Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
1.
Plant Cell Environ ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752443

ABSTRACT

Bamboo cultivation, particularly Moso bamboo (Phyllostachys edulis), holds significant economic importance in various regions worldwide. Bamboo shoot degradation (BSD) severely affects productivity and economic viability. However, despite its agricultural consequences, the molecular mechanisms underlying BSD remain unclear. Consequently, we explored the dynamic changes of BSD through anatomy, physiology and the transcriptome. Our findings reveal ruptured protoxylem cells, reduced cell wall thickness and the accumulation of sucrose and reactive oxygen species (ROS) during BSD. Transcriptomic analysis underscored the importance of genes related to plant hormone signal transduction, sugar metabolism and ROS homoeostasis in this process. Furthermore, BSD appears to be driven by the coexpression regulatory network of senescence-associated gene transcription factors (SAG-TFs), specifically PeSAG39, PeWRKY22 and PeWRKY75, primarily located in the protoxylem of vascular bundles. Yeast one-hybrid and dual-luciferase assays demonstrated that PeWRKY22 and PeWRKY75 activate PeSAG39 expression by binding to its promoter. This study advanced our understanding of the molecular regulatory mechanisms governing BSD, offering a valuable reference for enhancing Moso bamboo forest productivity.

2.
Cell Death Discov ; 10(1): 233, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744851

ABSTRACT

A key factor contributing to resistance in immune checkpoint blockade (ICB) therapies is CD8+ T-cell tolerance in the tumor microenvironment (TME), partly resulting from upregulating coinhibitory receptors. Here, we describe the role of PGRN as a coinhibitory molecule that modulates the antitumor response of CD8+ T cells, thus presenting a novel immunosuppressive target for lung cancer. The in vivo subcutaneous transplanted lung cancer model showed that PGRN expression was elevated on CD8+ T cells that infiltrated transplanted lung cancers. Furthermore, PGRN deficiency was found to specifically encourage the infiltration of CD8+ T cells, enhance their proliferation, migration, and activation, and resist apoptosis, ultimately inhibiting tumor growth. This was achieved by PGRN knockout, increasing the production of T cell chemokine CCL3, which boosts the antitumor immune response induced by CD8+ T cells. Critically, the PD-L1 inhibitor exhibited a synergistic effect in enhancing the antitumor response in PGRN-/- mice. In summary, our findings highlight the significance of PGRN as a novel target for boosting CD8+ T cells antitumor immunity and its potential to overcome the resistance in ICB therapy.

3.
Int J Hematol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702444

ABSTRACT

Acute myeloid leukemia (AML) with t(8;21)(q22;q22.1);RUNX1-ETO is one of the most common subtypes of AML. Although t(8;21) AML has been classified as favorable-risk, only about half of patients are cured with current therapies. Several genetic abnormalities, including TP53 mutations and deletions, negatively impact survival in t(8;21) AML. In this study, we established Cas9+ mouse models of t(8;21) AML with intact or deficient Tpr53 (a mouse homolog of TP53) using a retrovirus-mediated gene transfer and transplantation system. Trp53 deficiency accelerates the in vivo development of AML driven by RUNX1-ETO9a, a short isoform of RUNX1-ETO with strong leukemogenic potential. Trp53 deficiency also confers resistance to genetic depletion of RUNX1 and a TP53-activating drug in t(8;21) AML. However, Trp53-deficient t(8;21) AML cells were still sensitive to several drugs such as dexamethasone. Cas9+ RUNX1-ETO9a cells with/without Trp53 deficiency can produce AML in vivo, can be cultured in vitro for several weeks, and allow efficient gene depletion using the CRISPR/Cas9 system, providing useful tools to advance our understanding of t(8;21) AML.

