Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Cell ; 187(10): 2536-2556.e30, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38653237

ABSTRACT

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.


Subject(s)
Cysteine , Cysteine/metabolism , Cysteine/chemistry , Humans , Ligands , Cell Line, Tumor , Neoplasms/metabolism , SOXE Transcription Factors/metabolism , Signal Transduction , Melanoma/metabolism , Animals , NF-kappa B/metabolism , Mice , Oxidation-Reduction
2.
Eur J Pediatr ; 183(3): 1367-1379, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38165465

ABSTRACT

Circular RNA circ-0008102 has previously been found dysregulated in ß-thalassemia (ß-thal) in circRNAs microarray (GSE196682 and GSE241141). Our study is aimed at identifying whether circ-0008102 could be a novel biomarker in ß-thal. The peripheral blood of pediatric ß-thal patients with (n = 39) or without (n = 20) blood transfusion and healthy controls (n = 30) was selected. qRT-PCR, ROC curve analysis, Spearman correlation analysis, and FISH were used to analyze clinical value of circ-0008102. qRT-PCR confirmed that circ-0008102 expression in pediatric ß-thal patients without blood transfusion was significantly higher. ROC curves analysis showed that the AUC of circ-0008102 for differentiating patients without blood transfusion from patients with blood transfusion and healthy controls with an AUC of 0.733 and 0.711. Furthermore, circ-0008102 expression was positively correlated with the levels of RBC, HbF, ß-globin, and γ-globin mRNA, but was negatively corrected with the levels of HbA and Cr. circ-0008102 was mainly located in the cytoplasm. circ-0008102 could induce the activation of γ-globin and negatively regulate the expression of the five highest-ranking candidate miRNAs (miR-372-3p, miR-329-5p, miR-198, miR-152-5p, and miR-627-3p) in K562 cells. CONCLUSION: We demonstrate that peripheral blood upregulated circ-0008102 may serve as a novel clinical biomarker for pediatric ß-thal without blood transfusion. WHAT IS KNOWN: • CircRNAs are known to be involved in various human diseases, and several circRNAs are regarded as a class of promising blood-based biomarkers for detection of ß-thal. • CircRNAs exert biological functions by epigenetic modification and gene expression regulation, and dysregulated circRNAs in ß-thal might be involved in the induction of HbF in ß-thal. WHAT IS NEW: • Peripheral blood circ-0008102 maybe serve as a novel clinical biomarker for detection of pediatric ß-thal without blood transfusion. • Circ-0008102 participates in the pathogenesis of ß-thal through regulating γ-globin expression, and negatively regulates the expression of miR-372-3p, miR-329-5p, miR-198, miR-152-5p and miR-627-3p.


Subject(s)
MicroRNAs , beta-Thalassemia , Humans , Child , RNA, Circular/genetics , beta-Thalassemia/diagnosis , beta-Thalassemia/genetics , gamma-Globins , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers
3.
Hemoglobin ; 48(1): 34-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38192212

ABSTRACT

A pregnant woman living in Fujian Province, southeastern China, presented due to a risk of having a baby with ß-thalassemia major, during her second pregnancy, since she and her husband were suspected as ß-thalassemia carriers and their affected daughter was a transfusion-dependent patient. Using the common α-thalassemia and ß-thalassemia genotypes test, the pregnant woman was diagnosed as a ß-thalassemia carrier with ßIVS-2 - 654 (C→T)/ßN genotype and her daughter had a homozygosity for IVS - 2 - 654 (C→T) mutation, however, no abnormalities were detected in her husband. SMRT identified a Filipino ß0-deletion in her husband, and MLPA also revealed an unknown deletion in the HBB gene. Electrophoresis showed approximately 350 bp of the PCR product, and the ß-Filipino genotype presented novel fracture fragments ranging from 5,112,884 to 5,231,358 bp, and lacked a 118,475 bp fragment relative to the wild-type sequence. The daughter was therefore diagnosed with the ßIVS-2 - 654 (C→T)/ßFilipino genotype. Prenatal diagnosis with umbilical cord blood at 27th week of gestation showed heteroztgosity for IVS - 2 - 654 (C→T) mutation in the fetus and continued pregnancy was recommended. In conclusion, we identified the Filipino ß0-deletion in a Chinese family, from Fujian area, for the first time, during prenatal screening.


