Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 16081, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167893

ABSTRACT

Borehole extraction is the basic method used for control of gases in coal mines. The quality of borehole sealing determines the effectiveness of gas extraction, and many influential factors result in different types of borehole leaks. To accurately identify the types of leaks from boreholes, characteristic parameters, such as gas concentration, flow rate and negative pressure, were selected, and new indexes were established to identify leaks. A model based on an improved naive Bayes framework was constructed for the first time in this study, and it was applied to analyse and identify boreholes in the 229 working face of the Xiashijie Coal Mine. Eight features related to single hole sealing sections were taken as parameters, and 144 training samples from 18 groups of real-time monitoring time series data and 96 test samples from 12 groups were selected to verify the accuracy and speed of the model. The results showed that the model eliminated strong correlations between the original characteristic parameters, and it successfully identified the leakage conditions and categories of 12 boreholes. The identification rate of the new model was 98.9%, and its response time was 0.0020 s. Compared with the single naive Bayes algorithm model, the identification rate was 31.8% better, and performance was 55% faster. The model developed in this study fills a gap in the use of algorithms to identify types of leaks in boreholes, provides a theoretical basis and accurate guidance for the evaluation of the quality of the sealing of boreholes and borehole repairs, and supports the improved use of boreholes to extract gases from coal mines.


Subject(s)
Coal , Gases , Bayes Theorem
2.
Fungal Genet Biol ; 123: 70-77, 2019 02.
Article in English | MEDLINE | ID: mdl-30557614

ABSTRACT

The fungal cell wall is very important for cell growth and survival during stress, and the target of rapamycin (TOR) pathway plays a major role in regulating cell growth in response to environmental cues. Ganoderma lucidum is an important edible and medicinal fungus, and the function of TOR in this organism remains unclear. As shown in the present study, the TOR pathway regulates cell wall integrity (CWI) in G. lucidum. Inhibition of TOR signaling by RNA interference (RNAi) or rapamycin treatment reduced the growth of G. lucidum mycelia, increased contents of the cell wall components chitin and ß-1,3-glucan, and increased cell wall thickness. Furthermore, inhibition of TOR signaling enhanced the relative level of phosphorylated Slt2, a member of the MAPK cascade involved in CWI signaling. Moreover, when treated with rapamycin, significantly lower chitin and ß-1,3-glucan contents were observed in Slt2-silenced strains than in WT strains, indicating that TOR regulates the synthesis of these cell wall components through the Slt2-MAPK pathway. These results indicate a potential relationship between TOR signaling and CWI signaling. Additionally, participation of Slt2-MAPK in TOR-mediated regulation of cell wall component production has not previously been reported in a microorganism.


Subject(s)
Cell Wall/metabolism , Reishi/genetics , Sirolimus/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Wall/genetics , Chitin/chemistry , Chitin/genetics , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/genetics , Phosphorylation , RNA Interference , Reishi/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , TOR Serine-Threonine Kinases/genetics , beta-Glucans/chemistry
3.
Appl Microbiol Biotechnol ; 102(4): 1769-1782, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29305696

ABSTRACT

Ganoderma lucidum, which contains many pharmacologically active compounds, is regarded as a traditional medicinal fungus. Nevertheless, the scarcity of basic research limits the commercial value and utilization of G. lucidum. As a class of highly conserved, phosphopeptide-binding proteins present in all eukaryotes, 14-3-3 proteins play vital roles in controlling multiple physiological processes, including signal transduction, primary metabolism, and stress responses. However, knowledge of the roles of 14-3-3 proteins in Basidiomycetes is sparse. In this article, two homologs of 14-3-3 proteins, encoded by the two distinct genes GlBmh1 and GlBmh2, were distinguished in G. lucidum. We found that GlBmh1 and GlBmh2 were expressed at various developmental stages, including in vegetative mycelium cultivated on solid medium and in primordia and fruiting bodies. Moreover, we constructed GlBmh1 single-silenced strains, GlBmh2 single-silenced strains, and 14-3-3 double-silenced mutants for further study. When GlBmh1 and GlBmh2 were inhibited by RNA interference, the growth rate of mycelia was decreased, and the distance between the aerial hyphal branches was reduced; responses to various abiotic stresses such as oxidants and cell wall and osmotic stressors were also changed. Furthermore, the contents of secondary metabolite ganoderic acids (GAs) were increased after GlBmh1 and GlBmh2 were simultaneously silenced. Taken together, we provide evidence that implicates potential roles for the two 14-3-3 proteins in affecting growth and GA biosynthesis, thereby providing new insights into the basic functions of 14-3-3 proteins in G. lucidum.


