Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Front Immunol ; 15: 1397303, 2024.
Article in English | MEDLINE | ID: mdl-38807594

ABSTRACT

The E2F family of transcription factors plays a crucial role in the regulation of cell cycle progression and cell proliferation. Accumulative evidence indicates that aberrant expression or activation of E2F2 is a common phenomenon in malignances. E2F2 has emerged as a key player in the development and progression of various types of tumors. A wealth of research has substantiated that E2F2 could contribute to the enhancement of tumor cell proliferation, angiogenesis, and invasiveness. Moreover, E2F2 exerts its influence on a myriad of cellular processes by engaging with a spectrum of auxiliary factors and downstream targets, including apoptosis and DNA repair. The dysregulation of E2F2 in the context of carcinogenesis may be attributable to a multitude of mechanisms, which encompass modifications in upstream regulatory elements or epigenetic alterations. This review explores the function of E2F2 in cancer progression and both established and emerging therapeutic strategies aiming at targeting this oncogenic pathway, while also providing a strong basis for further research on the biological function and clinical applications of E2F2.


Subject(s)
Disease Progression , E2F2 Transcription Factor , Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , E2F2 Transcription Factor/metabolism , E2F2 Transcription Factor/genetics , Animals , Gene Expression Regulation, Neoplastic , Molecular Targeted Therapy , Cell Proliferation
2.
Expert Opin Drug Saf ; : 1-7, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38603461

ABSTRACT

BACKGROUND: Evaluating antibiotics most commonly associated with pseudomembranous colitis (PMC) based on the real-world data is of great significance. RESEARCH DESIGN AND METHODS: We used the data from FAERS to evaluate the potential association between antibiotics and PMC by disproportionality analyzes. RESULTS: Eighty-one antibiotics which met the three algorithms simultaneously were enrolled. There were 1683 reports of PMC associated with the enrolled antibiotics. In the top 24 antibiotics, cefoxitin, streptomycin, fosfomycin, and micafungin had a high risk of PMC, but there were few reports in the literature. CONCLUSIONS: This study was of great significance for healthcare professionals to realize the potential PMC risks of antibiotics.

3.
Front Pharmacol ; 15: 1255918, 2024.
Article in English | MEDLINE | ID: mdl-38584605

ABSTRACT

Introduction: Triazole antifungal agents are widely used to treat and prevent systemic mycoses. With wide clinical use, the number of reported adverse events has gradually increased. The aim of this study was to analyze the cardiac disorders associated with TAAs (fluconazole, voriconazole, itraconazole, posaconazole and isavuconazole) based on data from the US Food and Drug Administration Adverse Event Reporting System FDA Adverse Event Reporting System. Methods: Data were extracted from the FAERS database between the first quarter of 2004 and third quarter of 2022. The clinical characteristics in TAA-associated cardiac AE reports were analyzed. Disproportionality analysis was performed to evaluate the potential association between AEs and TAAs using the reporting odds ratio (ROR) and proportional reporting ratio (PRR). Results: Among 10,178,522 AE reports, 1719 reports were TAA-associated cardiac AEs as primary suspect drug. Most reports were related to fluconazole (38.34%), voriconazole (28.56%) and itraconazole (26.76%). Itraconazole (N = 195, 42.39%) and isavuconazole (N = 2, 14.29%) had fewer serious outcome events than three other drugs including fluconazole, voriconazole, and posaconazole. 13, 11, 26, 5 and 1 signals were detected for fluconazole, voriconazole, itraconazole, posaconazole and isavuconazole, respectively. The number of new signals unrecorded in the drug label was 9, 2, 13, 2 and 0 for fluconazole, voriconazole, itraconazole, posaconazole and isavuconazole, respectively. Conclusion: Isavuconazole might be the safest of the five TAAs for cardiac AEs. TAA-associated cardiac disorders may result in serious adverse outcomes. Therefore, in addition to AEs on the drug label, we should pay attention to new AEs unrecorded on the drug label during the clinical use of TAAs.