Subject(s)
alpha-Thalassemia , beta-Thalassemia , Pregnancy , Female , Humans , beta-Thalassemia/diagnosis , beta-Thalassemia/genetics , Genotype , Prenatal Diagnosis , Mutation , alpha-Thalassemia/genetics , China
4.
Genes (Basel) ; 15(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38254989

ABSTRACT

The heterogeneity and intricate cellular architecture of complex cellular ecosystems play a crucial role in the progression and therapeutic response of cancer. Understanding the regulatory relationships of malignant cells at the invasive front of the tumor microenvironment (TME) is important to explore the heterogeneity of the TME and its role in disease progression. In this study, we inferred malignant cells at the invasion front by analyzing single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data of ER-positive (ER+) breast cancer patients. In addition, we developed a software pipeline for constructing intercellular gene regulatory networks (IGRNs), which help to reduce errors generated by single-cell communication analysis and increase the confidence of selected cell communication signals. Based on the constructed IGRN between malignant cells at the invasive front of the TME and the immune cells of ER+ breast cancer patients, we found that a high expression of the transcription factors FOXA1 and EZH2 played a key role in driving tumor progression. Meanwhile, elevated levels of their downstream target genes (ESR1 and CDKN1A) were associated with poor prognosis of breast cancer patients. This study demonstrates a bioinformatics workflow of combining scRNA-seq and ST data; in addition, the study provides the software pipelines for constructing IGRNs automatically (cIGRN). This strategy will help decipher cancer progression by revealing bidirectional signaling between invasive frontline malignant tumor cells and immune cells, and the selected signaling molecules in the regulatory network may serve as biomarkers for mechanism studies or therapeutic targets.


Subject(s)
Breast Neoplasms , Ecosystem , Humans , Female , Gene Expression Profiling , Transcriptome/genetics , Breast Neoplasms/genetics , Genes, cdc , Tumor Microenvironment/genetics
5.
Cell Mol Life Sci ; 81(1): 19, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38196005

ABSTRACT

Cardiovascular disorders are commonly prevalent in cancer patients, yet the mechanistic link between them remains poorly understood. Because neutrophil extracellular traps (NETs) have implications not just in cardiovascular diseases (CVD), but also in breast cancer (BC), it was hypothesized to contribute to CVD in the context of oncogenesis. We established a mouse model using nude mice to simulate liver metastasis of triple-negative BC (TNBC) through the injection of MDA-MB-231 cells. Multiple imaging and analysis techniques were employed to assess the cardiac function and structure, including echocardiography, HE staining, Masson staining, and transmission electron microscopy (TEM). MDA-MB-231 cells underwent treatment with a CaSR inhibitor, CaSR agonist, and NF-κB channel blocker. The phosphorylation of NF-κB channel protein p65 and the expression and secretion of IL-8 were assessed using qRT-PCR, Western Blot, and ELISA, respectively. In addition, MDA-MB-231 cells were co-cultured with polymorphonuclear neutrophils (PMN) under varying conditions. The co-localization of PMN extracellular myeloperoxidase (MPO) and DNA were observed by cellular immunofluorescence staining to identify the formation of NETs. Then, the cardiomyocytes were co-cultured with the above medium that contains NETs or not, respectively; the effects of NETs on cardiomyocytes apoptosis were perceived by flow cytometry. The ultrastructural changes of myocardial cells were perceived by TEM, and ELISA detected the levels of myocardial enzyme (LDH, MDA and SOD). Overall, according to our research, CaSR has been found to have a regulatory role in IL-8 secretion in MDA-MB-231 cells, as well as in the formation of NETs by PMN cells. These findings suggest CaSR-mediated stimulation in PMN can lead to increased NETs formation and subsequently to cytotoxicity in cardiomyocytes, which potentially via activation of the NF-κB signaling cascade of BC cell.


