Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.563
Filter
1.
Oncol Lett ; 27(6): 289, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38736746

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with varying characteristics, in terms of genomic variation, cell morphology and clinical presentation. At present, only ~66% of patients are cured with initial treatment and those with refractory DLBCL exhibit a poor prognosis. Thus, further investigations into novel effective treatment options for DLBCL are required. The present study reports the case of a patient resistant to multiple therapies, including rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) plus enzastaurin (trial no. CTR20171560), GemOx plus lenalidomide and selinexor (trial no. ATG-010-DLBCL-001). The patient harbored a CD274 amplification, as identified via next-generation sequencing (NGS), and exhibited a high programmed death-ligand 1 Tumor Proportion Score of up to 95%. Consequently, the patient was treated with sintilimab monotherapy and the response lasted for 12 months of follow-up without major immune-related adverse events. This case highlights the role of NGS technology in selecting treatment options for refractory DLBCL. Furthermore, the results of the present study suggest that sintilimab may have potential in the treatment of patients with refractory DLBCL.

2.
Front Pharmacol ; 15: 1379338, 2024.
Article in English | MEDLINE | ID: mdl-38738180

ABSTRACT

Background: Chinese patent medicine is commonly used in China as an important treatment mechanism to thwart the progression of chronic kidney disease (CKD) stages 3-5, among which Niaoduqing granules are a representative Chinese patent medicine; however, its long-term efficacy on CKD prognosis remains unclear. Methods: Patients were grouped according to Niaoduqing granule prescription duration (non-Niaoduqing granule (non-NDQ) group vs Niaoduqing granule (NDQ) group). Serum creatinine (SCr) variation was compared using a generalized linear mixed model (GLMM). Multivariate Cox regression models were constructed, adjusting for confounding factors, to explore the risk of composite outcomes (receiving renal replacement therapy (RRT) or having an estimated glomerular filtration rate (eGFR)<5 mL/min/1.73 m2, ≥50% decline in the eGFR from the baseline, and doubling of SCr) in individuals consuming Niaoduqing granules. Results: A total of 1,271 patients were included, with a median follow-up duration of 29.71 (12.10, 56.07) months. The mean SCr Z-scores for the non-NDQ group and NDQ group were -0.175 and 0.153, respectively, at baseline (p = 0.015). The coefficients of the NDQ group from visit 1 to visit 5 were -0.207 (95% CI: -0.346, -0.068, p = 0.004), -0.214 (95% CI: 0.389, -0.039, p = 0.017), -0.324 (95% CI: 0.538, -0.109, p = 0.003), -0.502 (95% CI: 0.761, -0.243, p = 0.000), and -0.252 (95% CI: 0.569, 0.065, p = 0.119), respectively. The survival probability was significantly higher in the NDQ group (p = 0.0039). Taking Niaoduqing granules was a significant protective factor for thwarting disease progression (model 1: HR 0.654 (95% CI 0.489-0.875, p = 0.004); model 2: HR 0.646 (95% CI 0.476, 0.877, p = 0.005); and model 3: HR 0.602 (95% CI 0.442, 0.820, p = 0.001)). Conclusion: The long-term use of Niaoduqing granules improved SCr variation and lowered the risk of CKD progression by 39.8%.

4.
Nanoscale ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764388

ABSTRACT

Correction for 'Promoter-regulated in vivo asymmetric self-assembly strategy to synthesize heterogeneous nanoparticles for signal amplification' by Chen Chen et al., Nanoscale, 2022, 14, 16180-16184, https://doi.org/10.1039/D2NR04661J.