Subject(s)
14-3-3 Proteins/metabolism , Fungal Proteins/metabolism , Hyphae/growth & development , Reishi/growth & development , Reishi/physiology , Stress, Physiological , Triterpenes/metabolism , 14-3-3 Proteins/genetics , Fungal Proteins/genetics , Gene Expression Profiling , Gene Silencing , Reishi/genetics
4.
Microbiology (Reading) ; 163(10): 1466-1476, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28901910

ABSTRACT

The alternative oxidase (AOX), which forms a branch of the mitochondrial respiratory electron transport pathway, functions to sustain electron flux and alleviate reactive oxygen species (ROS) production. In this article, a homologous AOX gene was identified in Ganoderma lucidum. The coding sequence of the AOX gene in G. lucidum contains 1038 nucleotides and encodes a protein of 39.48 kDa. RNA interference (RNAi) was used to study the function of AOX in G. lucidum, and two silenced strains (AOXi6 and AOXi21) were obtained, showing significant decreases of approximately 60 and 50 %, respectively, in alternative pathway respiratory efficiency compared to WT. The content of ganoderic acid (GA) in the mutant strains AOXi6 and AOXi21 showed significant increases of approximately 42 and 44 %, respectively, compared to WT. Elevated contents of intermediate metabolites in GA biosynthesis and elevated transcription levels of corresponding genes were also observed in the mutant strains AOXi6 and AOXi21. In addition, the intracellular ROS content in strains AOXi6 and AOXi21 was significantly increased, by approximately 1.75- and 1.93-fold, respectively, compared with WT. Furthermore, adding N-acetyl-l-cysteine (NAC), a ROS scavenger, significantly depressed the intracellular ROS content and GA accumulation in AOX-silenced strains. These results indicate that AOX affects GA biosynthesis by regulating intracellular ROS levels. Our research revealed the important role of AOX in the secondary metabolism of G. lucidum.


Subject(s)
Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Reishi/metabolism , Triterpenes/metabolism , Amino Acid Sequence , Cloning, Molecular , Computational Biology/methods , Cytochromes/metabolism , Gene Expression , Gene Silencing , Metabolic Networks and Pathways , Mitochondrial Proteins/genetics , Models, Biological , Oxidative Stress , Oxidoreductases/genetics , Phylogeny , Plant Proteins/genetics , RNA Interference , Reishi/classification , Reishi/genetics , Sequence Analysis, DNA
5.
Appl Environ Microbiol ; 83(20)2017 10 15.
Article in English | MEDLINE | ID: mdl-28802268

ABSTRACT

Putrescine is an important polyamine that participates in a variety of stress responses. Ornithine decarboxylase (ODC) is a key enzyme that catalyzes the biosynthesis of putrescine. A homolog of the gene encoding ODC was cloned from Ganoderma lucidum In the ODC-silenced strains, the transcript levels of the ODC gene and the putrescine content were significantly decreased. The ODC-silenced strains were more sensitive to oxidative stress. The content of ganoderic acid was increased by approximately 43 to 46% in the ODC-silenced strains. The content of ganoderic acid could be recovered after the addition of exogenous putrescine. Additionally, the content of reactive oxygen species (ROS) was significantly increased by approximately 1.3-fold in the ODC-silenced strains. The ROS content was significantly reduced after the addition of exogenous putrescine. The gene transcript levels and the activities of four major antioxidant enzymes were measured to further explore the effect of putrescine on the intracellular ROS levels. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes.IMPORTANCE It is well known that ODC and the ODC-mediated production of putrescine play an important role in resisting various environmental stresses, but there are few reports regarding the mechanisms underlying the effect of putrescine on secondary metabolism in microorganisms, particularly in fungi. G. lucidum is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, a homolog of the gene encoding ODC was cloned in Ganoderma lucidum We found that the transcript level of the ODC gene and the content of putrescine were significantly decreased in the ODC-silenced strains. The content of ganoderic acid was significantly increased in the ODC-silenced strains. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes.


Subject(s)
Fungal Proteins/metabolism , Ganoderma/metabolism , Ornithine Decarboxylase/metabolism , Putrescine/metabolism , Reactive Oxygen Species/metabolism , Triterpenes/metabolism , Fungal Proteins/genetics , Ganoderma/enzymology , Ganoderma/genetics , Ornithine Decarboxylase/genetics , Oxidative Stress
6.
Environ Microbiol ; 19(4): 1653-1668, 2017 04.
Article in English | MEDLINE | ID: mdl-28198137

ABSTRACT

Ganoderma lucidum has become a potential model system for evaluating how environmental factors regulate the secondary metabolism of basidiomycetes. Heat stress (HS) is one of the most important environmental factors. It was previously reported that HS could induce the biosynthesis of ganoderic acids (GA). In this study, we found that HS increased GA biosynthesis and also significantly increased cell membrane fluidity. Furthermore, our results showed that addition of the membrane rigidifier dimethylsulfoxide (DMSO) could revert the increased GA biosynthesis elicited by HS. These results indicate that an increase in membrane fluidity is associated with HS-induced GA biosynthesis. Further evidence showed that the GA content was decreased in D9des-silenced strains and could be reverted to WT levels by addition of the membrane fluidizer benzyl alcohol (BA). In contrast, GA content was increased in D9des-overexpression strains and could be reverted to WT levels by the addition of DMSO. Furthermore, both membrane fluidity and GA biosynthesis induced by HS could be reverted by DMSO in WT and D9des-silenced strains. To the best of our knowledge, this is the first report demonstrating that membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in filamentous fungi.


Subject(s)
Heat-Shock Response , Membrane Fluidity , Reishi/metabolism , Hot Temperature , Secondary Metabolism , Triterpenes
SELECTION OF CITATIONS
SEARCH DETAIL
...