Subject(s)
Cardiovascular Diseases , Extracellular Traps , Triple Negative Breast Neoplasms , Humans , Animals , Mice , NF-kappa B , Receptors, Calcium-Sensing , Myocytes, Cardiac , Interleukin-8 , Mice, Nude
6.
Commun Biol ; 7(1): 116, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253716

ABSTRACT

Intrauterine adhesion (IUA) is characterized by endometrial fibrosis. S100A8/A9 plays an important role in inflammation and fibroblast activation. However, the role of S100A8/A9 in IUA remains unclear. In this study, we collect normal and IUA endometrium to verify the expression of S100A8/A9. Human endometrial stromal cells (hEnSCs) are isolated to evaluate fibrosis progression after S100A8/A9 treatment. A porcine IUA model is established by electrocautery injury to confirm the therapeutic effect of menstrual blood-derived stromal cells (MenSCs) on IUA. Our study reveals increased S100A8/A9 expression in IUA endometrium. S100A8/A9 significantly enhances hEnSCs proliferation and upregulates fibrosis-related and inflammation-associated markers. Furthermore, S100A8/A9 induces hEnSCs fibrosis through the RAGE-JAK2-STAT3 pathway. Transplantation of MenSCs in a porcine IUA model notably enhances angiogenesis, mitigates endometrial fibrosis and downregulates S100A8/A9 expression. In summary, S100A8/A9 induces hEnSCs fibrosis via the RAGE-JAK2-STAT3 pathway, and MenSCs exhibit marked effects on endometrial restoration in the porcine IUA model.


Subject(s)
Uterine Diseases , Female , Humans , Animals , Swine , Endometrium , Calgranulin A/genetics , Epithelial Cells , Inflammation , Janus Kinase 2/genetics , STAT3 Transcription Factor
7.
J Pharm Biomed Anal ; 239: 115867, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38061171

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS), as a common endocrine disease in reproductive-age women, which is characterized by both reproductive and metabolic disorders. Cang-Fu-Dao-Tan Formula (CFDTF) is an effective and relatively safe treatment for PCOS. However, the underlying mechanism is poorly understood. PURPOSE: To explore the effective compounds and mechanisms of CFDTF in treating PCOS based on UPLC/Q-TOF-MS/MS, network pharmacology and molecular experiments. METHODS: The UPLC/Q-TOF-MS/MS and TCMSP, SwissTargetPrediction databases were used to identify the active ingredients of CFDTF. Then GeneCards, Disgenet, Drugbank databases were used to obtain the PCOS related targets. Based above, the Drug-component-target (D-C-T) network and protein-protein-interaction (PPI) network were built to analysis the key targets. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were performed to find the potential mechanisms. Finally, molecular docking analysis, molecular dynamics (MD) simulations and molecular experiments were used to confirm the interactions among the active compounds, targets and explore the potential mechanisms. RESULTS: A total of 20 compounds were identified by UPLC/Q-TOF-MS/MS, and 136 active compounds by TCMSP from CFDTF. After removing the duplicate results, there were 370 targets related to both CFDTF and PCOS, among which, MAPK3, AKT1, RELA, EGF, TP53 and MYC were proved to have high interactions with the components. The mechanisms of CFDTF against PCOS were related to PI3K-Akt, mTOR, MAPK signaling pathways, and the in vitro experiments proved that the CFDTF positively regulated the cell proliferation and inhibited the apoptosis levels in PCOS cell model. CONCLUSIONS: The combination of UPLC/Q-TOF-MS/MS, systematic network pharmacology and molecular experiments identified that the quercetin, hesperidin, and glycyrrhizin disaccharide are the TOP 3 effective compounds of CFDTF in treating PCOS and the potential mechanisms may involve in regulating proliferation and apoptosis of granulosa cells.


Subject(s)
Drugs, Chinese Herbal , Polycystic Ovary Syndrome , Humans , Female , Polycystic Ovary Syndrome/drug therapy , Chromatography, High Pressure Liquid , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Tandem Mass Spectrometry , Fluorouracil
8.
World J Mens Health ; 42(1): 216-228, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37382283