4.
Gait Posture ; 112: 108-114, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759589

ABSTRACT

BACKGROUND: The use of individually preferred colored glasses has gained popularity with the expectation that it may improve balance control and sports performance, however, the results of previous studies remain inconclusive. AIM OF THE STUDY: In the present pilot study, we aimed to determine the association between participants' subjective preference and standing balance performance when wearing five different colored glasses. METHODS: Thirteen participants stood on one or two legs on a pair of synchronized force platforms for 30 seconds with 60 seconds rest between the five-five randomized stance trials, while wearing red, blue, yellow, green, or transparent colored glasses. In addition to 7 CoP-related variables, we analyzed five features of EMG data from three lower limb muscles on both legs. RESULTS: No significant effect of colored glasses was found. Some CoP (velocity: χ²(4, 13) = 10.086; p = 0.039; Kendall's W = 0.194, root mean square [RMS]: χ²(4, 13) = 12.278; p = 0.015; Kendall's W = 0.236) and EMG-related (RMS of biceps femoris: χ²(4, 13) = 13.006; p = 0.011; Kendall's W = 0.250) variables showed differences between the colored glass conditions during dominant-leg stance, however, participants failed to consecutively determine these differences in standing stability. CONCLUSIONS: Overall, our results may suggest that lens color preference, irrespective of the color itself, may influence dominant leg standing balance most probably due to psychological factors, however, only subjective determination have no potential to determine the color of the glasses that would support the individual's standing balance the most.

5.
PeerJ ; 12: e17097, 2024.
Article in English | MEDLINE | ID: mdl-38680891

ABSTRACT

Background: The Global School Student Health Survey (GSHS) is being carried out by students in various countries across the globe to advance improved health programs for youth. However, in comparison to high-income countries, adolescents in low- and middle-income countries (LMICs) are generally at an early stage of understanding regarding physical activity (PA) and sedentary behavior (SB), often exhibiting low levels of PA and high levels of SB. Furthermore, there is limited evidence connecting PA and SB in school-going adolescents from LMICs. Purpose: The objective of this review was to synthesize the available evidence regarding PA and sedentary behavior among school-going adolescents in LMICs using data from the GSHS. Method: On March 18, 2023, a systematic literature search was performed across four electronic databases, namely Web of Science, PubMed, ScienceDirect, and EBSCO with n odaterestrictions. Studies were eligible if they: (1) utilization of data sourced from the Global Student-based Health Survey; (2) exploration of physical activity; (3) specific focus on adolescents; (4) conducted in low- and middle-income countries; (5) study design encompassing observational; (6) published as English journal articles. Results: Among the 29 studies included in the analysis, the majority revealed elevated levels of sedentary behavior and diminished levels of PA in low- and middle-income countries. Furthermore, notable disparities in physical engagement and sedentary behavior were noted between male and female adolescents (p < 0.001). Augmented PA among teenagers was observed to correlate with higher consumption of vegetables and fruits (AOR = 1.30; 95% CI [1.13-1.50]; p < 0.001), decreased alcohol consumption, and a reduced prevalence of loneliness and depression (aOR 1.37, 95% CI [1.18-1.59]). Conclusions: The results of this review affirm that in contrast to high-income countries, adolescents in low- and middle-income countries (LMICs) are in the early stages of comprehending physical activity, marked by low levels of PA. Physical activity and sedentary behavior in school-going adolescents from LMICs appear to be influenced by factors such as policies, cultural norms, socioeconomic conditions, as well as gender, and age.


Subject(s)
Developing Countries , Exercise , Sedentary Behavior , Adolescent , Female , Humans , Male , Adolescent Behavior/psychology , Developing Countries/statistics & numerical data , Exercise/psychology , Global Health , Health Surveys , Schools , Students/psychology , Students/statistics & numerical data
6.
J Agric Food Chem ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607803

ABSTRACT

The occurrence of maize ear rot caused by Fusarium verticillioides (F. verticillioides) poses a threat to the yield and quality of maize. Mefentrifluconazole enantiomers appear to have strong stereoselective activity against F. verticillioides and cause differences in fumonisin production. We evaluated the stereoselective activity of mefentrifluconazole enantiomers by determining inhibition of the strain, hyphae, and conidia. Strain inhibition by R-(-)-mefentrifluconazole was 241 times higher than S-(+)-mefentrifluconazole and 376 times higher in conidia inhibition. For the mechanism of the enantioselective bioactivity, R-mefentrifluconazole had stronger binding to proteins than S-(+)-mefentrifluconazole. Under several concentration conditions, the fumonisin concentration was 1.3-24.9-fold higher in the R-(-)-mefentrifluconazole treatment than in the S-(+)-mefentrifluconazole treatment. The R-enantiomer stimulated fumonisin despite a higher bioactivity. As the incubation time increased, the stimulation of the enantiomers on fumonisin production decreased. R-(-)-Mefentrifluconazole stimulated higher fumonisin production in F. verticillioides at 25 °C compared to 30 °C. This study established a foundation for the development of high-efficiency and low-risk pesticides.

