Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(22): 23892-23902, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38854585

ABSTRACT

Many reports have presented that in tight formation, the flow mechanism differs from a conventional reservoir, such as molecular diffusion, Pre-Darcy flow behavior, and stress sensitivity. However, for CO2 Huff-n-Puff development, it is a challenge to synthetically research these mechanisms. Considering the above flow mechanisms and offshore engineering background, the development plan optimization becomes a key issue. In this paper, a self-developed simulator that satisfies research needs is introduced. Then, based on experimental results, the simulation is launched to analyze the effects of CO2 diffusion, Huff-n-Puff period, and permeability heterogeneity. The results indicate that molecular diffusion makes a positive contribution to the oil recovery factor. Additionally, for offshore reservoirs, limited to the development cost and CO2 facilities corrosion, when the total Huff-n-Puff time is constant, the ratio of 0.5-1.0 between the Huff period and the Puff period in every cycle performs better. Finally, the greater heterogeneity in permeability is much more favorable for the CO2 Huff-n-Puff because of more intensive transport processes in formation. These different scenarios can increase the understanding of the CO2 Huff-n-Puff in tight oil offshore reservoirs.

2.
J Exp Child Psychol ; 239: 105829, 2024 03.
Article in English | MEDLINE | ID: mdl-38070439

ABSTRACT

Concrete materials (e.g., pictures, objects) are believed to be helpful with learning, but not in all circumstances. Variability in these materials (i.e., using different materials vs. the same materials) could be an important factor. We compared how variability in concrete images influenced children's learning about repeating patterns (e.g., ABBABBABB). A total of 87 children aged 4 to 6 years from the United States (75% White; 44% female) completed an experiment via Zoom in which they received brief pattern training. Children were randomly assigned into Low, Medium, and High Variability training conditions, which differed in terms of whether the same materials were used over and over or they varied in their perceptual features. Children in the Low Variability condition performed better at the beginning of training, but this trend ultimately reversed. Children in the High Variability condition performed best by the end of training and on the posttest. Using variable materials may allow children to extract common structures across instances.


Subject(s)
Learning , Pattern Recognition, Visual , Child , Female , Humans , Male , United States , Child, Preschool
3.
Nat Commun ; 14(1): 2136, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37059725

ABSTRACT

The realization of graphene gapped states with large on/off ratios over wide doping ranges remains challenging. Here, we investigate heterostructures based on Bernal-stacked bilayer graphene (BLG) atop few-layered CrOCl, exhibiting an over-1-GΩ-resistance insulating state in a widely accessible gate voltage range. The insulating state could be switched into a metallic state with an on/off ratio up to 107 by applying an in-plane electric field, heating, or gating. We tentatively associate the observed behavior to the formation of a surface state in CrOCl under vertical electric fields, promoting electron-electron (e-e) interactions in BLG via long-range Coulomb coupling. Consequently, at the charge neutrality point, a crossover from single particle insulating behavior to an unconventional correlated insulator is enabled, below an onset temperature. We demonstrate the application of the insulating state for the realization of a logic inverter operating at low temperatures. Our findings pave the way for future engineering of quantum electronic states based on interfacial charge coupling.

4.
Light Sci Appl ; 11(1): 48, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35232973

ABSTRACT

The nano-opto-electro-mechanical systems (NOEMS) are a class of hybrid solid devices that hold promises in both classical and quantum manipulations of the interplay between one or more degrees of freedom in optical, electrical and mechanical modes. To date, studies of NOEMS using van der Waals (vdW) heterostructures are very limited, although vdW materials are known for emerging phenomena such as spin, valley, and topological physics. Here, we devise a universal method to easily and robustly fabricate vdW heterostructures into an architecture that hosts opto-electro-mechanical couplings in one single device. We demonstrated several functionalities, including nano-mechanical resonator, vacuum channel diodes, and ultrafast thermo-radiator, using monolithically sculpted graphene NOEMS as a platform. Optical readout of electric and magnetic field tuning of mechanical resonance in a CrOCl/graphene vdW NOEMS is further demonstrated. Our results suggest that the introduction of the vdW heterostructure into the NOEMS family will be of particular potential for the development of novel lab-on-a-chip systems.

5.
Nat Commun ; 12(1): 6580, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34772912

ABSTRACT

Superconductor-ferromagnet interfaces in two-dimensional heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals (vdW) crystals remains largely unexplored due to the challenge of making atomically-sharp interfaces from their layered structures. Here, we build a vdW ferromagnetic Josephson junction (JJ) by inserting a few-layer ferromagnetic insulator Cr2Ge2Te6 into two layers of superconductor NbSe2. The critical current and corresponding junction resistance exhibit a hysteretic and oscillatory behavior against in-plane magnetic fields, manifesting itself as a strong Josephson coupling state. Also, we observe a central minimum of critical current in some JJ devices as well as a nontrivial phase shift in SQUID structures, evidencing the coexistence of 0 and π phase in the junction region. Our study paves the way to exploring sensitive probes of weak magnetism and multifunctional building-blocks for phase-related superconducting circuits using vdW heterostructures.