ABSTRACT

PURPOSE: Male overweight and obesity could affect sperm quality and reproductive health. However, the impact of body mass index (BMI) on assisted reproductive technology (ART) outcomes in oligospermia and/or asthenospermia patients is yet lacking. This study aims to assess the impact of paternal BMI on ART and neonatal outcomes among oligozoospermia and/or asthenospermia patients undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI). MATERIALS AND METHODS: In this study, 2,075 couples undergoing their first fresh embryo transfer between January 2015 and June 2022 were recruited. Following the World Health Organization's (WHO's) categories, couples were stratified into three cohorts based on paternal BMI: normal weight (18.5-24.9 kg/m²), overweight (25.0-29.9 kg/m²), and obese (≥30.0 kg/m²). Modified Poisson regression models were used to assess the associations of paternal BMI with fertilization, in vitro embryonic development, and pregnancy outcomes. Logistic regression models were performed to investigate the associations of paternal BMI with pregnancy loss and neonatal outcomes. Furthermore, stratified analyses were performed based on fertilization methods, male infertility cause, and maternal BMI. RESULTS: Higher paternal BMI is associated with a lower likelihood of achieving normal fertilized (p-trend=0.002), Day 3 transferable (p-trend=0.007), and high-quality embryos (p-trend=0.046) in IVF cycles, rather than in ICSI cycles. Paternal BMI of oligospermia or asthenospermia was negatively correlated with day 3 transferable (p-trend=0.013 and 0.030) and high-quality embryos (p-trend=0.024 and 0.027). Moreover, for neonatal outcomes, paternal BMI was positively associated with macrosomia (p-trend=0.019), large for gestational age (LGA) (p-trend=0.031), and very LGA (p-trend=0.045). CONCLUSIONS: Our data suggested that higher paternal BMI was associated with fetal overgrowth, reduced fertilization, and embryonic development potential. Among males with oligospermia and/or asthenospermia, the impact of overweight and obesity on the choice of fertilization method and the long-term effects on their offspring need to be further investigated.

9.
J Hepatol ; 80(4): 634-644, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160941

ABSTRACT

BACKGROUND & AIMS: The liver is one of the organs most commonly affected by metastasis. The presence of liver metastases has been reported to be responsible for an immunosuppressive microenvironment and diminished immunotherapy efficacy. Herein, we aimed to investigate the role of IL-10 in liver metastasis and to determine how its modulation could affect the efficacy of immunotherapy in vivo. METHODS: To induce spontaneous or forced liver metastasis in mice, murine cancer cells (MC38) or colon tumor organoids were injected into the cecum or the spleen, respectively. Mice with complete and cell type-specific deletion of IL-10 and IL-10 receptor alpha were used to identify the source and the target of IL-10 during metastasis formation. Programmed death ligand 1 (PD-L1)-deficient mice were used to test the role of this checkpoint. Flow cytometry was applied to characterize the regulation of PD-L1 by IL-10. RESULTS: We found that Il10-deficient mice and mice treated with IL-10 receptor alpha antibodies were protected against liver metastasis formation. Furthermore, by using IL-10 reporter mice, we demonstrated that Foxp3+ regulatory T cells (Tregs) were the major cellular source of IL-10 in liver metastatic sites. Accordingly, deletion of IL-10 in Tregs, but not in myeloid cells, led to reduced liver metastasis. Mechanistically, IL-10 acted on Tregs in an autocrine manner, thereby further amplifying IL-10 production. Furthermore, IL-10 acted on myeloid cells, i.e. monocytes, and induced the upregulation of the immune checkpoint protein PD-L1. Finally, the PD-L1/PD-1 axis attenuated CD8-dependent cytotoxicity against metastatic lesions. CONCLUSIONS: Treg-derived IL-10 upregulates PD-L1 expression in monocytes, which in turn reduces CD8+ T-cell infiltration and related antitumor immunity in the context of colorectal cancer-derived liver metastases. These findings provide the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastases. IMPACT AND IMPLICATIONS: Liver metastasis diminishes the effectiveness of immunotherapy and increases the mortality rate in patients with colorectal cancer. We investigated the role of IL-10 in liver metastasis formation and assessed its impact on the effectiveness of immunotherapy. Our data show that IL-10 is a pro-metastatic factor involved in liver metastasis formation and that it acts as a regulator of PD-L1. This provides the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastasis.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Animals , Humans , Mice , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Interleukin-10 , Liver Neoplasms/pathology , Receptors, Interleukin-10 , Tumor Microenvironment
10.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961514

ABSTRACT

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.

