Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
BMC Plant Biol ; 24(1): 470, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811892

ABSTRACT

Ring rot, caused by Botryosphaeria dothidea, is an important fungal disease of pear fruit during postharvest storage. Melatonin, as a plant growth regulator, plays an important role in enhancing the stress resistance of pear fruits. It enhances the resistance of pear fruits to ring rot by enhancing their antioxidant capacity. However, the underlying mechanism remains unclear. In this study, we examined the effect of melatonin on the growth of B. dothidea. Results showed that melatonin did not limit the growth of B. dothidea during in vitro culture. However, metabolomics and transcriptomics analyses of 'Whangkeumbae' pear (Pyrus pyrifolia) revealed that melatonin increased the activity of antioxidant enzymes, including peroxidase (POD), superoxide dismutase (SOD), and polyphenol oxidase (PPO), in the fruit and activated the phenylpropanoid metabolic pathway to improve fruit resistance. Furthermore, melatonin treatment significantly increased the contents of jasmonic acid and phlorizin in pear fruit, both of which could improve disease resistance. Jasmonic acid regulates melatonin synthesis and can also promote phlorizin synthesis, ultimately improving the resistance of pear fruit to ring rot. In summary, the interaction between melatonin and jasmonic acid and phlorizin enhances the antioxidant defense response and phenylpropanoid metabolism pathway of pear fruit, thereby enhancing the resistance of pear fruit to ring rot disease. Our results provide new insights into the application of melatonin in the resistance to pear fruit ring rot.


Subject(s)
Ascomycota , Cyclopentanes , Disease Resistance , Fruit , Melatonin , Oxylipins , Phlorhizin , Plant Diseases , Pyrus , Pyrus/microbiology , Pyrus/metabolism , Pyrus/genetics , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Oxylipins/metabolism , Ascomycota/physiology , Melatonin/pharmacology , Melatonin/metabolism , Disease Resistance/drug effects , Plant Diseases/microbiology , Fruit/microbiology , Fruit/metabolism , Phlorhizin/pharmacology , Gene Expression Regulation, Plant/drug effects , Antioxidants/metabolism , Plant Growth Regulators/metabolism
2.
Chem Sci ; 15(21): 7870-7907, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817558

ABSTRACT

The electrocatalytic carbon dioxide reduction reaction (ECO2RR) is a promising way to realize the transformation of waste into valuable material, which can not only meet the environmental goal of reducing carbon emissions, but also obtain clean energy and valuable industrial products simultaneously. Herein, we first introduce the complex CO2RR mechanisms based on the number of carbons in the product. Since the coupling of C-C bonds is unanimously recognized as the key mechanism step in the ECO2RR for the generation of high-value products, the structural-activity relationship of electrocatalysts is systematically reviewed. Next, we comprehensively classify the latest developments, both experimental and theoretical, in different categories of cutting-edge electrocatalysts and provide theoretical insights on various aspects. Finally, challenges are discussed from the perspectives of both materials and devices to inspire researchers to promote the industrial application of the ECO2RR at the earliest.

3.
ACS Appl Mater Interfaces ; 16(15): 19571-19584, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564737

ABSTRACT

Bioinspired photoactive composites, in terms of photodynamic inactivation, cost-effectiveness, and biosafety, are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the weak bacterial membrane affinity of the photoactive substrate and the lack of synergistic antibacterial effect remain crucial shortcomings for their antibacterial applications. Herein, we developed a hydrophobic film from food antioxidant lauryl gallate covalently functionalized chitosan (LG-g-CS conjugates) through a green radical-induced grafting reaction that utilizes synergistic bacteria capture, contact-killing, and photodynamic inactivation activities to achieve enhanced bactericidal and biofilm elimination capabilities. Besides, the grafting reaction mechanism between LG and CS in the ascorbic acid (AA)/H2O2 redox system was further proposed. The LG-g-CS films feature hydrophobic side chains and photoactive phenolic hydroxyl groups, facilitating dual bactericidal activities through bacteria capture and contact-killing via strong hydrophobic and electrostatic interactions with bacterial membranes as well as blue light (BL)-driven photodynamic bacterial eradication through the enhanced generation of reactive oxygen species. As a result, the LG-g-CS films efficiently capture and immobilize bacteria and exhibit excellent photodynamic antibacterial activity against model bacteria (Escherichia coli and Staphylococcus aureus) and their biofilms under BL irradiation. Moreover, LG-g-CS films could significantly promote the healing process of S. aureus-infected wounds. This research demonstrates a new strategy for designing and fabricating sustainable bactericidal and biofilm-removing materials with a high bacterial membrane affinity and photodynamic activity.


Subject(s)
Anti-Infective Agents , Chitosan , Gallic Acid/analogs & derivatives , Staphylococcal Infections , Humans , Staphylococcus aureus , Chitosan/chemistry , Hydrogen Peroxide/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/chemistry , Wound Healing , Escherichia coli , Biofilms
4.
Int Dent J ; 74(3): 418-425, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556388

ABSTRACT

Periodontitis, with a high prevalence in the whole population, is the main cause of tooth loss. Some studies have revealed that sleep duration may be related to periodontitis, however, the opinions are not consistent. This meta-analysis was carried out to study the potential relationship between sleep duration and periodontitis. A search of relevant articles was conducted on Embase, PubMed, Cochrane Library, and Web of Science. Papers published until the end of November 2022 reporting associations between sleep duration and periodontitis were considered. The pooled odds ratio (OR) with a 95% confidence interval (CI) was calculated to assess the association. Software STATA 14.0 was employed to conduct this analysis. A total of 11 cross-sectional studies were included. Our study showed neither short sleep duration (SSD) nor long sleep duration (LSD) were associated with periodontitis (SSD: OR = 1.04, 95% CI: 0.83, 1.29; LSD: OR = 1.12, 95% CI: 0.94, 1.23), while higher prevalence was observed when sleep duration ≤5 h (OR = 1.41, 95% CI: 1.33, 1.51). In addition, both SSD and LSD were not associated with severe periodontitis (SSD: OR = 0.94, 95% CI: 0.75, 1.16; LSD: OR = 1.19, 95% CI: 0.80, 1.76). In conclusion, the present review indicated that too little sleep duration (≤5 h) significantly increased the risk of periodontitis. However, the evidence is limited due to cross-sectional design of most studies, Hence longitudinal studies should be conducted to support this finding.


Subject(s)
Periodontitis , Sleep , Humans , Periodontitis/epidemiology , Sleep/physiology , Risk Factors , Time Factors , Cross-Sectional Studies , Prevalence , Sleep Duration
5.
Environ Res ; 251(Pt 2): 118723, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38490625

ABSTRACT

For better understanding the mechanism of microbial strains promoting methane production, four strains Hungatella xylanolytica A5, Bacillus licheniformis B1, Paraclostridium benzoelyticum C2 and Advenella faeciporci E1 were inoculated into anaerobic digestion systems. After bioaugmentation, the cumulative methane production of A5, B1, C2 and E1 groups elevated by 11.68%, 8.20%, 18.21% and 15.67% compared to CK group, respectively. The metagenomic analysis revealed that the species diversity and uniformity of the experimental groups was improved, and hydrolytic acidifying bacteria, represented by Clostridiaceae, Anaerolineaceae and Oscillospiraceae, and methanogens, such as Methanotrichaceae and Methanobacteriaceae, were enriched. Meanwhile, the abundance of key genes in carbohydrate, pyruvate and methane metabolism was increased in the inoculated groups, providing reasonable reasons for more methane production. The strengthening mechanism of microbial strains in this study offered a theoretical foundation for selecting a suitable bioaugmentation strategy to solve the problems of slow start-up and low methane production in anaerobic digestion.


Subject(s)
Metagenome , Methane , Methane/metabolism , Anaerobiosis , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Bioreactors/microbiology , Food Loss and Waste
6.
Mitochondrial DNA B Resour ; 9(3): 361-366, 2024.
Article in English | MEDLINE | ID: mdl-38516231

ABSTRACT

Saccharum species are of great importance as fruit crops due to their economic and food value. S. fulvum is a wild relative of sugarcane that has a wide geographic distribution and is well-adapted to various environmental conditions. It exhibits high resistance to pests, diseases, drought, cold, and degraded soils, making it a valuable resource for sugarcane research. Here, we report the chloroplast genome of S. fulvum. This chloroplast genome was 141,151 bp in length with a GC content of 38.41%. The large single-copy, small single-copy, and inverted repeat regions were 83,030 bp, 12,533 bp, and 22,794 bp in length, respectively. The chloroplast genome contained 111 different genes, including 77 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. Phylogenetic analysis indicated that S. fulvum was closely related to S. narenga. This study not only enriches the genome information of Saccharum, but also will be useful for the evolutionary study of the family Poaceae.

7.
Environ Health ; 23(1): 20, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38355550

ABSTRACT

BACKGROUND: Change in asthma burden attributed to specific environmental risk factor has not been evaluated. OBJECTIVE: We aimed to explore the age, period, and cohort effects on asthma burden attributable to smoking and occupational asthmagens in different socio-demographic index (SDI) regions and the region and sex disparities. METHODS: Risk factor-specific asthma deaths and disability-adjusted life years (DALYs) rates were extracted from Global Burden of Disease study 2019, estimated by standard Combined Cause of Death Model and DisMod-MR 2.1 modeling tool. Age-period-cohort analysis was conducted to decompose age, period, and cohort effects on asthma burden. RESULTS: Smoking- and occupational asthmagens-related asthma deaths and DALYs rates dropped by > 45% during 1990-2019. In 2019, Africa, South and Southeast Asia had higher asthma burden than other regions. Male had higher asthma burden than female. Among nearly all age groups, low-middle SDI region had the highest smoking-related asthma burden, and low SDI region had the highest occupational asthmagens-related asthma burden. Inverse "V" shaped trend was observed in the above regions with increasing age. For smoking-related asthma deaths and DALYs rates, the most significant improvement of period rate ratio (RR) occurred in high SDI region, decreased from 1.67 (1.61, 1.74) to 0.34 (0.33, 0.36) and 1.61 (1.57, 1.66) to 0.59 (0.57, 0.61), respectively, as well as the cohort effect on smoking-related asthma burden. For occupational asthmagens-related asthma deaths and DALYs rates, the most sharply decrease of period and cohort RR appeared in the high and high-middle SDI regions. Low SDI region showed least progress in period and cohort RR of smoking- and occupational asthmagens-linked asthma burden. CONCLUSION: Smoking- and occupational asthmagens-related asthma burden sharply decreases, but region and sex disparities exist. Policy makers from low SDI region should reinforce tobacco control and prioritize workplace protection.


Subject(s)
Asthma , Global Burden of Disease , Humans , Male , Female , Quality-Adjusted Life Years , Asthma/epidemiology , Risk Factors , Cohort Studies , Global Health
8.
Small ; 20(21): e2308403, 2024 May.
Article in English | MEDLINE | ID: mdl-38098457

ABSTRACT

Keratitis, an inflammation of the cornea caused by bacterial or fungal infections, is one of the leading causes of severe visual disability and blindness. Keratitis treatment requires both the prevention of infection and the reduction of inflammation. However, owing to their limited therapeutic functions, in addition to the ocular barrier, existing conventional medications are characterized by poor efficacy and low bioavailability, requiring high dosages or frequent topical treatment, which represents a burden on patients and increases the risk of side effects. In this study, manganese oxide nanocluster-decorated graphdiyne nanosheets (MnOx/GDY) are developed as multienzyme-like nanozymes for the treatment of infectious keratitis and loaded into hyaluronic acid and polymethyl methacrylate-based ocular microneedles (MGMN). MGMN not only exhibits antimicrobial and anti-inflammatory effects owing to its multienzyme-like activities, including oxidase, peroxidase, catalase, and superoxide dismutase mimics but also crosses the ocular barrier and shows increased bioavailability via the microneedle system. Moreover, MGMN is demonstrated to eliminate pathogens, prevent biofilm formation, reduce inflammation, alleviate ocular hypoxia, and promote the repair of corneal epithelial damage in in vitro, ex vivo, and in vivo experiments, thus providing a better therapeutic effect than commercial ophthalmic voriconazole, with no obvious microbial resistance or cytotoxicity.


Subject(s)
Keratitis , Needles , Keratitis/drug therapy , Animals , Mice , Enzymes/metabolism , Biofilms/drug effects , Humans , Oxides , Manganese Compounds
9.
Environ Res ; 245: 118031, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38157970

ABSTRACT

Bioaugmentation technology for improving the performance of thermophilic anaerobic digestion (TAD) of food waste (FW) treatment is gaining more attention. In this study, four thermophilic strains (Ureibacillus suwonensis E11, Clostridium thermopalmarium HK1, Bacillus thermoamylovorans Y25 and Caldibacillus thermoamylovorans QK5) were inoculated in the TAD of FW system, and the biochemical methane potential (BMP) batch study was conducted to assess the potential of different bioaugmented strains to enhance methane production. The results showed that the cumulative methane production in groups inoculated with E11, HK1, Y25 and QK5 improved by 2.05%, 14.54%, 19.79% and 9.17%, respectively, compared with the control group with no inoculation. Moreover, microbial community composition analysis indicated that the relative abundance of the main hydrolytic bacteria and/or methanogenic archaea was increased after bioaugmentation, and the four strains successfully became representative bacterial biomarkers in each group. The four strains enhanced methane production by strengthening starch, sucrose, galactose, pyruvate and methane metabolism functions. Further, the correlation networks demonstrated that the representative bacterial genera had positive correlations with the differential metabolic functions in each bioaugmentation group. This study provides new insights into the TAD of FW with bioaugmented strains.


Subject(s)
Bacillus , Food Loss and Waste , Refuse Disposal , Anaerobiosis , Food , Bacteria/metabolism , Methane , Bioreactors , Sewage/microbiology
10.
Respir Res ; 24(1): 268, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37926845

ABSTRACT

BACKGROUND: Forced vital capacity (FVC) reflects respiratory health, but the long-term trend and heterogeneity in FVC of Chinese students were understudied. METHODS: Data were from Chinese National Survey on Students' Constitution and Health 1985-2019. Super Imposition by Translation and Rotation model was used to draw FVC growth curves. Sex-, region-, and nationality-heterogeneity in FVC was evaluated. Spearman correlation and generalized additive model was used to reveal influencing factors for FVC. RESULTS: Compared to 1985, age at peak FVC velocity was 1.09, 3.17, 0.74, and 1.87 years earlier for urban male, urban female, rural male, and rural female in 2019, respectively. Peak FVC velocity first decreased and then increased during 1985-2019, only male rebounded to larger than 1985 level. FVC declined from 1985 to 2005 and then raised. Males consistently had higher FVC than females, with disparities increasing in the 13-15 age group. Urban students also had higher FVC than rural students. In 2019, FVC difference between 30 Chinese provinces and the national average showed four scenarios: consistently above national average; less than national average until age 18, then above; greater than national average until age 18, then this advantage reversed; less than national average in almost all the age. Most Chinese ethnic minority students had lower FVC levels compared to Han students. Spearman correlation and generalized additive model showed that age, sex, and height were the leading influencing factors of FVC, followed by socioeconomic and environmental factors. CONCLUSIONS: Chinese students experienced advanced FVC spurt, and there was sex-, region- and nationality-heterogeneity in FVC. Routine measurement of FVC is necessary in less developed areas of China.


Subject(s)
Ethnicity , Minority Groups , Adolescent , Female , Humans , Male , Asian People , China/epidemiology , Students , Vital Capacity , Young Adult
11.
Animals (Basel) ; 13(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958061

ABSTRACT

Intrauterine growth restriction (IUGR) is a common perinatal complication in animal reproduction, with long-lasting negative effects on neonates and postnatal animals, which seriously negatively affects livestock production. In this study, we aimed to identify potential genes associated with the diagnosis of IUGR through bioinformatics analysis. Based on the 73 differentially expressed related genes obtained by differential analysis and weighted gene co-expression network analysis, we used three machine learning algorithms to identify 4 IUGR-related hub genes (IUGR-HGs), namely, ADAM9, CRYL1, NDP52, and SERPINA7, whose ROC curves showed that they are a good diagnostic target for IUGR. Next, we identified two molecular subtypes of IUGR through consensus clustering analysis and constructed a gene scoring system based on the IUGR-HGs. The results showed that the IUGR score was positively correlated with the risk of IUGR. The AUC value of IUGR scoring accuracy was 0.970. Finally, we constructed a new artificial neural network model based on the four IUGR-HGs to diagnose sheep IUGR, and its accuracy reached 0.956. In conclusion, the IUGR-HGs we identified provide new potential molecular markers and models for the diagnosis of IUGR in sheep; they can better diagnose whether sheep have IUGR. The present findings provide new perspectives on the diagnosis of IUGR.

12.
Front Pharmacol ; 14: 1209063, 2023.
Article in English | MEDLINE | ID: mdl-37663252

ABSTRACT

Objective: To investigate the clinical efficacy and toxicity of nebulized polymyxin monotherapy and combined intravenous and nebulized polymyxin for the treatment of VAP caused by CR-GNB. Additionally, among patients treated with nebulized polymyxin monotherapy, we compared the clinical efficacy and toxicity of polymyxin B and polymyxin E. Methods: This study was a single-center, retrospective study. Included patients received aerosolized polymyxin for at least 72 h with or without intravenous polymyxin for the management of CR-GNB VAP. The primary endpoint was clinical cure at the end of polymyxin therapy. Secondary endpoints included AKI incidence, time of bacteria-negative conversion, duration of MV after inclusion, length of stay in ICU, and all-cause ICU mortality. Results: 39 patients treated with nebulized polymyxin monotherapy were assigned to the NL-polymyxin group. 39 patients treated with nebulized polymyxin combined with intravenous use of polymyxin were assigned to the IV-NL-polymyxin group. Among the NL-polymyxin group, 19 patients were treated with polymyxin B and 20 with polymyxin E. The clinical baseline characteristics before admission to the ICU and before nebulization of polymyxin were similar between the two groups. No differences were found between the two study groups in terms of microorganism distribution, VAP cure rate, time of bacteria-negative conversion, duration of MV after inclusion, length of stay in ICU and all-cause ICU mortality. Similarly, survival analysis did not differ between the two groups (χ2 = 3.539, p = 0.06). AKI incidence was higher in the IV-NL-polymyxin group. When comparing the clinical efficacy and toxicity to polymyxin B and polymyxin E, there was no difference between the two groups in terms of VAP cure rate, time of bacteria-negative conversion, duration of MV after inclusion, length of stay in ICU, SOFA score, CPIS, AKI incidence and all-cause ICU mortality. Conclusion: Our study found that nebulized polymyxin monotherapy was non-inferior to combination therapy with intravenous polymyxin in treating CR-GNB-VAP. Furthermore, we observed no differences in clinical efficacy or related toxic side effects between polymyxin B and polymyxin E during nebulized polymyxin therapy as monotherapy. However, future prospective studies with larger sample sizes are required to confirm these findings.

13.
Water Res ; 244: 120457, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37574624

ABSTRACT

Food waste (FW) single-substrate anaerobic digestion usually suffers from rapid acidification and inhibition of oil and salt. To overcome these problems and improve the process efficiency, supplementing other substrates has been used in FW anaerobic digestion. This study investigated the biogas production potential through co-digestion of FW with kitchen waste (KW) or garden waste (GW) in different ratios under thermophilic conditions. The results showed that the optimal ratios were FW:KW=60:40 and FW:GW=80:20 which biogas production improved 73.33% and 68.45% compared with single FW digestion, respectively. The organic matter removal rate of co-digestion was 84.46% for FW+KW group (RFK) and 65.64% for FW+GW group (RFG). Co-digestion increased the abundance of the dominant hydrolytic bacteria Defluviitoga and Hydrogenispora and hydrogenotrophic methanogen Methanoculleus. Furthermore, glycoside hydrolases (GHs), vital carbohydrate-active enzymes (CAZymes), were improved by co-digestion. Co-digestion could also effectively promote the function of cellulase and hemicellulose. This strategy for utilizing different organic wastes together as co-substrate provides a new avenue for bioenergy production.


Subject(s)
Refuse Disposal , Refuse Disposal/methods , Food , Gardens , Anaerobiosis , Biofuels , Bioreactors , Methane , Digestion , Sewage
14.
Food Chem ; 429: 136924, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37490819

ABSTRACT

Ferritin has a unique hollow spherical structure, which makes it a promising nanocarrier for food functional substances. In this study, a new ferritin was successfully extracted from the liver of Northern pike, purified, and identified. We used the reversible self-assembly characteristics of ferritin to fabricate chlorogenic acid (CA)-loaded apoferritin (Apo) complex (Apo-CA) and sodium alginate (SA)-apoferritin (Apo) co-encapsulate system. Apo-CA was encapsulated into the SA system to form SA-Apo-CA. The fabricated composites were analyzed using particle size, UV-Vis absorption spectroscopy, fluorescence spectroscopy, flourier transform infrared spectroscopy and transmission electron microscope. Physicochemical property of analysis confirmed th successful preparation of Apo-CA/SA-Apo-CA and improved thermal and UV radiation stability. The effect of sustained-release of CA were tested in vitro of simulated gastrointestinal tract digestion. SA-Apo-CA exhibited greater release ability than unencapsulated CA and Apo-CA. This study provides a new strategy for designing a multilayer delivery system with improved stability and sustained-release property.


Subject(s)
Chlorogenic Acid , Ferritins , Animals , Ferritins/chemistry , Chlorogenic Acid/chemistry , Delayed-Action Preparations/chemistry , Esocidae , Apoferritins , Alginates/chemistry , Liver
15.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175553

ABSTRACT

Intense neutrophil infiltration into the liver is a characteristic of acetaminophen-induced acute liver injury. Neutrophil elastase is released by neutrophils during inflammation. To elucidate the involvement of neutrophil elastase in acetaminophen-induced liver injury, we investigated the efficacy of a potent and specific neutrophil elastase inhibitor, sivelestat, in mice with acetaminophen-induced acute liver injury. Intraperitoneal administration of 750 mg/kg of acetaminophen caused severe liver damage, such as elevated serum transaminase levels, centrilobular hepatic necrosis, and neutrophil infiltration, with approximately 50% mortality in BALB/c mice within 48 h of administration. However, in mice treated with sivelestat 30 min after the acetaminophen challenge, all mice survived, with reduced serum transaminase elevation and diminished hepatic necrosis. In addition, mice treated with sivelestat had reduced NOS-II expression and hepatic neutrophil infiltration after the acetaminophen challenge. Furthermore, treatment with sivelestat at 3 h after the acetaminophen challenge significantly improved survival. These findings indicate a new clinical application for sivelestat in the treatment of acetaminophen-induced liver failure through mechanisms involving the regulation of neutrophil migration and NO production.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Diseases , Mice , Animals , Acetaminophen/toxicity , Leukocyte Elastase/metabolism , Mice, Inbred BALB C , Transaminases , Chemical and Drug Induced Liver Injury/drug therapy , Necrosis
16.
Sci Rep ; 13(1): 6692, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095183

ABSTRACT

Estimating the age and vitality of human skin wounds is essential in forensic practice, and the use of immunohistochemical parameters in this regard remains a challenge. Heat shock proteins (HSPs) are evolutionarily conserved universal proteins that protect biological systems from various types of stress. However, its importance in forensic pathology for determining wound activation in neck compression skin remains unclear. The expression of HSP27 and HSP70 in neck skin samples was immunohistochemically examined to understand its forensic applicability in determining wound vitality. Skin samples were obtained from 45 cases of neck compression (hanging, 32 cases; strangulation, 10 cases; manual strangulation, 2 cases; other, 1 case) during forensic autopsies; intact skin from the same individual was used as a control. HSP27 expression was detected in 17.4% of keratinocytes in the intact skin samples. In the compressed region, the frequency of HSP27 expression in keratinocytes was 75.8%, which was significantly higher than that in intact skin. Similarly, HSP70 expression was 24.8% in intact skin samples and 81.9% in compressed skin samples, significantly higher in compressed skin than in intact skin samples. This increase in case compression cases may be due to the cell defence role of HSPs. From a forensic pathology perspective, the immunohistochemical examination of HSP27 and HSP70 expression in neck skin could be considered a valuable marker for diagnosing traces of antemortem compression.


Subject(s)
HSP27 Heat-Shock Proteins , Heat-Shock Proteins , Humans , HSP27 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Skin/metabolism , Epidermis/metabolism
17.
Int J Biol Macromol ; 239: 124358, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37028615

ABSTRACT

The Fructus cannabis protein extract powder (FP), was firstly used as a green and high effective corrosion inhibitor through a simple water-extraction method. The composition and surface property of FP were characterized by FTIR, LC/MS, UV, XPS, water contact angle and AFM force-curve measurements. Results indicate that FP contains multiply functional groups, such as NH, CO, CN, CO, etc. The adsorption of FP on the carbon steel surface makes it higher hydrophobicity and adhesion force. The corrosion inhibition performance of FP was researched by electrochemical impedance, polarization curve and differential capacitance curve. Moreover, the inhibitive stability of FP, and the effects of temperature and chloride ion on its inhibition property were also investigated. The above results indicate that the FP exhibits excellent corrosion inhibition efficiency (~98 %), and possesses certain long-term inhibitive stability with inhibition efficiency higher than 90 % after 240 h immersion in 1 M HCl solution. The high temperature brings about the FP desorption on the carbon steel surface, while high concentration of chloride ion facilitates the FP adsorption. The adsorption mechanism of FP follows the Langmuir isotherm adsorption. This work will provide an insight for protein as a green corrosion inhibitor.


Subject(s)
Cannabis , Powders , Steel/chemistry , Corrosion , Chlorides , Carbon , Water/chemistry
18.
Foods ; 11(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36230063

ABSTRACT

Ferritin, as an iron storage protein, regulates iron metabolism and delivers bioactive substances. It has been regarded as a safe, new type of natural iron supplement, with high bioavailability. In this paper, we extracted and purified ferritin from northern pike liver (NPLF). The aggregation stabilities, assemble properties, and structural changes in NPLF were investigated using electrophoresis, dynamic light scattering (DLS), circular dichroism (CD), UV-Visible absorption spectroscopy, fluorescence spectroscopy, and transmission electron microscopy (TEM) under various thermal treatments. The solubility, iron concentration, and monodispersity of NPLF all decreased as the temperature increased, and macromolecular aggregates developed. At 60 °C and 70 °C, the α-helix content of ferritin was greater. The content of α-helix were reduced to 8.10% and 1.90% at 90 °C and 100 °C, respectively, indicating the protein structure became loose and lost its self-assembly ability. Furthermore, when treated below 80 °C, NPLF maintained a complete cage-like shape, according to the microstructure. Partially unfolded structures reassembled into tiny aggregates at 80 °C. These findings suggest that mild thermal treatment (80 °C) might inhibit ferritin aggregation while leaving its self-assembly capacity unaffected. Thus, this study provides a theoretical basis for the processing and use of NPLF.

19.
Mitochondrial DNA B Resour ; 7(8): 1574-1576, 2022.
Article in English | MEDLINE | ID: mdl-36051365

ABSTRACT

Cardamine hupingshanensis K.M.Liu, L.B.Chen, H.F.Bai & L.H.Liu 2008, also called Cardamine enshiensis, belongs to the genus Cardamine, Brassicaceae. As a plant with selenium enrichment ability, it has high development value. Here, we analyzed the chloroplast genome of C. hupingshanensis. The complete chloroplast genome had a total size of 154,832 bp with a typical quadripartite structure, including a large single-copy region (LSC, 83,908 bp) and a small single-copy region (SSC, 17,938 bp), separated by a pair of inverted repeat regions (IRs, 26,493 bp). Genome annotation showed the chloroplast genome contained 113 unique genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. A total of 143 SSRs were found in the chloroplast genome. Phylogenetic analysis showed that C. hupingshanensis was closer to the C. circaeoides and C. lyrata. This chloroplast genome resource will be useful for study of the phylogeny and evolution of Cardamine in the future.

20.
Bioresour Technol ; 361: 127684, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35882315

ABSTRACT

Multisubstrate synergetic anaerobic co-digestion can effectively overcome low efficiency of food waste (FW) mono-digestion. This study investigated the effect of supplementing FW with kitchen waste (KW) or garden waste (GW) on thermophilic dry anaerobic co-digestion. FW-KW and FW-GW co-digestion enhanced biogas production by 24.69 % and 44.96 % at organic loading rate (OLR) of 3 g VS L-1 d-1, and increased OLR tolerance from 3 to 4 g VS L-1 d-1 through mitigating ammonia nitrogen inhibition and volatile fatty acids accumulation. Co-digestion enriched the dominant hydrolytic bacteria Defluviitoga, resulting in an acceleration of substrate hydrolysis. FW-KW co-digestion improved biogas production by increasing gene abundance related to key enzymes in methanogenesis pathways and promoting the conversion of intermediate products into methane. FW-GW co-digestion enhanced biogas production by enriching ABC transporters-associated genes, leading to efficient substrate utilization. This study provides a promising approach for FW treatment with multivariate insights into thermophilic dry anaerobic co-digestion.


Subject(s)
Microbiota , Refuse Disposal , Anaerobiosis , Biofuels , Bioreactors/microbiology , Food , Gardens , Methane/metabolism , Refuse Disposal/methods , Sewage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...