5.
Theor Appl Genet ; 137(6): 126, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727833

ABSTRACT

KEY MESSAGE: The gene controlling pink flesh in watermelon was finely mapped to a 55.26-kb region on chromosome 6. The prime candidate gene, Cla97C06G122120 (ClPPR5), was identified through forward genetics. Carotenoids offer numerous health benefits; while, they cannot be synthesized by the human body. Watermelon stands out as one of the richest sources of carotenoids. In this study, genetic generations derived from parental lines W15-059 (red flesh) and JQ13-3 (pink flesh) revealed the presence of the recessive gene Clpf responsible for the pink flesh (pf) trait in watermelon. Comparative analysis of pigment components and microstructure indicated that the disparity in flesh color between the parental lines primarily stemmed from variations in lycopene content, as well as differences in chromoplast number and size. Subsequent bulk segregant analysis (BSA-seq) and genetic mapping successfully narrowed down the Clpf locus to a 55.26-kb region on chromosome 6, harboring two candidate genes. Through sequence comparison and gene expression analysis, Cla97C06G122120 (annotated as a pentatricopeptide repeat, PPR) was predicted as the prime candidate gene related to pink flesh trait. To further investigate the role of the PPR gene, its homologous gene in tomato was silenced using a virus-induced system. The resulting silenced fruit lines displayed diminished carotenoid accumulation compared with the wild-type, indicating the potential regulatory function of the PPR gene in pigment accumulation. This study significantly contributes to our understanding of the forward genetics underlying watermelon flesh traits, particularly in relation to carotenoid accumulation. The findings lay essential groundwork for elucidating mechanisms governing pigment synthesis and deposition in watermelon flesh, thereby providing valuable insights for future breeding strategies aimed at enhancing fruit quality and nutritional value.


Subject(s)
Chromosome Mapping , Citrullus , Fruit , Phenotype , Pigmentation , Plant Proteins , Citrullus/genetics , Citrullus/metabolism , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Genes, Plant , Carotenoids/metabolism , Genes, Recessive , Gene Expression Regulation, Plant , Chromosomes, Plant/genetics , Lycopene/metabolism
6.
PhytoKeys ; 242: 1-8, 2024.
Article in English | MEDLINE | ID: mdl-38764934

ABSTRACT

In this study, we describe and illustrate a new species, Primulaweiliei L.S.Yang, Z.K.Wu & G.W.Hu, from the Shennongjia Forestry District, Hubei Province in Central China. It is morphologically assigned to Primulasect.Aleuritia based on its dwarf and hairless habit, long petiole, fruits longer than calyx and covered by farina on the scape. This new species is similar to P.gemmifera and P.munroisubsp.yargongensis in the same section, but it can be distinguished by its smaller calyxes, homostylous flowers, corolla tube throat without annular appendage and only 1-2 flowers in each inflorescence. Based on the assessment conducted according to the IUCN Red List criteria, we propose that P.weiliei be classified as a Critically Endangered (CR) species.

7.
Comb Chem High Throughput Screen ; 27(5): 786-796, 2024.
Article in English | MEDLINE | ID: mdl-38773797

ABSTRACT

OBJECTIVE: Diabetic osteoporosis (DOP) belongs to the group of diabetes-induced secondary osteoporosis and is the main cause of bone fragility and fractures in many patients with diabetes. The aim of this study was to determine whether Ziyin Bushen Fang (ZYBSF) can improve DOP by inhibiting autophagy and oxidative stress. METHODS: Type 1 diabetes mellitus (T1DM) was induced in rats using a high-fat high-sugar diet combined with streptozotocin. Micro-CT scanning was used to quantitatively observe changes in the bone microstructure in each group. Changes in the serum metabolites of DOP rats were analyzed using UHPLC-QTOF-MS. The DOP mouse embryonic osteoblast precursor cell model (MC3T3-E1) was induced using high glucose levels. RESULTS: After ZYBSF treatment, bone microstructure significantly improved. The bone mineral density, trabecular number, and trabecular thickness in the ZYBSF-M and ZYBSF-H groups significantly increased. After ZYBSF treatment, the femur structure of the rats was relatively intact, collagen fibers were significantly increased, and osteoporosis was significantly improved. A total of 1239 metabolites were upregulated and 1527 were downregulated in the serum of T1DM and ZYBSF-treated rats. A total of 20 metabolic pathways were identified. In cellular experiments, ZYBSF reduced ROS levels and inhibited the protein expression of LC3II / I, Beclin-1, and p-ERK. CONCLUSION: ZYBSF may improve DOP by inhibiting the ROS/ERK-induced autophagy signaling pathway.