11.
J Fungi (Basel) ; 9(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37998874

ABSTRACT

Textile dyes are one of the major water pollutants released into water in various ways, posing serious hazards for both aquatic organisms and human beings. Bioremediation is a significantly promising technique for dye decolorization. In the present study, the fungal strain Lasiodiplodia sp. was isolated from the fruiting bodies of Schizophyllum for the first time. The isolated fungal strain was examined for laccase enzyme production under solid-state fermentation conditions with wheat bran (WB) using ABTS and 2,6-Dimethoxyphenol (DMP) as substrates, then the fermented wheat bran (FWB) was evaluated as a biosorbent for Congo red dye adsorption from aqueous solutions in comparison with unfermented wheat bran. A Box-Behnken design was used to optimize the dye removal by FWB and to analyze the interaction effects between three factors: fermentation duration, pH, and dye concentration. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were applied to study the changes in the physical and chemical characteristics of wheat bran before and after fermentation. An additional experiment was conducted to investigate the ability of the Lasiodiplodia sp. YZH1 to remove Congo red in the dye-containing liquid culture. The results showed that laccase was produced throughout the cultivation, reaching peak activities of ∼6.2 and 22.3 U/mL for ABTS and DMP, respectively, on the fourth day of cultivation. FWB removed 89.8% of the dye (100 mg L-1) from the aqueous solution after 12 h of contact, whereas WB removed only 77.5%. Based on the Box-Behnken design results, FWB achieved 93.08% dye removal percentage under the conditions of 6 days of fermentation, pH 8.5, and 150 mg L-1 of the dye concentration after 24 h. The fungal strain removed 95.3% of 150 mg L-1 of the dye concentration after 8 days of inoculation in the dye-containing liquid culture. These findings indicate that this strain is a worthy candidate for dye removal from environmental effluents.

12.
Oncoimmunology ; 12(1): 2269634, 2023.
Article in English | MEDLINE | ID: mdl-37876835

ABSTRACT

Metastasis is a cancer-related systemic disease and is responsible for the greatest mortality rate among cancer patients. Interestingly, the interaction between the immune system and cancer cells seems to play a key role in metastasis formation in the target organ. However, this complex network is only partially understood. We previously found that IL-22 produced by tissue resident iNKT17 cells promotes cancer cell extravasation, the early step of metastasis. Based on these data, we aimed here to decipher the role of IL-22 in the last step of metastasis formation. We found that IL-22 levels were increased in established metastatic sites in both human and mouse. We also found that Th22 cells were the key source of IL-22 in established metastasis sites, and that deletion of IL-22 in CD4+ T cells was protective in liver metastasis formation. Accordingly, the administration of a murine IL-22 neutralizing antibody in the establishment of metastasis formation significantly reduced the metastatic burden in a mouse model. Mechanistically, IL-22-producing Th22 cells promoted angiogenesis in established metastasis sites. In conclusion, our findings highlight that IL-22 is equally as important in contributing to metastasis formation at late metastatic stages, and thus, identify it as a novel therapeutic target in established metastasis.


Subject(s)
CD4-Positive T-Lymphocytes , Liver Neoplasms , Humans , Animals , Mice , Interleukins , Interleukin-22
13.
J Matern Fetal Neonatal Med ; 36(2): 2254890, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37673790

ABSTRACT

OBJECTIVES: To present a novel 91.5-kb deletion of the α-globin gene cluster (αα)FJ identified by genetic assay and prenatal diagnosis in a Chinese family. SUBJECTS AND METHODS: The proband was a 34-year-old G3P1 (Gravida 3, Para 1) female at the gestational age of 21+ weeks with a history of an edematous fetus. A routine genetic assay (reverse dot blot hybridization, RDB) was performed to detect common thalassemia mutations. Multiplex ligation-dependent probe amplification (MLPA) and single-molecule real-time technology (SMRT) were used to detect rare thalassemia mutations. RESULTS: The hematological phenotypes of the proband, her mother, elder sister, husband, daughter, and nephew were consistent with the phenotype of α-thalassemia trait. No mutations were found in these family members by RDB, except for the proband's husband who carried an α-globin gene deletion --SEA/αα. MLPA results showed that the proband and other α-thalassemia-suspected relatives had heterozygous deletions around the POLR3K-3-463nt, HS40-178nt, and HBA-HS40-382nt probes. The 5'-breakpoint was out of probe scope and could not be determined. SMRT was performed and a 91.5-kb deletion (NC_000016.10: g.39268_130758del) in the α-globin gene cluster (αα)FJ was identified in the proband and other suspected relatives, which could explain their phenotypes. At the proband's gestational age of 22+ weeks, an amniotic fluid sample was collected and analyzed. As only the 91.5-kb deletion (αα)FJ was identified in the fetus with RDB, MLPA, and SMRT. The proband was suggested to continue the pregnancy. CONCLUSION: We first reported a 91.5-kb deletion (NC_000016.10: g.hg38-chr16:39268-_130758del) of the HS-40 region in the α-globin gene cluster (αα)FJ identified in a Chinese family. Since the HS-40 loss of heterozygosity in combination with the heterozygous deletion --SEA might result in Hb Bart's hydrops fetalis, routine genetic assay, and SMRT were recommended to individuals at risk for prenatal diagnosis.


