by sperm occurs during their transport through the epididymis. Compared with the testis, little has been realized about the importance of the epididymis. However, with the development of molecular biology and single-cell sequencing technology, the importance of the epididymis for male fertility should be reconsidered. Recent studies have revealed that different regions of the epididymis exhibit distinct functions and cell type compositions, which are likely determined by variations in gene expression patterns. In this research, we primarily focused on elucidating the cellular composition and region-specific gene expression patterns within different segments of the epididymis and provided detailed insights into epididymal function in male fertility.

5.
BMC Genomics ; 25(1): 296, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509464

ABSTRACT

BACKGROUND: Body weight and size are important economic traits in chickens. While many growth-related quantitative trait loci (QTLs) and candidate genes have been identified, further research is needed to confirm and characterize these findings. In this study, we investigate genetic and genomic markers associated with chicken body weight and size. This study provides new insights into potential markers for genomic selection and breeding strategies to improve meat production in chickens. METHODS: We performed whole-genome resequencing of and Wenshang Barred (WB) chickens (n = 596) and three additional breeds with varying body sizes (Recessive White (RW), WB, and Luxi Mini (LM) chickens; (n = 50)). We then used selective sweeps of mutations coupled with genome-wide association study (GWAS) to identify genomic markers associated with body weight and size. RESULTS: We identified over 9.4 million high-quality single nucleotide polymorphisms (SNPs) among three chicken breeds/lines. Among these breeds, 287 protein-coding genes exhibited positive selection in the RW and WB populations, while 241 protein-coding genes showed positive selection in the LM and WB populations. Genomic heritability estimates were calculated for 26 body weight and size traits, including body weight, chest breadth, chest depth, thoracic horn, body oblique length, keel length, pelvic width, shank length, and shank circumference in the WB breed. The estimates ranged from 0.04 to 0.67. Our analysis also identified a total of 2,522 genome-wide significant SNPs, with 2,474 SNPs clustered around two genomic regions. The first region, located on chromosome 4 (7.41-7.64 Mb), was linked to body weight after ten weeks and body size traits. LCORL, LDB2, and PPARGC1A were identified as candidate genes in this region. The other region, located on chromosome 1 (170.46-171.53 Mb), was associated with body weight from four to eighteen weeks and body size traits. This region contained CAB39L and WDFY2 as candidate genes. Notably, LCORL, LDB2, and PPARGC1A showed highly selective signatures among the three breeds of chicken with varying body sizes. CONCLUSION: Overall this study provides a comprehensive map of genomic variants associated with body weight and size in chickens. We propose two genomic regions, one on chromosome 1 and the other on chromosome 4, that could helpful for developing genome selection breeding strategies to enhance meat yield in chickens.


Subject(s)
Chickens , Genome-Wide Association Study , Animals , Chickens/genetics , Quantitative Trait Loci , Genomics , Body Weight/genetics , Phenotype , Polymorphism, Single Nucleotide , China
6.
Vet Sci ; 11(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38393088

ABSTRACT

The content of intramuscular fat (IMF) from preadipocytes is proportional to meat quality in livestock. However, the roles of circRNAs in IMF deposition in sheep are not well known. In this study, we show that circRNA-5335/miR-125a-3p/STAT3 play a crucial adjective role in the proliferation and differentiation of sheep preadipocytes. In this study, we characterized the roles of differentially expressed circRNA-5335/miR-125a-3p/STAT3, which were screened from sheep of different months of age and based on sequencing data. Firstly, the expression profiles of circRNA-5335/miR-125a-3p/STAT3 were identified during the differentiation of preadipocytes in vitro by RT-qPCR and WB. Then, the targeting relationship of the circRNA-5335/miR-125a-3p/STAT3 was verified by dual-luciferase reporter assays. The results of RT-qPCR, CCK8, EdU and Oil Red O staining assay showed that miR-125a-3p suppressed the differentiation and raised the proliferation of preadipocytes by targeting STAT3. As a competing endogenous RNA, the downregulation of circRNA-5335 decreased the expression of STAT3 by increasing miR-125a-3p, which inhibited the differentiation of preadipocytes and promoted proliferation. Our present study demonstrates the functional significance of circRNA-5335/miR-125a-3p/STAT3 in the differentiation of sheep preadipocytes, and provides novel insights into exploring the mechanism of IMF.