7.
J Cardiothorac Surg ; 19(1): 166, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561747

ABSTRACT

BACKGROUND: Rosai-Dorfman Disease (RDD) is a rare self-limiting histiocytosis, more prevalent in children and young adults. It typically manifests as painless bilateral massive cervical lymphadenopathy but may also extend to extra-nodal sites, with intrathoracic RDD noted in 2% of cases. Distinguishing mediastinal RDD from thymoma on imaging poses challenges, underscoring the reliance on pathological features and immunohistochemical staining for diagnosis. CASE PRESENTATION: Patient, male, 33 years old, underwent lung a CT revealing an enlarged round soft tissue shadow in the anterior superior mediastinum, compared to a year ago. Surgical resection removed the entire mass, thymus, and part of the pericardium, confirming RDD on pathology. Genetic testing using second-generation testing technology identified a KRAS gene point mutation. CONCLUSIONS: No established treatment protocol currently exists for this disease. However, as genetic mutation research progresses, a novel therapeutic avenue is emerging: targeted therapy integrated with surgical interventions.


Subject(s)
Histiocytosis, Sinus , Adult , Humans , Male , Histiocytosis, Sinus/diagnosis , Histiocytosis, Sinus/genetics , Histiocytosis, Sinus/surgery , Mediastinum/pathology , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/therapeutic use , Thorax/pathology
8.
Materials (Basel) ; 17(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38591504

ABSTRACT

A new strategy for the high-throughput characterization of the mechanical homogeneity of metallurgical materials is proposed. Based on the principle of hydrostatic transmission and the synergistic analysis of the composition, microstructure, defects, and surface profile of the chosen material, the microstrain characteristics and changes in surface roughness after isostatic pressing were analyzed. After isostatic pressing, two types of microstrains were produced: low microstrain (surface smoothening with decreasing roughness) and large microstrain (surface roughening with increasing roughness). Furthermore, the roughness of the roughened microregions could be further classified based on the strain degree. The phenomenon of weak-interface damage with a large microstrain (plastic deformation, cleavage fracture, and tearing near nonmetallic inclusions) indicated that the surface microstrain analysis could be a new method of high-throughput characterization for microregions with relatively poor micromechanical properties. In general, the effect of isostatic pressing on the surface microstrain of heat-resistant steel provides a promising strategy for achieving high-throughput screening and statistically characterizing microregions with poor micromechanical properties, such as microregions containing microcracks, nonmetallic inclusions, pores, and other surface defects.

9.
Lab Chip ; 24(9): 2454-2467, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644805

ABSTRACT

Safe, accurate, and reliable analysis of urinary biomarkers is clinically important for early detection and monitoring of the progression of chronic kidney disease (CKD), as it has become one of the world's most prevalent non-communicable diseases. However, current technologies for measuring urinary biomarkers are either time-consuming and limited to well-equipped hospitals or lack the necessary sensitivity for quantitative analysis and post a health risk to frontline practitioners. Here we report a robust paper-based dual functional biosensor, which is integrated with the clinical urine sampling vial, for the simultaneous and quantitative analysis of pH and glucose in urine. The pH sensor was fabricated by electrochemically depositing IrOx onto a paper substrate using optimised parameters, which enabled an ultrahigh sensitivity of 71.58 mV pH-1. Glucose oxidase (GOx) was used in combination with an electrochemically deposited Prussian blue layer for the detection of glucose, and its performance was enhanced by gold nanoparticles (AuNPs), chitosan, and graphite composites, achieving a sensitivity of 1.5 µA mM-1. This dual function biosensor was validated using clinical urine samples, where a correlation coefficient of 0.96 for pH and 0.98 for glucose detection was achieved with commercial methods as references. More importantly, the urine sampling vial was kept sealed throughout the sample-to-result process, which minimised the health risk to frontline practitioners and simplified the diagnostic procedures. This diagnostic platform, therefore, holds high promise as a rapid, accurate, safe, and user-friendly point-of-care (POC) technology for the analysis of urinary biomarkers in frontline clinical settings.