Subject(s)
alpha-Thalassemia , Female , Pregnancy , Humans , alpha-Thalassemia/diagnosis , alpha-Thalassemia/genetics , Multigene Family , Spouses , Technology , Siblings
14.
Biomed Pharmacother ; 166: 115319, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37573658

ABSTRACT

Premature ovarian insufficiency (POI) is clinically irreversible and seriously damages female fertility. We previously demonstrated that menstrual blood stromal cells (MenSCs)-derived exosomes (EXOs) effectively improved ovarian functions in the POI rat model. In this study, we investigated whether TSP1 is the key component in EXOs to ameliorate ovarian functions and further explored the molecular mechanism of EXOs in improving granulosa cell (GCs) activities. Our results demonstrated that knockdown TSP1 significantly debilitated the therapeutic effect of EXOs on estrous cyclicity, ovarian morphology, follicle numbers and pregnancy outcomes in 4-vinylcyclohexene diepoxide (VCD) induced POI rat model. In addition, EXOs treatment significantly promoted the activities and inhibited the apoptosis of VCD induced granulosa cells in vitro. Moreover, EXOs stimulation markedly activated the phosphorylation of SMAD3(Ser425) and AKT(Ser473), up-regulated the expressions of BCL2 and MDM2 as well as down-regulated the expressions of CASPASE3, CASPASE8, P53 and BAX. All these effects were supressed by SIS3, a inhibitor of TGF1/SMAD3. Our study revealed the key role of TSP1 in EXOs in improving POI pathology, restoring ovarian functions and GCs activities, andprovided a promising basis for EXOs in the treatment of ovarian dysfunction.


Subject(s)
Exosomes , Menstruation , Primary Ovarian Insufficiency , Stromal Cells , Thrombospondins , Animals , Female , Humans , Pregnancy , Rats , Apoptosis , Exosomes/metabolism , Granulosa Cells/metabolism , Menstruation/blood , Primary Ovarian Insufficiency/pathology , Primary Ovarian Insufficiency/therapy , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Smad3 Protein/metabolism , Stromal Cells/metabolism , Thrombospondins/metabolism , Tumor Suppressor Protein p53/metabolism
15.
J Nanobiotechnology ; 21(1): 305, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644565

ABSTRACT

BACKGROUND: Intrauterine adhesion (IUA) is a recurrent and refractory reproductive dysfunction disorder for which menstrual blood-derived stromal cells (MenSCs) might be a promising intervention. We reported that administration of MenSCs-derived exosomes (MenSCs-EXO) could achieve similar therapeutic effects to MenSCs transplantation, including alleviating endometrial fibrosis and improving fertility in IUA rats. The mass spectrometry sequencing result suggested that UBR4, a member of the proteasome family, was abundantly enriched in MenSCs-EXO. This study aimed to investigate the key role of UBR4 in MenSCs-EXO for the treatment of IUA and the specific molecular mechanism. RESULTS: UBR4 was lowly expressed in the endometrial stromal cells (EndoSCs) of IUA patients. MenSCs-EXO treatment could restore the morphology of IUA endometrium, reduce the extent of fibrosis, and promote endometrial and vascular proliferation. Knockdown of UBR4 in MenSCs did not affect the characteristics of exosomes but attenuated the therapeutic effect of exosomes. UBR4 in MenSCs-EXO could alleviate endometrial fibrosis by boosting YAP ubiquitination degradation and promoting YAP nuclear-cytoplasmic translocation. Moreover, P65 could bind to the UBR4 promoter region to transcriptionally promote the expression level of UBR4 in MenSCs. CONCLUSION: Our study clarified that MenSCs-EXO ameliorated endometrial fibrosis in IUA primarily by affecting YAP activity mediated through UBR4, while inflammatory signaling P65 may affect UBR4 expression in MenSCs to enhance MenSCs-EXO therapeutic effects. This revealed a novel mechanism for the treatment of IUA with MenSCs-EXO, proposing a potential option for the clinical treatment of endometrial injury.


