Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 377
Filter
1.
Small ; : e2400941, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529737

ABSTRACT

Multidimensional metabolic analysis has become a new trend in establishing efficient disease monitoring systems, as the constraints associated with relying solely on a single dimension in refined monitoring are increasingly pronounced. Here, coordination polymers are employed as derivative precursors to create multishell hollow hybrids, developing an integrated metabolic monitoring system. Briefly, metabolic fingerprints are extracted from hundreds of serum samples and urine samples, encompassing not only membranous nephropathy but also related diseases, using high-throughput mass spectrometry. With optimized algorithm and initial feature selection, the established combined panel demonstrates enhanced accuracy in both subtype differentiation (over 98.1%) and prognostic monitoring (over 95.6%), even during double blind test. This surpasses the serum biomarker panel (≈90.7% for subtyping, ≈89.7% for prognosis) and urine biomarker panel (≈94.4% for subtyping, ≈76.5% for prognosis). Moreover, after attempting to further refine the marker panel, the blind test maintains equal sensitivity, specificity, and accuracy, showcasing a comprehensive improvement over the single-fluid approach. This underscores the remarkable effectiveness and superiority of the integrated strategy in discriminating between MN and other groups. This work has the potential to significantly advance diagnostic medicine, leading to the establishment of more effective strategies for patient management.

2.
Talanta ; 274: 125948, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38547837

ABSTRACT

Alzheimer's disease (AD) is a universal neurodegenerative disease in older adults with incurable and progressive properties, urging for precise monitoring to perform timely treatment to delay its progression. Herein, we introduced a non-targeting magnetic metal-organic framework probe coupled with high-throughput mass spectrometry, creating a rapid screening strategy for highly specific peptides associated with AD. Notably, an elution-free extraction process was proposed, significantly reducing sample preprocessing time while simultaneously ensuring the efficient detection of captured peptides. Using this elution-free extraction process, high-quality peptide profiles were rapidly extracted from the hundreds of samples from both diseased and healthy individuals. By integrating machine learning algorithms, LC-MS/MS, and Uniprot database searching, we identified three specific serum endogenous peptides (m/z = 4215.41, 2884.77 and 2704.61) closely associated with AD. Remarkably, with the use of any single specific peptide, the AUC (Area Under the Curve) values can reach approximately 0.9 during monitoring AD. Moreover, integrating three specific biomarkers provides a robust basis for machine learning algorithms to build monitoring models, with AUC value up to 1.000. This work represents a substantial advancement in the development of peptide-specific precise monitoring approaches for complex diseases, serving as a catalyst for increased dedication to the molecular detection field.


Subject(s)
Alzheimer Disease , Metal-Organic Frameworks , Peptides , Metal-Organic Frameworks/chemistry , Humans , Peptides/chemistry , Alzheimer Disease/diagnosis , Alzheimer Disease/blood , Machine Learning , Biomarkers/blood , Biomarkers/analysis , Tandem Mass Spectrometry
3.
Anal Bioanal Chem ; 416(7): 1589-1597, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38289356

ABSTRACT

Uric acid (UA) is an important biomarker, as a high concentration in blood can lead to gout and further renal syndrome. Although several point-of-care testing (POCT) devices have been reported to detect UA, there are some limitations such as the requirement for uricase and the complicated pretreatment of serum/plasma samples, which restricts their use at home or in undeveloped areas. In this work, we developed an approach by applying Zn2+ to precipitate proteins and cells in whole blood to avoid interference with the chromogenic reaction. We used carboxymethylcellulose (CMC) to immobilize tetramethylbenzidine (TMB) on a nitrocellulose membrane for colorimetric detection. Using the oxidization properties of H2O2, which turns TMB into oxidized tetramethylbenzidine (TMBox) in the presence of catalyst gold nanoparticles (AuNPs), we successfully constructed an enzyme-free paper-based POCT device using the reduction reaction of UA and TMBox for simple, speedy, and cheap colorimetric detection of UA, achieving a detection time of 8 min, a linear range of 0-150 µg/mL, and an LOD of 25.79 µg/mL. The UA concentration in whole blood samples was further measured and correlated well with the clinical value (R2 = 0.8212). Thus, the proposed assay has the potential for POCT diagnosis, monitoring, and prognosis of diseases related to UA.