Subject(s)
Biosensing Techniques , Paper , Point-of-Care Systems , Humans , Hydrogen-Ion Concentration , Gold/chemistry , Glucose/analysis , Urinalysis/instrumentation , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Electrochemical Techniques , Metal Nanoparticles/chemistry , Graphite/chemistry , Biomarkers/urine
10.
Cell Res ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658629

ABSTRACT

Spliceosome is often assembled across an exon and undergoes rearrangement to span a neighboring intron. Most states of the intron-defined spliceosome have been structurally characterized. However, the structure of a fully assembled exon-defined spliceosome remains at large. During spliceosome assembly, the pre-catalytic state (B complex) is converted from its precursor (pre-B complex). Here we report atomic structures of the exon-defined human spliceosome in four sequential states: mature pre-B, late pre-B, early B, and mature B. In the previously unknown late pre-B state, U1 snRNP is already released but the remaining proteins are still in the pre-B state; unexpectedly, the RNAs are in the B state, with U6 snRNA forming a duplex with 5'-splice site and U5 snRNA recognizing the 3'-end of the exon. In the early and mature B complexes, the B-specific factors are stepwise recruited and specifically recognize the exon 3'-region. Our study reveals key insights into the assembly of the exon-defined spliceosomes and identifies mechanistic steps of the pre-B-to-B transition.

11.
Drug Des Devel Ther ; 18: 1369-1384, 2024.
Article in English | MEDLINE | ID: mdl-38681210

ABSTRACT

Background: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinically severe respiratory disorders without available pharmacological therapies. Dynasore is a cell-permeable molecule that inhibits GTPase activity and exerts protective effects in several disease models. However, whether dynasore can alleviate lipopolysaccharide (LPS)-induced ALI is unknown. This study investigated the effect of dynasore on macrophage activation and explored its potential mechanisms in LPS-induced ALI in vitro and in vivo. Methods: Bone marrow-derived macrophages (BMDMs) were activated classically with LPS or subjected to NLRP3 inflammasome activation with LPS+ATP. A mouse ALI model was established by the intratracheal instillation (i.t.) of LPS. The expression of PYD domains-containing protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD) protein was detected by Western blots. Inflammatory mediators were analyzed in the cell supernatant, in serum and bronchoalveolar lavage fluid (BALF) by enzyme-linked immunosorbent assays. Morphological changes in lung tissues were evaluated by hematoxylin and eosin staining. F4/80, Caspase-1 and GSDMD distribution in lung tissue was detected by immunofluorescence. Results: Dynasore downregulated nuclear factor (NF)-κB signaling and reduced proinflammatory cytokine production in vitro and inhibited the production and release of interleukin (IL)-1ß, NLRP3 inflammasome activation, and macrophage pyroptosis through the Drp1/ROS/NLRP3 axis. Dynasore significantly reduced lung injury scores and proinflammatory cytokine levels in both BALF and serum in vivo, including IL-1ß and IL-6. Dynasore also downregulated the co-expression of F4/80, caspase-1 and GSDMD in lung tissue. Conclusion: Collectively, these findings demonstrated that dynasore could alleviate LPS-induced ALI by regulating macrophage pyroptosis, which might provide a new therapeutic strategy for ALI/ARDS.