7.
Theriogenology ; 212: 129-139, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37717516

ABSTRACT

Understanding the mechanisms behind porcine primordial germ cell like cells (pPGCLCs) development, differentiation, and gametogenesis is crucial in the treatment of infertility. In this study, SOX9+ skin derived stem cells (SOX9+ SDSCs) were isolated from fetal porcine skin and a high-purity SOX9+ SDSCs population was obtained. The SOX9+ SDSCs were induced to transdifferentiate into PGCLCs during 8 days of cultured. The results of RNA-seq, western blot and immunofluorescence staining verified SDSCs have the potential to transdifferentiate into PGCLCs from aspects of transcription factor activation, germ layer differentiation, energy metabolism, and epigenetic changes. Both adherent and suspended cells were collected. The adherent cells were found to be very similar to early porcine primordial germ cells (pPGCs). The suspended cells resembled late stage pPGCs and had a potential to enter meiotic process. This SDSCs culture-induced in vitro model is expected to provide suitable donor cells for stem cell transplantation in the future.


Subject(s)
Germ Cells , Stem Cells , Swine , Animals , Cell Differentiation/physiology , Germ Cells/metabolism , Gametogenesis , Cells, Cultured
8.
BMC Genomics ; 24(1): 481, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620752

ABSTRACT

BACKGROUND: Wulong geese (Anser cygnoides orientalis) are known for their excellent egg-laying performance. However, they show considerable population differences in egg-laying behavior. This study combined genome-wide selection signal analysis with transcriptome analysis (RNA-seq) to identify the genes related to high egg production in Wulong geese. RESULTS: A total of 132 selected genomic regions were screened using genome-wide selection signal analysis, and 130 genes related to high egg production were annotated in these regions. These selected genes were enriched in pathways related to egg production, including oocyte meiosis, the estrogen signaling pathway, the oxytocin signaling pathway, and progesterone-mediated oocyte maturation. Furthermore, a total of 890 differentially expressed genes (DEGs), including 340 up-regulated and 550 down-regulated genes, were identified by RNA-seq. Two genes - GCG and FAP - were common to the list of selected genes and DEGs. A non-synonymous single nucleotide polymorphism was identified in an exon of FAP. CONCLUSIONS: Based on genome-wide selection signal analysis and transcriptome data, GCG and FAP were identified as candidate genes associated with high egg production in Wulong geese. These findings could promote the breeding of Wulong geese with high egg production abilities and provide a theoretical basis for exploring the mechanisms of reproductive regulation in poultry.


Subject(s)
Geese , Transcriptome , Animals , Geese/genetics , Gene Expression Profiling , Genomics , Meiosis
9.
Mol Biol Rep ; 50(10): 8237-8247, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572211

ABSTRACT

BACKGROUND: Aflatoxin B1 (AFB1), one of the most prevalent contaminants in human and animal food, impairs the immune system, but information on the mechanisms of AFB1-mediated macrophage toxicity is still lacking. METHODS AND RESULTS: In this study, for the first time, we employed whole transcriptome sequencing technology to explore the molecular mechanism by which AFB1 affects the growth of porcine alveolar macrophages (PAM). We found that AFB1 exposure reduced the proliferative capacity of PAM and prevented cell cycle progression. Based on whole transcriptome analysis, RT-qPCR, ICC and RNAi, we verified the role and regulatory mechanism of the competing endogenous RNA (ceRNA) network in the process of AFB1 exposure affecting the growth of PAM. CONCLUSIONS: We found that AFB1 induced MSTRG.43,583, MSTRG.67,490, MSTRG.84,995, and MSTRG.89,935 to competitively bind miR-219a, miR-30b-3p, and miR-30c-1-3p, eliminating the inhibition of its target genes CACNA1S, RYR3, and PRKCG. This activated the calcium signaling pathway to regulate the growth of PAM. These results provide valuable information on the mechanism of AFB1 exposure induced impairment of macrophage function in humans and animals.