Subject(s)
Metal Nanoparticles , Uric Acid , Gold , Colorimetry , Hydrogen Peroxide , Zinc
4.
Anal Chim Acta ; 1287: 342109, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38182386

ABSTRACT

BACKGROUND: Tumor-derived exosomes (TEXs) play an important role in the development process of cancer, which can transport a large number of carcinogenic molecules to normal cells, and subsequently promote tumor metastasis. However, TEXs that were utilized in most of previous researches were obtained from the cell medium of tumor cell lines, which cannot reflect the physiological state of primary cells in vivo. Isolation of native TEXs from human plasma with intact function is contributed to exploring the interaction between TEXs and recipient cells for understanding their true biological functions. RESULTS: We developed a strategy that involves both capture and release processes to obtain native TEXs from plasma of cancer patients. An MoS2-based immunomagnetic probe (Fe3O4@MoS2-Au-Aptamer, named as FMAA) with the advantages of high surface area, magnetic response and abundant affinity sites was designed and synthesized to capture TEXs through recognizing high-expression tumor-associated antigens of EpCAM. With the assistance of complementary sequences of EpCAM, TEXs were released with non-destruction and no residual labels. According to NTA analysis, 107-108 TEXs were recovered from per mL plasma of breast cancer patients. The interaction between native TEXs and normal epithelial cells confirms TEXs could induce significant activation of autophagy of recipient cells with co-culture for 12 h. Proteomics analysis demonstrated a total of 637 proteins inside epithelial cells had dynamic expression with the stimulation of TEXs and 5 proteins in the pathway of autophagy had elevated expression level. SIGNIFICANCE: This work not only obtains native TEXs from human plasma with non-destruction and no residual labels, but also explores the interaction between TEXs and recipient cells for understanding their true biological functions, which will accelerate the application of TEXs in the field of biomarkers and therapeutic drugs.


Subject(s)
Breast Neoplasms , Exosomes , Humans , Female , Epithelial Cell Adhesion Molecule , Molybdenum , Carcinogens
5.
Eur J Med Res ; 29(1): 15, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173021

ABSTRACT

Early diagnosis and pharmacological treatment of central nervous system (CNS) diseases has been a long-standing challenge for clinical research due to the presence of the blood-brain barrier. Specific proteins and RNAs in brain-derived extracellular vesicles (EVs) usually reflect the corresponding state of brain disease, and therefore, EVs can be used as diagnostic biomarkers for CNS diseases. In addition, EVs can be engineered and fused to target cells for delivery of cargo, demonstrating the great potential of EVs as a nanocarrier platform. We review the progress of EVs as markers and drug carriers in the diagnosis and treatment of neurological diseases. The main areas include visual imaging, biomarker diagnosis and drug loading therapy for different types of CNS diseases. It is hoped that increased knowledge of EVs will facilitate their clinical translation in CNS diseases.


Subject(s)
Central Nervous System Diseases , Extracellular Vesicles , Humans , Brain , Extracellular Vesicles/metabolism , Blood-Brain Barrier , Biomarkers/metabolism , Central Nervous System Diseases/diagnosis , Central Nervous System Diseases/therapy , Central Nervous System Diseases/metabolism
6.
Recent Pat Anticancer Drug Discov ; 19(2): 176-187, 2024.
Article in English | MEDLINE | ID: mdl-38214357

ABSTRACT

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is the most common cancer of head and neck cancer. Y-box binding protein-1 (YBX1) has tumor-promoting effects in some types of cancers. However, its role in LSCC remains unknown. This study set out to identify the role of YBX1 in LSCC. METHODS: Bioinformatics analysis of the Gene Expression Omnibus (GEO) database and our cohort data were used to explore the association of YBX1 expression with clinicopathological factors in LSCC. Then, cells with stably or transiently transfected with plasmid or siRNA were constructed to assess the effect of loss and gain of YBX1 on the biological phenotypes of LSCC cells in vitro. In addition, subcutaneous xenograft and orthotopic liver tumor mouse models were constructed for validation. The interrogated miRNA databases and subsequent luciferase reporter assays were used to confirm the miR-382-5p target of YBX1. At last, KEGG enrichment annotation from TGCA data was used for downstream analyses of miR-382-5p/YBX1 and verified by PCR and Western immunoblotting. RESULTS: The results showed that significant upregulation of YBX1 in LSCC tumors was correlated with advanced TNM stage and poor prognosis. Knockdown of YBX1 markedly impaired the proliferative, invasive, and migratory activity of Tu212 cells. We confirmed that miR-382-5p targets YBX1 to mediate LSCC progression both in vitro and in vivo. We further confirmed that miR-382-5p/YBX1 modulated the Ras/MAPK signaling axis to regulate the progression of LSCC. CONCLUSION: Together, our results indicated that YBX1 is an important promoter of LSCC progression. And miR-382-5p/YBX1/RAS/MAPK signaling pathway can be perceived as a promising target in the treatment of LSCC.