6.
Front Plant Sci ; 12: 677611, 2021.
Article in English | MEDLINE | ID: mdl-34220896

ABSTRACT

Basic helix-loop-helix proteins (bHLHs) comprise one of the largest families of transcription factors in plants. They have been shown to be involved in responses to various abiotic stresses, such as drought, salinity, chilling, heavy metal toxicity, iron deficiency, and osmotic damages. By specifically binding to cis-elements in the promoter region of stress related genes, bHLHs can regulate their transcriptional expression, thereby regulating the plant's adaptive responses. This review focuses on the structural characteristics of bHLHs, the regulatory mechanism of how bHLHs are involved transcriptional activation, and the mechanism of how bHLHs regulate the transcription of target genes under various stresses. Finally, as increasing research demonstrates that flavonoids are usually induced under fluctuating environments, the latest research progress and future research prospects are described on the mechanisms of how flavonoid biosynthesis is regulated by bHLHs in the regulation of the plant's responses to abiotic stresses.

8.
Mol Cell Proteomics ; 18(11): 2225-2243, 2019 11.
Article in English | MEDLINE | ID: mdl-31467032

ABSTRACT

Soybean (Glycine max (L.) Merrill) is an important component of the human diet and animal feed, but soybean production is limited by abiotic stresses especially salinity. We recently found that rhizobia inoculation enhances soybean tolerance to salt stress, but the underlying mechanisms are unaddressed. Here, we used quantitative phosphoproteomic and metabonomic approaches to identify changes in phosphoproteins and metabolites in soybean roots treated with rhizobia inoculation and salt. Results revealed differential regulation of 800 phosphopeptides, at least 32 of these phosphoproteins or their homologous were reported be involved in flavonoid synthesis or trafficking, and 27 out of 32 are transcription factors. We surveyed the functional impacts of all these 27 transcription factors by expressing their phospho-mimetic/ablative mutants in the roots of composite soybean plants and found that phosphorylation of GmMYB183 could affect the salt tolerance of the transgenic roots. Using data mining, ChIP and EMSA, we found that GmMYB183 binds to the promoter of the soybean GmCYP81E11 gene encoding for a Cytochrome P450 monooxygenase which contributes to the accumulation of ononin, a monohydroxy B-ring flavonoid that negatively regulates soybean tolerance to salinity. Phosphorylation of GmMYB183 was inhibited by rhizobia inoculation; overexpression of GmMYB183 enhanced the expression of GmCYP81E11 and rendered salt sensitivity to the transgenic roots; plants deficient in GmMYB183 function are more tolerant to salt stress as compared with wild-type soybean plants, these results correlate with the transcriptional induction of GmCYP81E11 by GmMYB183 and the subsequent accumulation of ononin. Our findings provide molecular insights into how rhizobia enhance salt tolerance of soybean plants.


Subject(s)
Flavonoids/biosynthesis , Glycine max/metabolism , Phosphoproteins/metabolism , Plant Proteins/metabolism , Rhizobium/metabolism , Salt Tolerance , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Metabolome , Phosphoproteins/genetics , Phosphorylation , Plant Proteins/genetics , Proteome/analysis , Glycine max/genetics , Glycine max/growth & development , Transcription Factors/genetics
9.
Nat Nanotechnol ; 13(7): 554-559, 2018 07.
Article in English | MEDLINE | ID: mdl-29967458

ABSTRACT

Manipulating a quantum state via electrostatic gating has been of great importance for many model systems in nanoelectronics. Until now, however, controlling the electron spins or, more specifically, the magnetism of a system by electric-field tuning has proven challenging1-4. Recently, atomically thin magnetic semiconductors have attracted significant attention due to their emerging new physical phenomena5-13. However, many issues are yet to be resolved to convincingly demonstrate gate-controllable magnetism in these two-dimensional materials. Here, we show that, via electrostatic gating, a strong field effect can be observed in devices based on few-layered ferromagnetic semiconducting Cr2Ge2Te6. At different gate doping, micro-area Kerr measurements in the studied devices demonstrate bipolar tunable magnetization loops below the Curie temperature, which is tentatively attributed to the moment rebalance in the spin-polarized band structure. Our findings of electric-field-controlled magnetism in van der Waals magnets show possibilities for potential applications in new-generation magnetic memory storage, sensors and spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...