Subject(s)
Acute Lung Injury , Inflammasomes , Lipopolysaccharides , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Male , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Inflammasomes/antagonists & inhibitors , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Pyroptosis/drug effects
12.
Semin Dial ; 37(3): 259-268, 2024.
Article in English | MEDLINE | ID: mdl-38506151

ABSTRACT

BACKGROUND: Dialytic phosphate removal is a cornerstone of the management of hyperphosphatemia in peritoneal dialysis (PD) patients, but the influencing factors on peritoneal phosphate clearance (PPC) are incompletely understood. Our objective was to explore clinically relevant factors associated with PPC in patients with different PD modality and peritoneal transport status and the association of PPC with mortality. METHODS: This is a cross-sectional and prospective observational study. Four hundred eighty-five PD patients were enrolled and divided into 2 groups according to PPC. All-cause mortality was evaluated after followed-up for at least 3 months. RESULTS: High PPC group showed lower mortality compared with Low PPC group by Kaplan-Meier analysis and log-rank test. Both multivariate linear regression and multivariate logistic regression revealed that high transport status, total effluent dialysate volume per day, continuous ambulatory PD (CAPD), and protein in total effluent dialysate volume appeared to be positively correlated with PPC; body mass index (BMI) and the normalized protein equivalent of total nitrogen appearance (nPNA) were negatively correlated with PPC. Besides PD modality and membrane transport status, total effluent dialysate volume showed a strong relationship with PPC, but the correlation differed among PD modalities. CONCLUSIONS: Higher PPC was associated with lower all-cause mortality risk in PD patients. Higher PPC correlated with CAPD modality, fast transport status, higher effluent dialysate volume and protein content, and with lower BMI and nPNA.


Subject(s)
Hyperphosphatemia , Kidney Failure, Chronic , Peritoneal Dialysis , Phosphates , Humans , Male , Female , Middle Aged , Prospective Studies , Peritoneal Dialysis/mortality , Cross-Sectional Studies , Phosphates/metabolism , Phosphates/analysis , Hyperphosphatemia/etiology , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/mortality , Kidney Failure, Chronic/metabolism , Aged , Peritoneal Dialysis, Continuous Ambulatory/mortality , Dialysis Solutions , Adult
13.
Math Biosci Eng ; 21(3): 3944-3966, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38549314

ABSTRACT

We proposed a novel decision-making method, the large-scale group consensus multi-attribute decision-making method based on probabilistic dual hesitant fuzzy sets, to address the challenge of large-scale group multi-attribute decision-making in fuzzy environments. This method concurrently accounted for the membership and non-membership degrees of decision-making experts in fuzzy environments and the corresponding probabilistic value to quantify expert decision information. Furthermore, it applied to complex scenarios involving groups of 20 or more decision-making experts. We delineated five major steps of the method, elaborating on the specific models and algorithms used in each phase. We began by constructing a probabilistic dual hesitant fuzzy information evaluation matrix and determining attribute weights. The following steps involved classifying large-scale decision-making expert groups and selecting the optimal classification scheme based on effectiveness assessment criteria. A global consensus degree threshold was established, followed by implementing a consensus-reaching model to synchronize opinions within the same class of expert groups. Decision information was integrated within and between classes using an information integration model, leading to a comprehensive decision matrix. Decision outcomes for the objects were then determined through a ranking method. The method's effectiveness and superiority were validated through a case study on urban emergency capability assessment, and its advantages were further emphasized in comparative analyses with other methods.

14.
Small Methods ; : e2301619, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488726

ABSTRACT

BiCuSeO is a promising oxygen-containing thermoelectric material due to its intrinsically low lattice thermal conductivity and excellent service stability. However, the low electrical conductivity limits its thermoelectric performance. Aliovalent element doping can significantly improve their carrier concentration, but it may also impact carrier mobility and thermal transport properties. Considering the influence of graphene on carrier-phonon decoupling, Bi0.88 Pb0.06 Ca0.06 CuSeO (BPCCSO)-graphene composites are designed. For further practical application, a rapid preparation method is employed, taking less than 1 h, which combines self-propagating high-temperature synthesis with spark plasma sintering. The incorporation of graphene simultaneously optimizes the electrical properties and thermal conductivity, yielding a high ratio of weighted mobility to lattice thermal conductivity (144 at 300 K and 95 at 923 K). Ultimately, BPCCSO-graphene composites achieve exceptional thermoelectric performance with a ZT value of 1.6 at 923 K, bringing a ≈40% improvement over BPCCSO without graphene. This work further promotes the practical application of BiCuSeO-based materials and this facile and effective strategy can also be extended to other thermoelectric systems.