4.
Phytomedicine ; 128: 155427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513380

ABSTRACT

BACKGROUND: Depression is a clinically common co-morbidity in breast cancer cases that brings negative outcomes on quality of life and potentially survival. Jiawei Xiaoyao Wan (JXW) is widely used in treating breast cancer and depressive disorder, but its potential pharmacological mechanisms remain elusive. PURPOSE: We aimed to explore the dual therapeutic effects and mechanisms of JXW acting on breast cancer complicated with depression (BCCD) by network pharmacology and in vivo experimental verification. METHODS: The chemical constituents of JXW were characterized using liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-Q-TOF/MS). The targets related to constituents of JXW were predicted by the TCMSP and Swiss Target Prediction databases, and targets of breast cancer and depression were screened by the GeneCards and OMIM databases. Gene Ontology annotation and KEGG enrichment analysis were performed with the DAVID database. Ultimately, a BCCD mouse model induced by chronic restraint stress (CRS) was used to explore therapeutic effects and mechanisms of JXW against BCCD. The efficacy of JXW in the treatment of BCCD was evaluated based on behavioral tests, tumor volume and weight, and pathological examination. Additionally, the underlying mechanisms were explored by measuring the levels of neurotransmitter and inflammatory factors, as well as detecting the expression of genes or proteins associated with candidate targets and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway through RT-PCR, western blotting, and immunohistochemistry. RESULTS: Totals of 108 components were identified in JXW using LC-Q-TOF/MS. By network pharmacology analysis, 714 compound targets of JXW, 2114 breast cancer targets, 1122 depression targets, and 98 overlapping proteins were obtained. PPI network and KEGG analysis implied that TP53, ESR1, VEGFA, AKT1, IL6, TNF, EGFR and the JAK/STAT pathway might be the potential targets of JXW in treating BCCD. In vivo experiments indicated that JXW significantly ameliorated depressive symptoms and tumor progression in BCCD mice. Further mechanistic studies showed that JXW could reduce the levels of inflammatory factors, increase 5-HT level, and regulate mRNA expression levels of TP53, VEGFA, AKT1, IL6, TNF, and EGFR targets. Moreover, the expression levels of proteins related to the JAK2/STAT3 signaling pathway in BCCD mice were effectively regulated by JXW. CONCLUSION: JXW exerts dual therapeutic effects in a BCCD mouse via multiple targets. The underlying mechanisms might be associated with regulating the levels of neurotransmitter and inflammatory factors; more importantly, the JAK2/STAT3 pathway plays a significant role in this process.


Subject(s)
Breast Neoplasms , Depression , Drugs, Chinese Herbal , Network Pharmacology , Animals , Drugs, Chinese Herbal/pharmacology , Female , Mice , Breast Neoplasms/drug therapy , Depression/drug therapy , Signal Transduction/drug effects , Mice, Inbred BALB C , Disease Models, Animal , Humans
6.
Phytomedicine ; 126: 155315, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387274