Subject(s)
Aflatoxin B1 , MicroRNAs , Humans , Animals , Swine , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Macrophages, Alveolar/metabolism , Calcium Signaling , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
10.
Gene ; 884: 147693, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37549855

ABSTRACT

Long non-coding RNA (lncRNA), a class of RNA molecules with transcripts longer than 200 nt, is crucial for maintaining animal reproductive function. Zearalenone (ZEN) damaged animal reproduction by targeting ovarian granulosa cells (GCs), especially in pigs. Nonetheless, it is not quite clear that whether Cyanidin-3-O-glucoside (C3G) exert effects on porcine GCs (pGCs) after ZEN exposure by altering lncRNA expression. Here, we sought to gain novel information regarding C3G protect against damages induced by ZEN in pGCs. The pGCs were divided into control (Ctrl), ZEN, ZEN + C3G (Z + C), and C3G groups. Results revealed that C3G effectively increased cell viability and suppressed ZEN-induced apoptosis in pGCs. 87 and 82 differentially expressed lncRNAs (DELs) were identified in ZEN vs. Ctrl and Z + C vs. ZEN group, respectively. Gene Ontology (GO) analysis observed that the DELs were related to cell metabolism and cell-matrix adhesion biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the DELs were associated with the phosphatidylinositide 3-kinases (PI3K)-protein kinase B (AKT) signaling pathway. In brief, we demonstrated that C3G could shield apoptosis induced by ZEN, which may be connected with the changes of lncRNA expression profiles in pGCs. This study complemented our understanding of the genetic basis and molecular mechanisms by which C3G mitigated the toxicity of ZEN in pGCs.


Subject(s)
RNA, Long Noncoding , Zearalenone , Female , Swine , Animals , Zearalenone/toxicity , Zearalenone/metabolism , RNA, Long Noncoding/genetics , Glucosides/pharmacology , Glucosides/metabolism , Granulosa Cells/metabolism
11.
BMC Genomics ; 24(1): 265, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202739

ABSTRACT

BACKGROUND: Cattle (Bos taurus) are a major large livestock, however, compared with other species, the transcriptional specificity of bovine oocyte development has not been emphasised. RESULTS: To reveal the unique transcriptional signatures of bovine oocyte development, we used integrated multispecies comparative analysis and weighted gene co-expression network analysis (WGCNA) to perform bioinformatic analysis of the germinal follicle (GV) and second meiosis (MII) gene expression profile from cattle, sheep, pigs and mice. We found that the expression levels of most genes were down-regulated from GV to MII in all species. Next, the multispecies comparative analysis showed more genes involved in the regulation of cAMP signalling during bovine oocyte development. Moreover, the green module identified by WGCNA was closely related to bovine oocyte development. Finally, integrated multispecies comparative analysis and WGCNA picked up 61 bovine-specific signature genes that participate in metabolic regulation and steroid hormone biosynthesis. CONCLUSION: In a short, this study provides new insights into the regulation of cattle oocyte development from a cross-species comparison.