15.
bioRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496466

ABSTRACT

The complex and heterogeneous genetic architecture of schizophrenia inspires us to look beyond individual risk genes for therapeutic strategies and target their interactive dynamics and convergence. Postsynaptic NMDA receptor (NMDAR) complexes are a site of such convergence. Src kinase is a molecular hub of NMDAR function, and its protein interaction subnetwork is enriched for risk-genes and altered protein associations in schizophrenia. Previously, Src activity was found to be decreased in post-mortem studies of schizophrenia, contributing to NMDAR hypofunction. PSD-95 suppresses Src via interacting with its SH2 domain. Here, we devised a strategy to suppress the inhibition of Src by PSD-95 via employing a cell penetrating and Src activating PSD-95 inhibitory peptide (TAT-SAPIP). TAT-SAPIP selectively increased post-synaptic Src activity in humans and mice, and enhanced synaptic NMDAR currents in mice. Chronic ICV injection of TAT-SAPIP rescued deficits in trace fear conditioning in Src hypomorphic mice. We propose blockade of the Src-PSD-95 interaction as a proof of concept for the use of interfering peptides as a therapeutic strategy to reverse NMDAR hypofunction in schizophrenia and other illnesses.

16.
Analyst ; 149(7): 2016-2022, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38451140

ABSTRACT

MXenes with excellent conductivity and abundant surface functional groups have displayed great advantages as platforms for sensing materials. NiO also has drawn much attention for gas detection due to its unique merits of excellent catalytic activity. Herein, NiO nanoparticles are incorporated with multilayer Ti3C2Tx-MXene to develop excellent triethylamine sensors. Due to the larger specific surface area and formed p-p heterojunctions, the response of the NiO/Ti3C2Tx gas sensor is endowed with a response value of 950% to 50 ppm triethylamine gas and is much higher than that of the pristine NiO sensor. Moreover, the NiO/Ti3C2Tx sensor displays a fast response time of 8 s (50 ppm triethylamine), excellent reproducibility, and reliable long-term stability. This study proves that NiO/Ti3C2Tx sensors have potential for the effective detection of triethylamine gas.

17.
J Neuroimmunol ; 388: 578296, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38309225

ABSTRACT

PURPOSE: Anti-gamma-aminobutyric acid B receptor (GABABR) encephalitis is an uncommon form of autoimmune encephalitis associated with a poor prognosis and a high fatality rate. We aim to find diagnostic markers for anti- GABABR encephalitis as well as the effects of immune cell infiltration on this pathology. METHODS: For quantitative proteomic analysis, isobaric tags for relative and absolute quantitation were used in conjunction with LC-MS/MS analysis. To conduct functional correlation analyses, differentially expressed proteins (DEPs) were identified. Following that, we used bioinformatics analysis to screen for and determine the diagnostic signatures of anti- GABABR encephalitis. ROC curves were used to evaluate the diagnostic values. To assess the inflammatory status of anti- GABABR encephalitis, we used cell-type identification by estimating relative subsets of the RNA transcript (CIBERSORT) and explored the link between diagnostic markers and infiltrating immune cells. RESULTS: Overall, 108 robust DEPs (47 upregulated and 61 downregulated) were identified, of which 11 were immune related. The most impressively enriched pathways were complemented and coagulation cascades, actin cytoskeleton regulation, and cholesterol metabolism; GSEA revealed that the enriched pathways were considerably differentially connected to immune modulation. Eleven immune-related DEPs were chosen for further investigation. We developed a novel diagnostic model based on CSF1R and AZGP1 serum levels using ROC analysis (area under the ROC curve = 1). M1 macrophages and activated natural killer cells are likely to play a role in course of anti- GABABR encephalitis. CONCLUSION: We identified CSF1R and AZGP1 are possible anti-GABABR encephalitis diagnostic indicators, and immune cell infiltration may have a significant impact on the development and occurrence of anti- GABABR encephalitis.