ABSTRACT

OBJECTIVE: Metabolic-associated fatty liver disease (MAFLD) is the most prevalent liver disease, whereas type 2 diabetes mellitus (T2DM) is considered an independent risk factor for MAFLD incidence. Taohe Chengqi decoction (THCQ) is clinically prescribed for T2DM treatment; however, the hepatoprotective effect of THCQ against MAFLD is still unknown. This study intended to elucidate the therapeutic effect of THCQ on T2DM-associated MAFLD and to investigate the underlying mechanisms. METHODS: THCQ lyophilized powder was prepared and analyzed by UHPLC-MS/MS. A stable T2DM mouse model was established by high-fat diet (HFD) feeding combined with streptozotocin (STZ) injection. The T2DM mice were administered THCQ (2.5 g/kg or 5 g/kg) to explore the pharmacological effects of THCQ on T2DM-associated MAFLD. Liver tissue transcriptome was analyzed and the participatory roles of PPARα/γ pathways were verified both in vivo and in vitro. Serum metabolome analysis was used to explore the metabolome changes and skeletal muscle branched chain amino acid (BCAA) catabolic enzymes were further detected. Moreover, an AAV carrying BCKDHA shRNA was intramuscularly injected to verify the impact of THCQ on skeletal muscle BCAA catabolism and the potential therapeutic outcome on hepatic steatosis. RESULTS: THCQ improved hepatic steatosis in MAFLD. RNA-sequencing analysis showed dysregulation in the hepatic PPARγ-related fatty acid synthesis, while PPARα-dependent fatty acid oxidation was elevated following THCQ treatment. Interestingly, in vitro analyses of these findings showed that THCQ had minor effects on fatty acid oxidation and/or synthesis. The metabolomic study revealed that THCQ accelerated BCAA catabolism in the skeletal muscles, in which knockdown of the BCAA catabolic enzyme BCKDHA diminished the THCQ therapeutic effect on hepatic steatosis. CONCLUSION: This study highlighted the potential therapeutic effect of THCQ on hepatic steatosis in MALFD. THCQ upregulated fatty acid oxidation and reduced its synthesis via restoration of PPARα/γ pathways in HFD/STZ-induced T2DM mice, which is mediated through augmenting BCKDH activity and accelerating BCAA catabolism in the skeletal muscles. Overall, this study provided in-depth clues for "skeletal muscles-liver communication" in the therapeutic effect of THCQ against hepatic steatosis. These findings suggested THCQ might be a potential candidate against T2DM-associated MAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Diabetes Mellitus, Type 2/drug therapy , Amino Acids, Branched-Chain/metabolism , Amino Acids, Branched-Chain/pharmacology , PPAR alpha , Tandem Mass Spectrometry , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Muscle, Skeletal/metabolism , Fatty Acids
7.
Genes Dis ; 11(3): 101043, 2024 May.
Article in English | MEDLINE | ID: mdl-38292177

ABSTRACT

There are few tumor cell subpopulations with stem cell characteristics in tumor tissue, defined as cancer stem cells (CSCs) or cancer stem-like cells (CSLCs), which can reconstruct neoplasms with malignant biological behaviors such as invasiveness via self-renewal and unlimited generation. The microenvironment that CSCs depend on consists of various cellular components and corresponding medium components. Among these factors existing at a variety of levels and forms, cytokine networks and numerous signal pathways play an important role in signaling transduction. These factors promote or maintain cancer cell stemness, and participate in cancer recurrence, metastasis, and resistance. This review aims to summarize the recent molecular data concerning the multilayered relationship between CSCs and CSC-favorable microenvironments. We also discuss the therapeutic implications of targeting this synergistic interplay, hoping to give an insight into targeting cancer cell stemness for tumor therapy and prognosis.

8.
Front Immunol ; 14: 1290968, 2023.
Article in English | MEDLINE | ID: mdl-38022627

ABSTRACT

Background: As a severe hematological malignancy in adults, acute myeloid leukemia (AML) is characterized by high heterogeneity and complexity. Emerging evidence highlights the importance of the tumor immune microenvironment and lipid metabolism in cancer progression. In this study, we comprehensively evaluated the expression profiles of genes related to lipid metabolism and immune modifications to develop a prognostic risk signature for AML. Methods: First, we extracted the mRNA expression profiles of bone marrow samples from an AML cohort from The Cancer Genome Atlas database and employed Cox regression analysis to select prognostic hub genes associated with lipid metabolism and immunity. We then constructed a prognostic signature with hub genes significantly related to survival and validated the stability and robustness of the prognostic signature using three external datasets. Gene Set Enrichment Analysis was implemented to explore the underlying biological pathways related to the risk signature. Finally, the correlation between signature, immunity, and drug sensitivity was explored. Results: Eight genes were identified from the analysis and verified in the clinical samples, including APOBEC3C, MSMO1, ATP13A2, SMPDL3B, PLA2G4A, TNFSF15, IL2RA, and HGF, to develop a risk-scoring model that effectively stratified patients with AML into low- and high-risk groups, demonstrating significant differences in survival time. The risk signature was negatively related to immune cell infiltration. Samples with AML in the low-risk group, as defined by the risk signature, were more likely to be responsive to immunotherapy, whereas those at high risk responded better to specific targeted drugs. Conclusions: This study reveals the significant role of lipid metabolism- and immune-related genes in prognosis and demonstrated the utility of these signature genes as reliable bioinformatic indicators for predicting survival in patients with AML. The risk-scoring model based on these prognostic signature genes holds promise as a valuable tool for individualized treatment decision-making, providing valuable insights for improving patient prognosis and treatment outcomes in AML.