Subject(s)
Laryngeal Neoplasms , MicroRNAs , Squamous Cell Carcinoma of Head and Neck , Y-Box-Binding Protein 1 , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Y-Box-Binding Protein 1/genetics , Y-Box-Binding Protein 1/metabolism
7.
Neuroradiology ; 66(1): 135-144, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38001311

ABSTRACT

PURPOSE: Prader-Willi syndrome (PWS) suffers from brain functional reorganization and developmental delays during childhood, but the underlying neurodevelopmental mechanism is unclear. This paper aims to investigate the intra- and internetwork functional connectivity (FC) changes, and their relationships with developmental delays in PWS children. METHODS: Resting-state functional magnetic resonance imaging datasets of PWS children and healthy controls (HCs) were acquired. Independent component analysis was used to acquire core resting-state networks (RSNs). The intra- and internetwork FC patterns were then investigated. RESULTS: In terms of intranetwork FC, children with PWS had lower FC in the dorsal attention network, the auditory network, the medial visual network (VN) and the sensorimotor network (SMN) than HCs (FWE-corrected, p < 0.05). In terms of internetwork FC, PWS children had decreased FC between the following pairs of regions: posterior default mode network (DMN) and anterior DMN; posterior DMN and SMN; SMN and posterior VN and salience network and medial VN (FDR-corrected, p < 0.05). Partial correlation analyses revealed that the intranetwork FC patterns were positively correlated with developmental quotients in PWS children, while the internetwork FC patterns were completely opposite (p < 0.05). Intranetwork FC patterns showed an area under the receiver operating characteristic curve of 0.947, with a sensitivity of 96.15% and a specificity of 81.25% for differentiating between PWS and HCs. CONCLUSION: Impaired intra- and internetwork FC patterns in PWS children are associated with developmental delays, which may result from neural pathway dysfunctions. Intranetwork FC reorganization patterns can discriminate PWS children from HCs. REGISTRATION NUMBER ON THE CHINESE CLINICAL TRAIL REGISTRY: ChiCTR2100046551.


Subject(s)
Prader-Willi Syndrome , Child , Humans , Prader-Willi Syndrome/diagnostic imaging , Prader-Willi Syndrome/pathology , Brain Mapping , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Brain/pathology
8.
Exp Cell Res ; 434(1): 113857, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38008278

ABSTRACT

Genetic factors coordinate with environmental factors to drive the pathogenesis of prostate adenocarcinoma (PRAD). SPOP is one of the most mutated genes and LRP5 mediates lipid metabolism that is abnormally altered in PRAD. Here, we investigated the potential cross-talk between SPOP and LRP5 in PRAD. We find a negative correlation between SPOP and LRP5 proteins in PRAD. SPOP knockdown increased LRP5 protein while SPOP overexpression resulted in LRP5 reduction that was fully rescued by proteasome inhibitors. LRP5 intracellular tail has SPOP binding site and the direct interaction between LRP5 and SPOP was confirmed by Co-IP and GST-pulldown. Moreover, LRP5 competed with Daxx for SPOP-mediated degradation, establishing a dynamic balance among SPOP, LRP5 and Daxx. Overexpression of LRP5 tail could shift this balance to enhance Daxx-mediated transcriptional inhibition, and inhibit T cell activity in a co-culture system. Further, we generated human and mouse prostate cancer cell lines expressing SPOP variants (F133V, A227V, R368H). SPOP-F133V and SPOP-A227V have specific effects in up-regulating the protein levels of PD-1 and PD-L1. Consistently, SPOP-F133V and SPOP-A227V show robust inhibitory effects on T cells compared to WT SPOP in co-culture. This is further supported by the mouse syngeneic model showing that SPOP-F133V and SPOP-A227V enhance tumorigenesis of prostate cancer in in-vivo condition. Taken together, our study provides evidence that SPOP-LRP5 crosstalk plays an essential role, and the genetic variants of SPOP differentially modulate the expression and activity of immune checkpoints in prostate cancer.