Subject(s)
Autophagy , Drugs, Chinese Herbal , Osteoporosis , Oxidative Stress , Animals , Autophagy/drug effects , Oxidative Stress/drug effects , Osteoporosis/drug therapy , Osteoporosis/metabolism , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Diabetes Mellitus, Experimental/drug therapy , Male , Rats, Sprague-Dawley , Streptozocin , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/complications , Bone Density/drug effects
8.
Inorg Chem ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757704

ABSTRACT

High-performance nonlinear-optical (NLO) crystals need to simultaneously meet multiple basic and conflicting performance requirements. Here, by using a partial chemical substitution strategy, the first noncentrosymmetric (NCS) PbBeB2O5 crystal with a BeB2O8 group was synthesized, exhibiting a two-dimensional [BeB2O5]∞ layer constructed by interconnecting BeB2O8 groups and bridged PbO4 with an active lone pair. The crystal shows a promising UV NLO functional feature, including a strong SHG effect of 3.5 × KDP (KH2PO4), large birefringence realizing phase matchability in the whole transparency region from 246 to 2500 nm, a short UV absorption edge of 246 nm, and single-crystal easy growth. Remarkably, theoretical studies reveal that the BeB2O8 group has high nonlinear activity, which could stimulate the discovery of a series of excellent NLO beryllium borates.

9.
Environ Int ; 187: 108713, 2024 May.
Article in English | MEDLINE | ID: mdl-38703446

ABSTRACT

Nanoplastics (NPs) are increasingly pervasive in the environment, raising concerns about their potential health implications, particularly within aquatic ecosystems. This study investigated the impact of polystyrene nanoparticles (PSN) on zebrafish liver metabolism using liquid chromatography hybrid quadrupole time of flight mass spectrometry (LC-QTOF-MS) based non-targeted metabolomics. Zebrafish were exposed to 50 nm PSN for 28 days at low (L-PSN) and high (H-PSN) concentrations (0.1 and 10 mg/L, respectively) via water. The results revealed significant alterations in key metabolic pathways in low and high exposure groups. The liver metabolites showed different metabolic responses with L-PSN and H-PSN. A total of 2078 metabolite features were identified from the raw data obtained in both positive and negative ion modes, with 190 metabolites deemed statistically significant in both L-PSN and H-PSN groups. Disruptions in lipid metabolism, inflammation, oxidative stress, DNA damage, and amino acid synthesis were identified. Notably, L-PSN exposure induced changes in DNA building blocks, membrane-associated biomarkers, and immune-related metabolites, while H-PSN exposure was associated with oxidative stress, altered antioxidant metabolites, and liver injury. For the first time, L-PSN was found depolymerized in the liver by cytochrome P450 enzymes. Utilizing an analytical approach to the adverse outcome pathway (AOP), impaired lipid metabolism and oxidative stress have been identified as potentially conserved key events (KEs) associated with PSN exposure. These KEs further induced liver inflammation, steatosis, and fibrosis at the tissue and organ level. Ultimately, this could significantly impact biological health. The study highlights the PSN-induced effects on zebrafish liver metabolism, emphasizing the need for a better understanding of the risks associated with NPs contamination in aquatic ecosystems.


Subject(s)
Liver , Nanoparticles , Water Pollutants, Chemical , Zebrafish , Animals , Liver/metabolism , Liver/drug effects , Water Pollutants, Chemical/toxicity , Nanoparticles/toxicity , Environmental Health , Polystyrenes/toxicity , Oxidative Stress/drug effects , Metabolomics
10.
ACS Nano ; 18(20): 13266-13276, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38709874