Subject(s)
Leukemia, Myeloid, Acute , Lipid Metabolism , Adult , Humans , Lipid Metabolism/genetics , Prognosis , Leukemia, Myeloid, Acute/genetics , Computational Biology , Drug Delivery Systems , Tumor Microenvironment/genetics , Tumor Necrosis Factor Ligand Superfamily Member 15 , Sphingomyelin Phosphodiesterase
9.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37991000

ABSTRACT

A Gram-stain-negative, rod-shaped and light yellow-pigmented strain designated MBT5T was isolated from tidal flat sediment of an oyster farming area in Quanzhou Bay, PR China. Catalase activity and oxidase activity were positive. Flexirubin-type pigment was absent. Growth was observed at 10-40 °C (optimum, 35 °C), pH 6-9 (optimum, pH 7), and with 1-7 % NaCl (optimum, 2 %, w/v). The 16S rRNA gene of strain MBT5T had maximum sequence similarity values with Meridianimaribacter flavus NH57NT, Mangrovimonas yunxiaonensis LYYY01T and Mangrovimonas futianensis AS18T of 95.6, 95.4 and 94.9 %, respectively. Phylogenetic analysis based on 16S rRNA gene sequences and 120 conserved concatenated proteins indicated that strain MBT5T was affiliated to the genus Mangrovimonas and formed a distinct monophyletic branch. The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identity values between strain MBT5T and the type strains of Mangrovimonas were estimated to be 17.3-18.7 %, 70.9-71.5 % and 66.4-68.2 %, respectively. The respiratory quinone was menaquinone-6. The major fatty acids were iso-C15 : 0 and iso-C15 : 1 G. The draft genome size was 2 952 053 bp with a DNA G+C content of 36.5 %. Based on phenotypic, physiological, phylogenetic and genomic data, together with chemotaxonomic characteristics, strain MBT5T represents a novel species, for which the name Mangrovimonas aestuarii sp. nov. is proposed. The type strain is MBT5T (=MCCC 1K06186T=KCTC 92888T=GDMCC 1.3851T).


Subject(s)
Fatty Acids , Seawater , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Base Composition , Bacterial Typing Techniques , DNA, Bacterial/genetics , Vitamin K 2/chemistry
10.
Biosensors (Basel) ; 13(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37754117

ABSTRACT

Mitochondrial hypochlorite (ClO-) plays important and often contradictory roles in maintaining the redox balance of mitochondria. Abnormal ClO- levels can induce mitochondrial inactivation and further cause cell apoptosis. Herein, we have developed an anthracene carboxyimide-based fluorescent probe mito-ACS for imaging mitochondrial ClO- in living cells. This probe exhibits some distinctive features as excellent resistance to photobleaching, high selectivity and sensitivity, as well as good water solubility. Mito-ACS showed a noticeable fluorescence response toward ClO- with a fast response (within 6 s) and a low detection limit (23 nM). Moreover, the introduction of triphenylphosphonium makes the probe soluble in water and selectively localizes to mitochondria. Furthermore, mito-ACS was successfully applied to image mitochondria ClO- in living cells with low toxicity. Remarkably. the less used fluorophore anthracene carboxyimide exhibiting excellent photostability and desirable optical properties provides a promising application prospect in biological systems.