Subject(s)
Oocytes , Transcriptome , Cattle , Animals , Mice , Sheep/genetics , Swine , Oocytes/metabolism , In Vitro Oocyte Maturation Techniques/veterinary , Oogenesis/genetics , Gene Expression Profiling
12.
Environ Pollut ; 329: 121729, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37116564

ABSTRACT

Aflatoxins B1 (AFB1), a type I carcinogen widely present in the environment, not only poses a danger to animal husbandry, but also poses a potential threat to human reproductive health, but its mechanism is still unclear. To address this question, multi-omics were performed on porcine Sertoli cells and mice testis. The data suggest that AFB1 induced testicular damage manifested as decreased expression of GJA1, ZO1 and OCCLUDIN in mice (p < 0.01) and inhibition of porcine Sertoli cell proliferation. Transcriptomic analysis suggested changes in noncoding RNA expression profiles that affect the cell cycle-related Ras/PI3K/Akt signaling pathway after AFB1 exposure both in mice and pigs. Specifically, AFB1 caused abnormal cell cycle of testis with the characterization of decreased expressions of CCNA1, CCNB1 and CDK1 (p < 0.01). Flow cytometry revealed that the G2/M phase was significantly increased after AFB1 exposure. Meanwhile, AFB1 downregulated the expressions of Ras, PI3K and AKT both in porcine Sertoli cell (p < 0.01) and mice testis (p < 0.01). Metabolome analysis verified the alterations in the PI3K/Akt signaling pathway (p < 0.05). Moreover, the joint analysis of metabolome and microbiome found that the changes of metabolites were correlated with the expression of flora. In conclusion, we have demonstrated that AFB1 impairs testicular development via the cell cycle-related Ras/PI3K/Akt signaling.


Subject(s)
Aflatoxin B1 , Cell Cycle , Proto-Oncogene Proteins c-akt , Animals , Humans , Male , Mice , Aflatoxin B1/toxicity , Cell Division , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Swine
13.
Food Funct ; 14(8): 3630-3640, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36961128

ABSTRACT

Naringin (NAR) is a dihydroflavonoid with various biological activities and pharmacological effects, especially natural antioxidant activity. To gain a better understanding of the effects of NAR on the reproductive system, especially spermatogenesis, we employed western blotting, immunofluorescence, immunohistochemistry, metabolomics and microbiomics to comprehensively dissect the impact of NAR on spermatogenesis. NAR promotes germ cell proliferation and testicular development, and promotes the secretion of sex hormones. Microbiomic and metabonomic analysis showed that NAR improved intestinal microflora and cooperated with serum metabolites to regulate spermatogenesis. Therefore, NAR is beneficial for male reproduction by regulating intestinal microorganisms and serum metabolism.


Subject(s)
Flavanones , Male , Humans , Flavanones/pharmacology , Spermatogenesis , Antioxidants
14.
Anim Biotechnol ; 34(4): 1413-1421, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35189072

ABSTRACT

Annexin A2 (ANXA2) is a member of the A subfamily of a multifunctional calcium dependent membrane phospholipid binding protein family. The mRNA expression of ANXA2 is consistent with ovary function and egg laying in chickens. In this study, six nucleotide polymorphisms in the key promoter region of chicken ANXA2 gene (-2861 bp to -1394 bp), i.e.,: g.-2337 indel (GT), g.-2255 C > T, g. -2248 A > G, g.-2188 A > G, g.-2169 G > A, g.-2160 A > C, were identified. Their distributions in populations of Xinyang Brown, Recessive White Rock, Wenchang and Wenshang Barred chickens were analyzed. In the Recessive White Rock chicken population, CAA, CAG and TGG were three major haplotypes. Association analysis indicated that the individuals with diplotype TGG/TGG laid more eggs at 32 weeks, and the individual with diplotype CAG/TGG laid at the earlier age. Luciferase activity assay showed that mutation from C to T at -2255 increased trascriptional activity of chicken ANXA2, which is consistent with its effect on egg laying traits.