ABSTRACT

One key challenge in postoperative glioblastoma immunotherapy is to guarantee a potent and durable T-cell response, which is restricted by the immunosuppressive microenvironment within the lymph nodes (LNs). Here, we develop an in situ sprayed exosome-cross-linked gel that acts as an artificial LN structure to directly activate the tumor-infiltrating T cells for prevention of glioma recurrence. Briefly, this gel is generated by a bio-orthogonal reaction between azide-modified chimeric exosomes and alkyne-modified alginate polymers. Particularly, these chimeric exosomes are generated from dendritic cell (DC)-tumor hybrid cells, allowing for direct and robust T-cell activation. The gel structure with chimeric exosomes as cross-linking points avoids the quick clearance by the immune system and thus prolongs the durability of antitumor T-cell immunity. Importantly, this exosome-containing immunotherapeutic gel provides chances for ameliorating functions of antigen-presenting cells (APCs) through accommodating different intracellular-acting adjuvants, such as stimulator of interferon genes (STING) agonists. This further enhances the antitumor T-cell response, resulting in the almost complete elimination of residual lesions after surgery. Our findings provide a promising strategy for postsurgical glioma immunotherapy that warrants further exploration in the clinical arena.


Subject(s)
Exosomes , Glioblastoma , Immunotherapy , Lymph Nodes , Exosomes/chemistry , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Lymph Nodes/immunology , Lymph Nodes/pathology , Animals , Mice , Gels/chemistry , Dendritic Cells/immunology , T-Lymphocytes/immunology , Cell Line, Tumor , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Mice, Inbred C57BL
11.
Appl Microbiol Biotechnol ; 108(1): 318, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700733

ABSTRACT

DNA-based stable isotope probing (DNA-SIP) technology has been widely employed to trace microbes assimilating target substrates. However, the fractions with labelled universal genes are sometimes difficult to distinguish when detected by quantitative real-time PCR. In this experiment, three paddy soils (AQ, CZ, and NB) were amended with 0.1% glucose containing 13C at six levels, and DNA was then extracted after a 7-day incubation and subjected to isopycnic gradient centrifugation. The results showed that the amount of labelled DNA was notably related to the 13C-glucose percentage, while the separation spans of 18S rRNA and 16S rRNA genes between labelled and unlabelled treatments became notably clearer when the δ13C values of the total DNA were 90.9, 61.6, and 38.9‰ and 256.2, 104.5 and 126.1‰ in the AQ, CZ, and NB soils, respectively. Moreover, fractionated DNA was also labelled by determining the δ13C values while adding only 5 atom% 13C-glucose to the soil. The results suggest that the optimal labelling fractions were not always those fractions with the maximal gene abundance, and detecting the δ13C values of the total and fractionated DNA was beneficial in estimating the results of DNA-SIP. KEY POINTS: • Appropriate 13C-DNA amount was needed for DNA-SIP. • Detecting the 13C ratio of fractionated DNA directly was an assistant method for identifying the labelled fractions. • Fractions with the maximal 18S or 16S rRNA gene abundance always were not labelled.


Subject(s)
Carbon Isotopes , DNA, Bacterial , RNA, Ribosomal, 16S , RNA, Ribosomal, 18S , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Carbon Isotopes/analysis , DNA, Bacterial/genetics , RNA, Ribosomal, 18S/genetics , Ultracentrifugation , Soil/chemistry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Isotope Labeling/methods , Glucose/metabolism
12.
Cell Signal ; 120: 111198, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697449

ABSTRACT

BACKGROUND: Phosphoenolpyruvate carboxykinase (PEPCK) plays a crucial role in gluconeogenesis, glycolysis, and the tricarboxylic acid cycle by converting oxaloacetate into phosphoenolpyruvate. Two distinct isoforms of PEPCK, specifically cytosolic PCK1 and mitochondrial PCK2, have been identified. Nevertheless, the comprehensive understanding of their dysregulation in pan-cancer and their potential mechanism contributing to signaling transduction pathways remains elusive. METHODS: We conducted comprehensive analyses of PEPCK gene expression across 33 diverse cancer types using data from The Cancer Genome Atlas (TCGA). Multiple public databases such as HPA, TIMER 2.0, GEPIA2, cBioPortal, UALCAN, CancerSEA, and String were used to investigate protein levels, prognostic significance, clinical associations, genetic mutations, immune cell infiltration, single-cell sequencing, and functional enrichment analysis in patients with pan-cancer. PEPCK expression was analyzed about different clinical and genetic factors of patients using data from TCGA, GEO, and CGGA databases. Furthermore, the role of PCK2 in Glioma was examined using both in vitro and in vivo experiments. RESULTS: The analysis we conducted revealed that the expression of PEPCK is involved in both clinical outcomes and immune cell infiltration. Initially, we verified the high expression of PCK2 in GBM cells and its role in metabolic reprogramming and proliferation in GBM. CONCLUSION: Our study showed a correlation between PEPCK (PCK1 and PCK2) expression with clinical prognosis, gene mutation, and immune infiltrates. These findings identified two possible predictive biomarkers across different cancer types, as well as a comprehensive analysis of PCK2 expression in various tumors, with a focus on GBM.