11.
Front Neurosci ; 17: 1230404, 2023.
Article in English | MEDLINE | ID: mdl-37609453

ABSTRACT

Copper (Cu) is an essential trace element in the brain and serves as an important cofactor for numerous enzymes involved in a wide range of biochemical processes including neurobehavioral, mitochondrial respiration, and antioxidant effects. Recent studies have demonstrated that copper dyshomeostasis is tightly associated with the development of depression by inducing oxidative stress and inflammatory responses. However, these findings have remained controversial so far. Cumulative studies have shown a positive association, while some other studies showed no association and even a negative association between serum/plasma copper level and depression. Based on these conflicted results, the association was speculated to be due to the clinical features of the population, stages of the disease, severity of copper excess, and types of specimens detected in these studies. In addition, there was an inverse association between dietary copper intake and depression. Furthermore, increasing copper intake could influence dietary zinc and iron intake to prevent and treat depression. Thus, copper supplementation may be a good measure to manage depression. This review provided a deeper understanding of the potential applicability of copper in the prevention and treatment of depression.

12.
Phytomedicine ; 118: 154971, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37494875

ABSTRACT

BACKGROUND: Geniposide (GE), the active compound derived from Gardeniae Fructus, possesses valuable bioactivity for liver diseases, but GE effects on bile duct ligation (BDL)-induced cholestasis remain unclear. This study aimed to elucidate the influence of GE on BDL-induced liver fibrosis and to investigate the underlying mechanisms. METHODS: GE (25 or 50 mg/kg) were intragastrical administered to C57BL/6 J mice for two weeks to characterize the hepatoprotective effect of GE on BDL-induced liver fibrosis. NLRP3 inflammasome activation was detected in vivo, and BMDMs were isolated to explore whether GE directly inhibited NLRP3 inflammasome activation. Serum bile acid (BA) profiles were assessed utilizing UPLC-MS/MS, and the involvement of SIRT1/FXR pathways was identified to elucidate the role of SIRT1/FXR in the hepaprotective effect of GE. The veritable impact of SIRT1/FXR signaling was further confirmed by administering the SIRT1 inhibitor EX527 (10 mg/kg) to BDL mice treated with GE. RESULTS: GE treatment protected mice from BDL-induced liver fibrosis, with NLRP3 inflammasome inhibition. However, development in vitro experiments revealed that GE could not directly inhibit NLRP3 activation under ATP, monosodium urate, and nigericin stimulation. Further mechanistic data showed that GE activated SIRT1, which subsequently deacetylated FXR and restored CDCA, TUDCA, and TCDCA levels, thereby contributing to the observed hepaprotective effect of GE. Notably, EX527 treatment diminished the hepaprotective effect of GE on BDL-induced liver fibrosis. CONCLUSION: This study first proved the hepaprotective effect of GE on liver fibrosis in BDL mice, which was closely associated with the restoration of BA homeostasis and NLRP3 inflammasome inhibition. The activation of SIRT1 and the subsequent FXR deacetylation restored the BA profiles, especially CDCA, TUDCA, and TCDCA contents, which was the main contributor to NLRP3 inhibition and the hepaprotective effect of GE. Overall, our work provides novel insights that GE as well as Gardeniae Fructus might be the potential attractive candidate for ameliorating BDL-induced liver fibrosis.


Subject(s)
Inflammasomes , Liver , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Bile Acids and Salts/metabolism , Sirtuin 1/metabolism , Chromatography, Liquid , Mice, Inbred C57BL , Tandem Mass Spectrometry , Bile Ducts/metabolism , Fibrosis , Liver Cirrhosis/drug therapy , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism
13.
Genomics ; 115(5): 110684, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37454937

ABSTRACT

This study aims to elucidate the effect of ARHGAP9 on lung adenocarcinoma (LUAD) metastasis, and preliminarily explore its molecular mechanism. As a result, we found that ARHGAP9 was downregulated and correlated with poor prognosis of LUAD. ARHGAP9 knockdown promoted LUAD cell proliferation, migration and invasion, inhibited cell apoptosis and reduced G0G1 cell cycle arrest, in contrast to the results of ARHGAP9 overexpression. Further RNA sequencing analysis demonstrated that ARHGAP9 knockdown in H1299 cells significantly reduced DKK2 (dickkopf related protein 2) expression. Silencing ARHGAP9 in H1299 cells while overexpressing DKK2, DKK2 reversed the promoted effects of ARHGAP9 knockdown on LUAD cell proliferation, migration and invasion. Meanwhile, the activity of Wnt/ß-catenin signaling pathway was also reduced. Taken together, these data indicated that ARHGAP9 knockdown promoted LUAD metastasis by activating Wnt/ß-catenin signaling pathway via suppressing DKK2. This may provide a new strategy for LUAD treatment.