Subject(s)
Prostatic Neoplasms , Repressor Proteins , Male , Animals , Mice , Humans , Repressor Proteins/genetics , Repressor Proteins/metabolism , B7-H1 Antigen/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prostatic Neoplasms/pathology , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Mutation , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Molecular Chaperones/genetics , Co-Repressor Proteins/genetics
9.
Acad Radiol ; 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38007367

ABSTRACT

RATIONALE AND OBJECTIVES: To develop MRI-based radiomics models from the lesion level to the subject level and assess their value for differentiating myelin oligodendrocyte glycoprotein antibody-related disease (MOGAD) from non-MOGAD acute demyelinating syndromes in pediatrics. MATERIALS AND METHODS: 66 MOGAD and 66 non-MOGAD children were assigned to the training set (36/35), internal test set (14/16), and external test set (16/15), respectively. At the lesion level, five single-sequence models were developed alongside a fusion model (combining these five sequences). The radiomics features of each lesion were quantified as the lesion-level radscore (LRS) using the best-performing model. Subsequently, a lesion-typing function was employed to classify lesions into two types (MOGAD-like or non-MOGAD-like), and the average LRS of the predominant type lesions in each subject was considered as the subject-level radscore (SRS). Based on SRS, a subject-level model was established and compared to both clinical models and radiologists' assessments. RESULTS: At the lesion level, the fusion model outperformed the five single-sequence models in distinguishing MOGAD and non-MOGAD lesions (0.867 and 0.810 of area under the curve [AUC] in internal and external testing, respectively). At the subject level, the SRS model showed superior performance (0.844 and 0.846 of AUC in internal and external testing, respectively) compared to clinical models and radiologists' assessments for distinguishing MOGAD and non-MOGAD. CONCLUSION: MRI-based radiomics models have potential clinical value for identifying MOGAD from non-MOGAD. The fusion model and SRS model can distinguish between MOGAD and non-MOGAD at the lesion level and subject level, respectively, providing a differential diagnosis method for these two diseases.

10.
ACS Omega ; 8(39): 35628-35637, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810667

ABSTRACT

Protein phosphatase 1 regulatory subunit 12A (PPP1R12A) interacts with the catalytic subunit of protein phosphatase 1 (PP1c) to form the myosin phosphatase complex. In addition to a well-documented role in muscle contraction, the PP1c-PPP1R12A complex is associated with cytoskeleton organization, cell migration and adhesion, and insulin signaling. Despite the variety of biological functions, only a few substrates of the PP1c-PPP1R12A complex are characterized, which limit a full understanding of PP1c-PPP1R12A activities in muscle contraction and cytoskeleton regulation. Here, the chemoproteomics method Kinase-catalyzed Biotinylation to Identify Phosphatase Substrates (K-BIPS) was used to identify substrates of the PP1c-PPP1R12A complex in L6 skeletal muscle cells. K-BIPS enriched 136 candidate substrates with 14 high confidence hits. One high confidence hit, AKT1 kinase, was validated as a novel PP1c-PPP1R12A substrate. Given the previously documented role of AKT1 in PPP1R12A phosphorylation and cytoskeleton organization, the data suggest that PP1c-PPP1R12A regulates its own phosphatase activity through an AKT1-dependent feedback mechanism to influence cytoskeletal arrangement in muscle cells.

11.
Article in Chinese | MEDLINE | ID: mdl-37828891

ABSTRACT

Adenoid cystic carcinoma usually occurs in the salivary glands of the head and neck. It is a malignant tumor with a high degree of malignancy, resistance to radiotherapy and chemotherapy and poor prognosis. The clinical course of adenoid cystic carcinoma is slow and easy to be misdiagnosed. The main diagnosis and treatment means are individualized and precise treatment under the multi-disciplinary consultation mode, that is, surgical treatment and radiotherapy and chemotherapy. Adenoid cystic carcinoma is prone to relapse and hematologic metastasis, and the traditional radiotherapy and chemotherapy based therapies have not achieved satisfactory efficacy in the past three decades. How to detect, diagnose and treat early is an urgent task faced by clinicians.