Subject(s)
Chickens , Nucleotides , Female , Animals , Chickens/genetics , Ovum , Promoter Regions, Genetic/genetics , Annexins/genetics , Polymorphism, Single Nucleotide/genetics
15.
Anim Biotechnol ; 34(5): 1828-1839, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35382683

ABSTRACT

This paper represents the fundamental report of the survey of genome-wide changes of four Chinese indigenous donkey breeds, Dezhou (DZ), Guangling (GL), North China (NC), and Shandong Little donkey (SDL), and the findings will prove usefully for identification of biomarkers that perhaps predict or characterize the growth and coat color patterns. Three genomic regions in CYP3A12, TUBGCP5, and GSTA1 genes, were identified as putative selective sweeps in all researched donkey populations. The loci of candidate genes that may have contributed to the phenotypes in body size (ACSL4, MSI2, ADRA1B, and CDKL5) and coat color patterns (KITLG and TBX3) in donkey populations would be found in underlying strong selection signatures when compared between large and small donkey types, and between different coat colors. The results of the phylogenetic analysis, FST, and principal component analysis (PCA) supported that each population cannot clearly deviate from each other, showing no obvious population structure. We can conclude from the population history that the formation processes between DZS and NC, GL, and SDL are completely different. The genetic variants discovered here provide a rich resource to help identify potential genomic markers and their associated molecular mechanisms that impact economically important traits for Chinese donkey breeding programs.


Subject(s)
Equidae , Polymorphism, Single Nucleotide , Animals , Equidae/genetics , Genome , Phylogeny , Polymorphism, Single Nucleotide/genetics , RNA-Binding Proteins/genetics , China
16.
Front Microbiol ; 13: 964799, 2022.
Article in English | MEDLINE | ID: mdl-36225357

ABSTRACT

Donkeys' gut microbe is critical for their health and adaptation to the environment. Little research has been conducted on the donkey gut microbiome compared with other domestic animals. The Tibetan Plateau is an extreme environment. In this study, 6 Qinghai donkeys (QH) from the Tibetan Plateau and 6 Dezhou donkeys (DZ) were investigated, and the contents of 4 parts-stomach, small intestine, cecum, and rectum-were collected. 16S rRNA sequencing and metagenomic sequencing were used to analyze the composition and diversity of gut microbial communities in donkeys. The results showed that the flora diversity and richness of the hindgut were significantly higher than those of the foregut (p < 0.01), with no sex differences, and the community structure and composition of the same or adjacent regions (stomach, small intestine, cecum, and rectum) were similar. Besides, the flora diversity and richness of QH on the Tibetan Plateau were significantly higher than those of DZ (p < 0.05). The major pathways associated with QH were signal transduction mechanisms and carbohydrate transport and metabolism, and Bacteroidales were the major contributors to these functions. Our study provides novel insights into the contribution of microbiomes to the adaptive evolution of donkeys.

17.
Genes (Basel) ; 13(10)2022 10 19.
Article in English | MEDLINE | ID: mdl-36292787

ABSTRACT

Twinning trait in donkeys is an important manifestation of high fecundity, but few reports are available elucidating its genetic mechanism. To explore the genetic mechanism underlying the twin colt trait in Dezhou donkeys, DNA from 21 female Dezhou donkeys that had birthed single or twin colts were collected for whole-genome resequencing. FST, θπ and Tajima's D were used to detect the selective sweeps between single and twin colt fecundity in the Dezhou donkey groups. Another set of 20 female Dezhou donkeys with single or multiple follicles during estrus were selected to compare concentrations of reproductive hormone including follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2) and progesterone (P4). Four candidate genes including ENO2, PTPN11, SOD2 and CD44 were identified in the present study. The CD44 gene had the highest FST value, and ENO2, PTPN11 and SOD2 were screened by two joint analyses (FST and θπ, θπ and Tajima's D). There was no significant difference in the LH, FSH and P4 levels between the two groups (p > 0.05); however, the serum E2 content in the multi-follicle group was significantly higher than that in the single-follicle group (p < 0.05). The identified candidate genes may provide new insights into the genetic mechanism of donkey prolificacy and may be useful targets for further research on high reproductive efficiency.