14.
J Thorac Dis ; 15(3): 1373-1386, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37065578

ABSTRACT

Background: Lung adenocarcinoma (LUAD) has become one of the most lethal cancers, for which the recurrence and survival rates remain unfavorable. The tumor necrosis factor (TNF) family is involved in tumorigenesis and tumor progression. Various long non-coding RNAs (lncRNAs) play important roles by mediating the TNF family in cancer. Therefore, this study aimed to construct a TNF-related lncRNA signature to predict prognosis and immunotherapy response in LUAD. Methods: The expression of TNF family members and their related lncRNAs in a total of 500 enrolled LUAD patients was collected from The Cancer Genome Atlas (TCGA). Univariate Cox and the least absolute shrinkage and selection operator (LASSO)-Cox analysis was used to construct a TNF family-related lncRNA prognostic signature. Kaplan-Meier (KM) survival analysis was used to evaluate survival status. The time-dependent area under the receiver operating characteristic (ROC) curve (AUC) values were used to assess the predictive value of the signature to 1-, 2-, and 3-year overall survival (OS). Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied to identify the signature-related biological pathways. Furthermore, tumor immune dysfunction and exclusion (TIDE) analysis was employed to evaluate immunotherapy response. Results: A total of 8 TNF-related lncRNAs significantly associated with OS of LUAD patients were used to construct a TNF family-related lncRNA prognostic signature. According to risk score, these patients were divided into high- and low-risk subgroups. The KM survival analysis indicated that patients in the high-risk group showed significantly less favorable OS than that of low-risk group. The AUC values in predicting 1-, 2-, and 3-year OS were 0.740, 0.738, and 0.758, respectively. Moreover, the GO and KEGG pathway analyses demonstrated that these lncRNAs were closely involved in immune-related signaling pathways. The further TIDE analysis indicated that high-risk patients had a lower TIDE score than that of low-risk patients, indicating that high-risk patients may be appropriate candidates for immunotherapy. Conclusions: For the first time, this study constructed and validated a prognostic predictive signature of LUAD patients based on TNF-related lncRNAs, and the signature showed good performance to predict immunotherapy response. Therefore, this signature may provide new strategies for individualized treatment of LUAD patients.

15.
Br J Pharmacol ; 180(17): 2280-2297, 2023 09.
Article in English | MEDLINE | ID: mdl-37060166

ABSTRACT

BACKGROUND AND PURPOSE: MicroRNA-9 (miR-9) has previously been described as a dual-functional RNA during breast cancer progression and its roles need to be clarified thoroughly. EXPERIMENTAL APPROACH: A miR-9 knockout mode of mouse breast cancer, the MMTV-PyMT model (PyMT-miR-9-/- ), combined with different human breast cancer cell lines were used to evaluate the effects of miR-9 on breast cancer initiation, progression and metastasis. Lin-NECs (Neoplastic mammary epithelial cells) and pNECs (Pre-neoplastic mammary epithelial cells) were isolated and subjected to tumour-initiation assay. Whole-mount staining of mammary gland and histology was performed to determine mammary gland growth. Tumour-initiating analysis combining a series of in vitro experiments were carried out to evaluate miR-9 roles in tumour-initiating ability. RNA-sequencing of human breast cancer cells, and mammary glands at hyperplastic stages and established tumours in PyMT and PyMT-miR-9-/- mice, ChIP and luciferase report assays were conducted to reveal the underlying mechanisms. KEY RESULTS: MiR-9 is ectopically expressed in breast cancer and its level is negatively correlated with the prognosis, especially in basal-like breast cancer patients. Additionally, miR-9 is essential for breast cancer progression by promoting the expansion and activity of tumour-initiating cells (TICs) in preneoplastic glands, established tumours and xenograft modes. Mechanistically, the activity of TICs hinges on a positive TGF-ß/miR-9 regulatory loop mediated by the STARD13/YAP axis. CONCLUSIONS AND IMPLICATIONS: These findings demonstrate that miR-9 is an oncogenic miRNA rather than a tumour-suppressor in breast cancer, calling for rectification of the model for this conserved and highly abundant miRNA.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Mice , Animals , Female , Breast Neoplasms/metabolism , Transforming Growth Factor beta/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Transformation, Neoplastic/metabolism , Neoplastic Stem Cells , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Proliferation
16.
Crit Rev Food Sci Nutr ; : 1-30, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37096460