13.
Biodes Res ; 6: 0032, 2024.
Article in English | MEDLINE | ID: mdl-38716149

ABSTRACT

Messenger RNA (mRNA) therapeutics hold great potential in the prevention and treatment of many diseases owing to several unique advantages. Delivery of mRNA into target cells is a critical step in mRNA therapy. Efficient and safe delivery systems remain an urgent need. Here, we provide an overview of the current applications of protein nanocages (PNCs), which include different types of PNCs, such as viral capsids, nonviral PNCs, and artificial PNCs, in mRNA delivery. PNCs have the features of uniform size, controllable assembly, modifiable inner and outer surfaces, good biocompatibility, and biodegradability, making them ideal candidates for mRNA delivery. In this review, the properties, loading strategies, and delivery outcomes of each tested PNC are introduced. The challenges faced by PNC-based mRNA carriers are discussed. We also share our perspectives on possible strategies to address these challenges, emphasizing the opportunities brought by emerging technologies and disciplinary convergence.

14.
Mediators Inflamm ; 2024: 9986187, 2024.
Article in English | MEDLINE | ID: mdl-38716374

ABSTRACT

Objective: Fetal growth restriction (FGR) is a significant contributor to negative pregnancy and postnatal developmental outcomes. Currently, the exact pathological mechanism of FGR remains unknown. This study aims to utilize multiomics sequencing technology to investigate potential relationships among mRNA, gut microbiota, and metabolism in order to establish a theoretical foundation for diagnosing and understanding the molecular mechanisms underlying FGR. Methods: In this study, 11 healthy pregnant women and nine pregnant women with FGR were divided into Control group and FGR group based on the health status. Umbilical cord blood, maternal serum, feces, and placental tissue samples were collected during delivery. RNA sequencing, 16S rRNA sequencing, and metabolomics methods were applied to analyze changes in umbilical cord blood circulating mRNA, fecal microbiota, and metabolites. RT-qPCR, ELISA, or western blot were used to detect the expression of top 5 differential circulating mRNA in neonatal cord blood, maternal serum, or placental tissue samples. Correlation between differential circulating mRNA, microbiota, and metabolites was analyzed by the Spearman coefficient. Results: The top 5 mRNA genes in FGR were altered with the downregulation of TRIM34, DEFA3, DEFA1B, DEFA1, and QPC, and the upregulation of CHPT1, SMOX, FAM83A, GDF15, and NAPG in newborn umbilical cord blood, maternal serum, and placental tissue. The abundance of Bacteroides, Akkermansia, Eubacterium_coprostanoligenes_group, Phascolarctobacterium, Parasutterella, Odoribacter, Lachnospiraceae_UCG_010, and Dielma were significantly enriched in the FGR group. Metabolites such as aspartic acid, methionine, alanine, L-tryptophan, 3-methyl-2-oxovalerate, and ketoleucine showed notable functional alterations. Spearman correlation analysis indicated that metabolites like methionine and alanine, microbiota (Tyzzerella), and circulating mRNA (TRIM34, SMOX, FAM83A, NAPG) might play a role as mediators in the communication between the gut and circulatory system interaction in FGR. Conclusion: Metabolites (METHIONINE, alanine) as well as microbiota (Tyzzerella) and circulating mRNA (TRIM34, SMOX, FAM83A, NAPG) were possible mediators that communicated the interaction between the gut and circulatory systems in FGR.