Subject(s)
Exosomes , Female , Animals , Rats , Cytosol , Epithelial Cells , Stromal Cells , Ubiquitination
16.
J Environ Manage ; 345: 118531, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37423193

ABSTRACT

Soil amendments, including lime, biochar, industrial by-products, manure, and straw are used to alleviate soil acidification and improve crop productivity. Quantitative insight in the effect of these amendments on soil pH is limited, hampering their appropriate use. Until now, there is no comprehensive evaluation of the effects of soil amendments on soil acidity and yield, accounting for differences in soil properties. We synthesized 832 observations from 142 papers to explore the impact of these amendments on crop yield, soil pH and soil properties, focusing on acidic soils with a pH value below 6.5. Application of lime, biochar, by-products, manure, straw and combinations of them significantly increased soil pH by 15%, 12%, 15%, 13%, 5% and 17%, and increased crop yield by 29%, 57%, 50%, 55%, 9%, and 52%, respectively. The increase of soil pH was positively correlated with the increase in crop yield, but the relationship varied among crop types. The most substantial increases in soil pH and yield in response to soil amendments were found under long-term applications (>6 year) in strongly acidic (pH < 5.0) sandy soils with a low cation exchange capacity (CEC, <100 mmolc kg-1) and low soil organic matter content (SOM, <12 g kg-1). Most amendments increased soil CEC, SOM and base saturation (BS) and decreased soil bulk density (BD), but lime application increased soil BD (1%) induced by soil compaction. Soil pH and yield were positively correlated with CEC, SOM and BS, while yield declined when soils became compacted. Considering the impact of the amendments on soil pH, soil properties and crop yield as well as their costs, the addition of lime, manure and straw seem most appropriate in acidic soils with an initial pH range from <5.0, 5.0-6.0 and 6.0-6.5, respectively.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Manure , Calcium Compounds/chemistry , Charcoal/chemistry , Acids , Soil Pollutants/chemistry
17.
Small ; 19(45): e2304913, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37434105

ABSTRACT

Zn dendrite formation is the main obstacle to commercializing aqueous zinc-ion batteries (ZIBs). α-cyclodextrin (α-CD) is proposed as an environmentally friendly macromolecule additive in the ZnSO4 -based electrolyte to obtain stable and reversible Zn anodes. The results show that α-CD molecules' unique 3D structure can effectively regulate the mass transfer of the electrolyte components and isolate the Zn anode from H2 O molecules. The α-CD provides abundant electrons to the Zn (002) crystallographic plane, which induces charge density redistribution. Such an effect relieves the reduction and aggregation of Zn2+ cations while protecting the Zn metal anode from water molecules. Finally, a small amount of α-CD additive (0.01 M) can enhance the performance of Zn significantly in Zn||Cu cells (1980 cycles with 99.45% average CE) and Zn||Zn cells (8000 h ultra-long cycle life). The excellent practical applicability was further verified in Zn||MnO2 cells.