ABSTRACT

Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.

17.
Chemistry ; 29(2): e202202880, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36177713

ABSTRACT

A new palladium-catalyzed reductive double carbonylation of nitroarenes with aryl halides for the synthesis of benzoxazin-4-ones has been reported. The key to success was the use of Mo(CO)6 as a reductant and bench-stable solid carbonyl sources. Various aryl iodides, bromides, and trifluoromethanesulfonates are suitable reaction partners and produce corresponding benzoxazin-4-one derivatives in moderate to good yields. Preliminary mechanistic studies indicate that nitrosoarene was first generated as the key intermediate through nitro reduction. Remarkably, this method avoids the use of toxic CO gas and is further applied to the late-stage modification of estrone.


Subject(s)
Palladium , Reducing Agents , Catalysis , Molecular Structure , Organic Chemicals
18.
Ann Transl Med ; 10(22): 1251, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36544630

ABSTRACT

Background and Objective: The number of new drug clinical trials in China is surging, and ethics review played an important part in clinical trials. However, there are certain problems of ethical review in China. This review aims to conduct a review to propose recommendations of an ethical review mode for multicenter clinical trials and ultimately contribute to improving the ethics review mechanism and the efficiency. Methods: A literature review, publication research and interpretation of the related governmental policies and requirements in China were conducted to collect available information for analysis of the current situation in terms of the various ethical review modes for multicenter clinical research. The literatures and information were searched and selected from national and international database and related governance website by following some inclusion and exclusion criteria. And a comparation with the relevant practical experience in the USA was conducted to support the proposing of recommendations to China by referring to some successful practice in the USA. Key Content and Findings: China has undergone several stages of development. The most traditional and least efficient model is institutional review boards (IRBs) review, which is most commonly used. After IRB review mode, other modes such as central IRB and single IRB review have emerged, which have improved the efficiency of ethical review. However, multiple challenges exist like, no clear definition of regulatory responsibilities and the consensus is not easy to be made due to the gap of interpretation and the unbalanced development on ethic review system from Chinese hospitals. Conclusions: The multicenter ethical review should adopt the conditional 'approval' mode of the leading site's ethical review decisions, gradually establish a single IRB review and select the best ethics committee. Regional ethics committees can gradually take responsibility for the primary review in the multicenter ethics review model and ultimately contribute to improving the mechanism and efficiency of the ethics review.