Subject(s)
Fetal Growth Retardation , Gastrointestinal Microbiome , RNA, Messenger , Humans , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/microbiology , Pregnancy , RNA, Messenger/metabolism , Adult , Fetal Blood/metabolism , RNA, Ribosomal, 16S/genetics , Placenta/metabolism , Placenta/microbiology , Feces/microbiology , Infant, Newborn , Multiomics
15.
Ecotoxicol Environ Saf ; 278: 116426, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718727

ABSTRACT

The increase of micro- and nano-plastics (MNPs) in aquatic environments has become a significant concern due to their potential toxicological effects on ecosystems, food web dynamics, and human health. These plastic particles emerge from a range of sources, such as the breakdown of larger plastic waste, consumer products, and industrial outputs. This review provides a detailed report of the transmission and dangers of MNPs in aquatic ecosystems, environmental behavior, and interactions within aquatic food webs, emphasizing their toxic impact on marine life. It explores the relationship between particle size and toxicity, their distribution in different tissues, and the process of trophic transfer through the food web. MNPs, once consumed, can be found in various organs, including the digestive system, gills, and liver. Their consumption by lower trophic level organisms facilitates their progression up the food chain, potentially leading to bioaccumulation and biomagnification, thereby posing substantial risks to the health, reproduction, and behavior of aquatic species. This work also explores how MNPs, through their persistence and bioaccumulation, pose risks to aquatic biodiversity and disrupt trophic relationships. The review also addresses the implications of MNPs for human health, particularly through the consumption of contaminated seafood, highlighting the direct and indirect pathways through which humans are exposed to these pollutants. Furthermore, the review highlights the recommendations for future research directions, emphasizing the integration of ecological, toxicological, and human health studies to inform risk assessments and develop mitigation strategies to address the global challenge of plastic pollution in aquatic environments.

16.
ACS Nano ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752610

ABSTRACT

The ability to manipulate the self-assembly of proteins is essential to understanding the mechanisms of life and beneficial to fabricating advanced nanomaterials. Here, we report the transformation of the MS2 phage capsid from nanocages to nanotubes and then to nanotube hydrogels through simple point mutations guided by interfacial interaction redesign. We demonstrate that site 70, which lies in the flexible FG loop of the capsid protein (CP), is a "magic" site that can largely dictate the final morphology of assemblies. By varying the amino acid at site 70, with the aid of a cysteine-to-alanine mutation at site 46, we achieved the assembly of double-helical or single-helical nanotubes in addition to nanocages. Furthermore, an additional cysteine substitution on the surface of nanotubes mediated their cross-linking to form hydrogels with reducing agent responsiveness. The hierarchical self-assembly system allowed for the investigation of morphology-related immunogenicity of MS2 CPs, which revealed dramatic differences among nanocages, nanotubes, and nanotube hydrogels in terms of immune response types, antibody levels and T cell functions. This study provides insights into the assembly manipulation of protein nanomaterials and the customized design of nanovaccines and drug delivery systems.

17.
Respirology ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720400

ABSTRACT

BACKGROUND AND OBJECTIVE: Lung function reaches a peak/plateau in early adulthood before declining with age. Lower early adult lung function may increase the risk for chronic obstructive pulmonary disease (COPD) in mid-late adult life. Understanding the effects of multiple childhood/adolescent exposures and their potential interactions on plateau lung function would provide insights into the natural history of COPD. METHODS: Longitudinal spirometry data from 688 participants with complete data from a population-based birth cohort (original n = 1037) were used to investigate associations between a wide range of childhood/adolescent exposures and repeated measures of FEV1, FVC and FEV1/FVC during the early-adult plateau phase. Generalized estimating equations were used to accommodate the multiple timepoints per participant. RESULTS: FEV1 reached a peak/plateau between ages 18 and 26 and FVC from 21 to 32 years, whereas FEV1/FVC declined throughout early adulthood. Childhood asthma and airway hyperresponsiveness were associated with lower early adult FEV1 and FEV1/FVC. Smoking by age 18 was associated with lower FEV1/FVC. Higher BMI during early adulthood was associated with lower FEV1 and FVC and lower FEV1/FVC. Physical activity during adolescence was positively associated with FEV1 and FEV1/FVC but this was only statistically significant in men. There was no convincing evidence of interactions between exposures. CONCLUSION: Childhood asthma and airway hyperresponsiveness are associated with lower lung function in early adulthood. Interventions targeting these may reduce the risk of COPD in mid-late adult life. Promotion of physical activity during adolescence, prevention of cigarette smoking and maintenance of a healthy body weight in early adulthood are also priorities.

18.
Opt Express ; 32(6): 9867-9876, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571211

ABSTRACT

Orbit-induced localized spin angular momentum (OILS) has recently garnered significant attention. This paper introduces periodic edge dislocation (PED) into the tight focusing system. The study delves into the tight focusing characteristics of the radially polarized vortex plane beam with PED, demonstrating that PED serves as a straightforward and effective means of manipulating OILS, especially when both the orbital angular momentum and the polarization of the incident beam are fixed. Our findings indicate that the longitudinal OILS reaches its maximum when the difference between the period of PED and the vortex topological charge is equal to 1. Conversely, when the difference is 0, the transverse OILS reaches its maximum, while the longitudinal OILS reaches its minimum. Similar patterns are also observed in linearly polarized vortex beams. This research proposes a simple and practical way to control OILS, contributing to our understanding of optical orbit-spin coupling.

19.
J Fam Psychol ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573698

ABSTRACT

In this study, we explored racial microaggressions (RMAs) and adoption microaggressions (AMAs) experienced and committed by white adoptive parents of transracial adoptees. Two research questions guided this inquiry: (a) What types of RMAs and AMAs do white adoptive parents of children adopted from China experience and commit? and (b) how is white adoptive parental awareness of race and adoption related to their committing of microaggressions? Based on qualitative coding of interviews conducted with 39 white adoptive parents of Chinese adoptees, the most frequently coded AMA was Biology is Best for experienced AMAs and Phantom Birth Parents for committed AMAs. Alien in Own Land was the most experienced RMA, and Color Evasiveness was the most committed RMA. Parents tended to have high awareness of the AMAs (87%) and RMAs (89%) they experienced from others, yet this awareness did not preclude them from committing RMAs and AMAs within their transracially adoptive family. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

20.
Adv Sci (Weinh) ; : e2400377, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561956

ABSTRACT

Ligand-protected heterometallic nanoclusters in contrast to homo-metal counterparts show more broad applications due to the synergistic effect of hetero-metals but their controllable syntheses remain a challenge. Among heterometallic nanoclusters, monovalent Ag-Cu compounds are rarely explored due to much difference of Ag(I) and Cu(I) such as atom radius, coordination habits, and redox potential. Encouraged by copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, comproportionation reaction of Cu(II)X2 and Cu(0) in the presence of (PhC≡CAg)n complex and molybdate generated a core-shell peanut-shaped 66-nuclear Ag(I)-Cu(I) heterometallic nanocluster, [(Mo4O16)2@Cu12Ag54(PhC≡C)50] (referred to as Ag54Cu12). The structure and composition of Ag-Cu heterometallic nanocluster are fully characterized. X-ray single crystal diffraction reveals that Ag54Cu12 has a peanut-shaped silver(I)/copper(I) heterometallic nanocage protected by fifty phenylacetylene ligands in µ3-modes and encapsulated two mutually twisted tetramolybdates. Heterometallic nanocage contains a 54-Ag-atom outer ellipsoid silver cage decorated by 12 copper inside wall. Nanosized Ag54Cu12 is a n-type narrow-band-gap semiconductor with a good photocurrent response. Preliminary experiments demonstrates that Ag54Cu12 itself and activated carbon supported Ag54Cu12/C are effective catalysts for 1,3-dipole cycloaddition between alkynes and azides at ambient conditions. The work provides not only a new synthetic route toward Ag(I)-Cu(I) nanoclusters but also an important heterometallic intermediate in CuAAC catalytic reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...