Subject(s)
Encephalitis , gamma-Aminobutyric Acid , Humans , Autoantibodies , Chromatography, Liquid , Proteomics , Receptors, GABA-B , Tandem Mass Spectrometry
18.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38398943

ABSTRACT

Enrichment of erythrocytes is a necessary step in the diagnosis of blood diseases. Due to the high deformability and viscosity of erythrocytes, they cannot be regarded as stable point-like solids, so the influence of their deformability on fluid dynamics must be considered. Therefore, by using the special effect of an I-shaped pillar (I-pillar) on erythrocytes, erythrocytes with different deformability can be made to produce different provisional distances in the chip, so as to achieve the separation of the two kinds of erythrocytes. In this study, a microfluidic chip was designed to conduct a control test between erythrocytes stored for a long time and fresh erythrocytes. At a specific flow rate, the different deformable erythrocytes in the chip move in different paths. Then, the influence of erythrocyte deformability on its movement trajectory was analyzed by two-dimensional finite element flow simulation. DLD sorting technology provides a new method for the sorting and enrichment of diseased erythrocytes.

19.
Life Sci ; 342: 122539, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38423172

ABSTRACT

Lung cancer, acknowledged as one of the most fatal cancers globally, faces limited treatment options on an international scale. The success of clinical treatment is impeded by challenges such as late diagnosis, restricted treatment alternatives, relapse, and the emergence of drug resistance. This predicament has led to a saturation point in lung cancer treatment, prompting a rapid shift in focus towards the tumor microenvironment (TME) as a pivotal area in cancer research. Within the TME, Interleukin-1 (IL-1) is abundantly present, originating from immune cells, tissue stromal cells, and tumor cells. IL-1's induction of pro-inflammatory mediators and chemokines establishes an inflammatory milieu influencing tumor occurrence, development, and the interaction between tumors and the host immune system. Notably, IL-1 expression in the TME exhibits characteristics such as staging, tissue specificity, and functional pluripotency. This comprehensive review aims to delve into the impact of IL-1 on lung cancer, encompassing aspects of occurrence, invasion, metastasis, immunosuppression, and immune surveillance. The ultimate goal is to propose a novel treatment approach, considering the intricate dynamics of IL-1 within the TME.


Subject(s)
Lung Neoplasms , Neoplasms , Humans , Lung Neoplasms/drug therapy , Interleukin-1 , Neoplasm Recurrence, Local , Neoplasms/drug therapy , Immunosuppression Therapy , Chemokines/metabolism , Tumor Microenvironment , Immunotherapy
20.
Environ Sci Pollut Res Int ; 31(8): 12174-12193, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225499

ABSTRACT

Globally, the transportation industry has become one of the leading sectors in carbon emission, and all countries are committed to environmental protection and energy conservation while experiencing rapid development. Under China's "dual-carbon" goal, the carbon emission problem hinders the construction of China's green transportation system and affects the high-quality development of transportation, so it is of great significance to study the spatial pattern of carbon emission efficiency in the transportation industry and the factors affecting it. Firstly, this paper measures the carbon emission value of transportation in 30 provinces in China from 2010 to 2020 based on the IPCC method and measures the carbon emission efficiency through the super-efficiency slack-based measurement model. Secondly, spatial autocorrelation analysis was conducted to determine the spatial clustering characteristics of the efficiency values. Finally, two spatial Durbin models are constructed to measure the spatial spillover effects and analyze the short-term immediate effects of each influencing factor on the static model and the long-term effects of the dynamic model considering the time lag of the transportation carbon emission efficiency. The results of the study show that (1) the average value of efficiency in the central and eastern regions is basically higher than 0.5; in the western and northeastern regions, it is basically lower than 0.3.The overall efficiency of carbon emission in the region shows a fluctuating upward trend but with increasing regional differences. (2) The number of regions with positive spatial correlation increased from 21 to 25 during the study period, and the degree of provincial transportation carbon emission efficiency agglomeration increased. (3) Although urbanization and energy intensity have a large detrimental influence on transportation carbon emission efficiency, environmental regulation has a major favorable effects on it both long and short term. Population scale, opening level, and urbanization all have significant spatial spillover effects. Accordingly, relevant policy recommendations are put forward to provide theoretical guidance for promoting the realization of low-carbon transportation.


Subject(s)
Carbon , Urbanization , Carbon/analysis , China , Conservation of Natural Resources , Efficiency , Economic Development
SELECTION OF CITATIONS
SEARCH DETAIL
...