18.
J Sci Food Agric ; 103(15): 7816-7828, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37450651

ABSTRACT

BACKGROUND: Efficient utilization of phosphorus (P) has been a major challenge for sustainable agriculture. However, the responses of fertilizer rate, region, soil properties, cropping systems and genotypes to P have not been investigated comprehensively and systematically. RESULTS: A comprehensive analysis of 9863 fertilizer-P experiments on rice cultivation in China showed that rice yield  increased first and then fell down with the addition of P fertilizer, and the highest yield of 7963 kg ha-1 was observed under 100% P treatment. Under 100% P treatment, the yield response of applied P (YRP ) and agronomic efficiency of applied P (AEP ) were 12.8% and 30.1 kg ha-1 , respectively. Lower soil pH (< 5.5) and organic matter (< 30.0 g kg-1 ) were associated with lower YRP and AEP . By contrast, soil available P < 25.0 mg kg-1 resulted in decreased YRP (15.3 to 11.4%) and AEP (32.3 kg kg-1 to 26.2 kg kg-1 ), whereas soil available P > 25.0 mg kg-1 maintained the relatively stable YRP and AEP . Also, the YRP and AEP were significantly higher for single-cropping rice compared to other cropping systems. Moreover, the rice genotypes such as 'Longdun', 'Kendao' and 'Jigeng' had higher YRP and AEP than the average value. Overall, the fertilizer-P rate was the primary factor affecting YRP and AEP , and the recommended P fertilizer rate can be reduced by 9-21 kg P ha-1 compared to existing expert recommendations. CONCLUSION: The present study highlights the role of fertilizer-P rate in maximizing the YRP and AEP , thereby providing a strong basis for future fertilizer management in rice cultivation systems. © 2023 Society of Chemical Industry.


Subject(s)
Fertilizers , Oryza , Agriculture/methods , China , Fertilizers/analysis , Nitrogen/analysis , Oryza/growth & development , Phosphorus/analysis , Soil/chemistry
19.
Biomolecules ; 13(4)2023 04 12.
Article in English | MEDLINE | ID: mdl-37189418

ABSTRACT

Lung cancer is a highly heterogeneous disease. Cancer cells and other cells within the tumor microenvironment interact to determine disease progression, as well as response to or escape from treatment. Understanding the regulatory relationship between cancer cells and their tumor microenvironment in lung adenocarcinoma is of great significance for exploring the heterogeneity of the tumor microenvironment and its role in the genesis and development of lung adenocarcinoma. This work uses public single-cell transcriptome data (distant normal, nLung; early LUAD, tLung; advanced LUAD, tL/B), to draft a cell map of lung adenocarcinoma from onset to progression, and provide a cell-cell communication view of lung adenocarcinoma in the different disease stages. Based on the analysis of cell populations, it was found that the proportion of macrophages was significantly reduced in the development of lung adenocarcinoma, and patients with lower proportions of macrophages exhibited poor prognosis. We therefore constructed a process to screen an intercellular gene regulatory network that reduces any error generated by single cell communication analysis and increases the credibility of selected cell communication signals. Based on the key regulatory signals in the macrophage-tumor cell regulatory network, we performed a pseudotime analysis of the macrophages and found that signal molecules (TIMP1, VEGFA, SPP1) are highly expressed in immunosuppression-associated macrophages. These molecules were also validated using an independent dataset and were significantly associated with poor prognosis. Our study provides an effective method for screening the key regulatory signals in the tumor microenvironment and the selected signal molecules may serve as a reference to guide the development of diagnostic biomarkers for risk stratification and therapeutic targets for lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Gene Regulatory Networks , Adenocarcinoma of Lung/genetics , Genes, Regulator , Lung Neoplasms/genetics , Tumor Microenvironment/genetics , Sequence Analysis, RNA , Biomarkers, Tumor , Gene Expression Regulation, Neoplastic
20.
Adipocyte ; 12(1): 2202976, 2023 12.
Article in English | MEDLINE | ID: mdl-37077042

ABSTRACT

Adipokines are proteins secreted by adipose tissue to regulate glucolipid metabolism and play vital roles in our body. Different adipokines have more than one endocrine function and be divided into several different categories according to their functions, including adipokines involved in glucolipid metabolism, the inflammatory response, insulin action, activation of brown adipose tissue (BAT) and appetite regulation. Multiple adipokines interact with each other to regulate metabolic processes. Based on the recent progress of adipokine research, this article discusses the role and mechanism of various adipokines in glucolipid metabolism, which may provide new ideas for understanding the pathogenesis and improving the treatment of various metabolic diseases.


Subject(s)
Adipokines , Glucose , Adipokines/metabolism , Glucose/metabolism , Lipid Metabolism , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Energy Metabolism/physiology , Leptin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...