Subject(s)
Equidae , Progesterone , Horses , Male , Animals , Female , Equidae/genetics , Luteinizing Hormone , Follicle Stimulating Hormone/genetics , Estradiol , Genomics
18.
Cryobiology ; 107: 23-34, 2022 08.
Article in English | MEDLINE | ID: mdl-35716769

ABSTRACT

Porcine skin-derived stem cells (pSDSCs) are a type of adult stem cells (ASCs) that retain the ability to self-renew and differentiate. Currently, pSDSCs research has entered an intense period of development; however there has been no research regarding methods of cryopreservation. In this paper, we explored an efficient cryopreservation method for pSDSCs. Our results demonstrated that cryopreserving 50 µm diameter pSDSCs aggregates resulted in a lower apoptosis rate and a greater ability to proliferate to form larger spherical cell aggregates than during single-cell cryopreservation. To further optimize the cryopreservation method, we added different concentrations of melatonin (N-acetyl-5-methoxytryptamine, MLT) and trehalose (d-trehalose anhydrous, TRE) to act as cryoprotectants (CPAs) for the pSDSCs. After comparative experiments, we found that the cryopreservation efficiency of 50 mM TRE was superior. Further experiments demonstrated that the reason why 50 mM TRE improved cryopreservation efficiency was that it reduced the intracellular oxidative stress and mitochondrial damage caused by cryopreservation. Taken together, our results suggest that cryopreserving 50 µm diameter pSDSCs aggregates in F12 medium with 10% dimethyl sulfoxide (DMSO) and 50 mM TRE promotes the long-term storage of pSDSCs.


Subject(s)
Melatonin , Trehalose , Animals , Cell Survival , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Melatonin/pharmacology , Stem Cells , Swine , Trehalose/pharmacology
19.
Front Genet ; 13: 839207, 2022.
Article in English | MEDLINE | ID: mdl-35154289

ABSTRACT

The donkey is an important domestic animal, however the number of donkeys world-wide is currently declining. It is therefore important to protect their genetic resources and to elaborate the regulatory mechanisms of donkey reproduction, particularly, oocyte development. Here, we adopted comparative transcriptomic analysis and weighted gene co-expression network analysis (WGCNA) to uncover the uniqueness of donkey oocyte development compared to cattle, sheep, pigs, and mice, during the period from germinal vesicle (GV) to metaphase II (MII). Significantly, we selected 36 hub genes related to donkey oocyte development, including wee1-like protein kinase 2 (WEE2). Gene Ontology (GO) analysis suggested that these genes are involved in the negative regulation of cell development. Interestingly, we found that donkey specific differentially expressed genes (DEGs) were involved in RNA metabolism and apoptosis. Moreover, the results of WGCNA showed species-specific gene expression patterns. We conclude that, compared to other species, donkey oocytes express a large number of genes related to RNA metabolism to maintain normal oocyte development during the period from GV to MII.

20.
Poult Sci ; 101(3): 101618, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34986450

ABSTRACT

Wulong geese are renowned for their egg-laying and reproductive abilities. This work investigated the potential of using body size traits in the selection and breeding of high-yielding Wulong geese. A total of forty 479day-old female geese (high-yielding geese, n = 20; low-yielding geese, n = 20) were selected to evaluate the relationship between body weight, body size trait indicators, serum reproductive hormones, and biochemical indicators. The results showed that serum estradiol (E2), glucose (GLU), and triglyceride (TG) concentrations, together with pubic spacing and abdominal circumference were significantly higher in high-yielding geese (P < 0.01), whereas the opposite was true for neck circumference, neck length, and tibial circumference. In addition, the serum testosterone (T) concentration and body weight were higher in high-yielding geese (P < 0.05). Neck circumference and neck length were negatively correlated with E2 and TG (P < 0.01); while pubic spacing and abdominal circumference were positively correlated with E2, GLU, and TG (P < 0.01), the highest correlation coefficient was 0.777 between TG and pubic spacing; T was also strongly associated with neck circumference (P < 0.01). In conclusion, high-yielding Wulong geese can be selected through neck circumference, neck length, pubic spacing, and abdominal circumference.


Subject(s)
Chickens , Geese , Animals , Body Size , Female , Hormones , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL