Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(21): eadk7557, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787949

ABSTRACT

Information metasurface has shown great potential in wireless communications owing to its ability to flexibly control electromagnetic waves. However, it is still a big challenge to achieve high-security and large-channel capacity wireless communications by a simple system. Here, we propose a space-polarization-division multiplexing secure wireless communication system with information camouflage capability based on the information metasurface, which can realize multichannel encrypted wireless communications with different polarization coding strategies independently and simultaneously. A polarization mask key is introduced to encrypt the target message, and the cipher message is further concealed behind a cover image with steganography and sent to the user by using the polarization modulation strategy. Different polarization mask keys can be adopted in each individual communication by changing the polarization coding strategy to enhance the system security. The proposed scheme integrates computational algorithm encryption and physical layer security together and thus has the advantages of high security, large channel capacity, and strong camouflage ability.

2.
Adv Sci (Weinh) ; 11(5): e2305152, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044308

ABSTRACT

Hand gesture plays an important role in many circumstances, which is one of the most common interactive methods in daily life, especially for disabled people. Human-machine interaction is another popular research topic to realize direct and efficient control, making machines intelligent and maneuverable. Here, a special human-machine interaction system is proposed and namedas computer-vision (CV) based gesture-metasurface interaction (GMI) system, which can be used for both direct beam manipulations and real-time wireless communications. The GMI system first needs to select its working mode according to the gesture command to determine whether to perform beam manipulations or wireless communications, and then validate the permission for further operation by recognizing unlocking gesture to ensure security. Both beam manipulation and wireless communication functions are validated experimentally, which show that the GMI system can not only realize real-time switching and remote control of different beams through gesture command, but also communicate with a remote computer in real time by translating the gesture language to text message. The proposed non-contact GMI system has the advantages of good interactivity, high flexibility, and multiple functions, which can find potential applications in community security, gesture-command smart home, barrier-free communications, and so on.

3.
ACS Appl Mater Interfaces ; 14(25): 29431-29440, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35709434

ABSTRACT

Information metasurfaces have attracted much attention in recent years due to the capability to link the physical world and information science. However, most of the current information metasurfaces are either phase-only coding or amplitude-only coding, limiting their functions and applications. Here, a broadband and programmable amplitude-phase-joint-coding (APJC) information metasurface is proposed and experimentally demonstrated, from which the phase and amplitude of reflected electromagnetic waves can be independently controlled by adjusting the bias voltage of PIN diode integrated in the meta-atom. In particular, the reflection amplitude can be continuously controlled from 0.1 to 0.9, and the reflection phase can be switched between two states with about 180° phase difference. Thus, the proposed metasurface is capable of realizing independent 1-bit or multibit amplitude coding and 1-bit phase coding, and both of them can be reprogrammed in real time in broad band from 8 to 13 GHz. The abilities of the programmable APJC information metasurface in manipulating the electromagnetic waves are demonstrated by both numerical simulations and experiments, including to suppress the sidelobes of scattering beam, generate the diffractive waves with arbitrary magnitudes, and so on. These results show unique advantages of APJC information metasurface in real-time independent controls of energy allocation and wavefront tailoring of the electromagnetic waves in a wide frequency band.

SELECTION OF CITATIONS
SEARCH DETAIL
...