19.
Ann Transl Med ; 10(22): 1236, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36544631

ABSTRACT

Background: Currently, there is no satisfactory treatment available for esophageal squamous cell carcinoma (ESCC), and thus, there is a pressing need to develop effective drugs. Chaetoglobosin E, a cytochalasan alkaloid derived from metabolites of Chaetomium madrasense 375, is a chaetoglobosin with intense anti-tumor activity. Therefore, revealing its anti-tumor mechanism for the application of cytochalasans is crucial. Methods: The cytotoxic effect of chaetoglobosin E and cisplatin on esophageal cancer KYSE-30, KYSE-150, and TE-1 cells was detected using cell viability or colony formation assays. The cell cycle, apoptosis, autophagy, invasion, and metastasis were assayed by flow cytometry or western blot. The potential target of chaetoglobosin E was assayed by RNA sequencing (RNA-seq) and large loop prediction software analysis and was assessed by western blot and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The effect of its target on cell pyroptosis was assayed using overexpression and silence experiments. Results: Chaetoglobosin E significantly inhibited the proliferation of KYSE-30, KYSE-150, and TE-1 cells, especially KYSE-30 cells. Our results showed that chaetoglobosin E induced the G2/M phase arrest of KYSE-30 cells, followed by the down-regulation of cyclinB1, CDC2, and p-CDC2, and up-regulation of p21. Moreover, chaetoglobosin E also decreased the anti-apoptotic protein expression of Bcl-2, increased apoptotic expression of Bax, increased autophagy protein expressions of beclin1 and LC3, decreased invasion and metastasis protein expression of E-cadherin, and increased expression of vimentin. The RNA-seq and large loop prediction software analysis results indicated that its potential target might be polo-like kinase 1 (PLK1). Moreover, results also showed that chaetoglobosin E can reverse the PLK1 overexpression plasmid-induced up-regulation of the PLK1 protein. Furthermore, we found that chaetoglobosin E induced pyroptosis via the activation of the gasdermin E (GSDME) protein. Further studies showed that the high expression of PLK1 inactivated the GSDME protein, while the knockdown of PLK1 expression activated the GSDME protein, indicating that chaetoglobosin E induced cell pyroptosis by inhibiting PLK1. Conclusions: This study suggested that chaetoglobosin E may be a novel lead compound to the treatment of ESCC patients by targeting PLK1, and elucidated for the first time that PLK1 was involved in a new pyroptosis mechanism.

20.
Ann Transl Med ; 10(22): 1235, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36544675

ABSTRACT

Background: Kidney renal clear cell carcinoma (KIRC) is considered an immunogenic tumor. Cuproptosis is a newly identified copper-induced regulated cell death that relies on mitochondria respiration. Long noncoding RNAs (lncRNAs) have emerged as significant players in tumorigenesis and metastasis. However, there is a huge knowledge gap on the prognostic role of cuproptosis-related lncRNAs in KIRC. And, the clinical value of them is still unknown. Here, we aimed to develop a cuproptosis-related lncRNA prognostic signature in KIRC. Methods: The messenger RNA (mRNA)/lncRNA expression profiles and the clinical information including age, gender, tumor stage, grade, and overall survival (OS) were acquired from The Cancer Genome Atlas (TCGA) database. The included KIRC samples were further randomly assigned into training (n=258) or testing (n=257) data sets. We performed Pearson correlation analysis to identify the cuproptosis-related lncRNAs and then constructed the prognostic signature using Cox regression analysis and LASSO algorithm. Subsequently, Kaplan-Meier survival analysis, a nomogram, and receiver operating characteristic (ROC) curve were performed to assess the predictive performance of the signature. Moreover, the immune characteristics and drug sensitivity related to the signature were also explored. Results: The signature comprised 7 cuproptosis-related lncRNAs. The patients with a low-risk score had superior OS compared with those with a high-risk score. The survival rates of the high- and low-risk groups were 44.96% and 83.72% (P<0.001). The area under the curve (AUC) value for 1-, 3-, 5-year survival rate reached 0.814, 0.762 and 0.825, respectively. In addition, a nomogram was also generated; the AUC was 0.785 for risk score, higher than that for age (0.593), gender (0.489), grade (0.679), and stage (0.721). The high-risk group had more enriched immune- and tumor-related genes. Patients with low-risk scores were more sensitive to immunotherapy and the small molecular drugs GSK1904529A, tipifarnib, BX-912, FR-180204, and GSK1070916. Meanwhile, the high-risk group tended to be more sensitive to pyrimethamine, MS-275, and CGP-60474. Conclusions: Collectively, we constructed a cuproptosis-related lncRNA prognostic signature with a higher predictive accuracy compared to multiple clinicopathological parameters, which may provide vital guidance for therapeutic strategies in KIRC. Combination of more prognostic biomarkers may further improve the accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...