Subject(s)
Carcinoma, Adenoid Cystic , Humans , Carcinoma, Adenoid Cystic/diagnosis , Carcinoma, Adenoid Cystic/therapy , Carcinoma, Adenoid Cystic/pathology , Neoplasm Recurrence, Local , Neck/pathology , Oropharynx/pathology , Diagnostic Errors
12.
BMC Surg ; 23(1): 297, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37775750

ABSTRACT

OBJECTIVE: This study aimed to assess the effects of surgical timing and approach on operative duration, postoperative suture removal time, and postoperative recurrence rate in the management of preauricular fistula. A 12-year single-center clinical observation was conducted to analyze the potential effects of different surgical strategies on these critical outcomes. METHODS: The clinical data from 576 (782 ears) patients who underwent surgical resection for preauricular fistulas were examined in this retrospective study. The patients were classified into various groups based on differences in operative duration, surgical techniques and the use of intraoperative magnifying equipment. Furthermore, the specific data on operative duration, postoperative suture removal time, and postoperative recurrence rate were also recorded. RESULTS: The average operative duration for 782 ears and the average time required for postoperative suture removal were determined to be (34.57 ± 4.25) min and (3.62 ± 0.76) days, respectively. Among the cases examined, recurrence occurred in 13 ears, but all of them were cured after a second surgery, resulting in a recurrence rate of 1.67% (13/782). Interestingly, the operative and postoperative suture removal time was prolonged during the infection period (P < 0.05). The postoperative recurrence rate was significantly higher in the absence of magnifying equipment, as compared to those with the use of a microscope with 2.5× magnification (P < 0.05). No statistically significant differences were noted in the recurrence rate when comparing different anesthesia methods and types of surgical incisions, as well as the intraoperative use of methylene blue, and partial removal of cartilage of the pedicle (P > 0.05). CONCLUSION: The use of methylene blue, partial removal of the cartilage of the pedicle, and surgical incision during preauricular fistula resection did not affect the operative duration, postoperative suture removal time, and postoperative recurrence rate. Therefore, surgeons can select their preferred approaches based on their individual practices and patient-specific situations. However, the use of magnifying equipment during surgery is associated with a reduced risk of recurrence.


Subject(s)
Fistula , Methylene Blue , Humans , Retrospective Studies , Treatment Outcome , Ear, External/surgery , Recurrence
13.
Front Med (Lausanne) ; 10: 1257898, 2023.
Article in English | MEDLINE | ID: mdl-37711747

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) originates from the squamous epithelium of the oral cavity, oropharynx, larynx, and hypopharynx. HNSCC in the oral cavity and larynx is strongly associated with tobacco smoking and alcohol consumption, while oropharyngeal cancer is increasingly attributed to infection by human papillomavirus (HPV), particularly HPV-16. The tumor microenvironment (TME) is a complex network of cancer cells, immune cells, stromal cells, surrounding blood vessels, and signaling molecules, and plays a critical role in tumor cell survival, invasion, and recurrence. Therefore, it is critical to elucidate the molecular basis of the interaction between tumor cells and the TME in order to develop innovative anti-cancer therapeutic strategies.

14.
J Endourol ; 37(11): 1184-1190, 2023 11.
Article in English | MEDLINE | ID: mdl-37725564

ABSTRACT

Background: Recently a novel omnidirectional (OD) ureteral access sheath (UAS) has been developed. By retrospectively reviewing and comparing the flexible ureteroscopic lithotripsy (FURL) cases in our institution with either a conventional Cook UAS or an OD UAS in the past year, we shared our experience of the safety, efficacy, and relevant issues on the usage of OD UAS. Materials and Methods: The medical history and surgery details of 199 patients with kidney stones or ureterojunctional stones who underwent FURL in Xinhua Hospital, including 61 Cook UAS and 138 OD UAS, were reviewed and compared. The maximal deflection angle was measured by steering four different types of ureteroscopes to bend the OD UAS in different states. Result: The deflection angle of OD UAS was ∼110° to 130° free load, and 90° to 130° when loaded with different instruments. The stone burden and position were similar in two groups. Given a similar prestent ratio and operation time, the OD UAS group achieved a higher single-session stone-free rate (SFR) (63.9% vs 94.2%, p < 0.0001) at 1-month follow-up evaluated by a CT scan. Conclusion: OD UAS is a novel device with high safety and efficacy. The unique flexible design allows it to bend with the ureteroscope and enter renal calices and be set close to the stone. Combined with the suction port, OD UAS contributes greatly to dealing with large-burden kidney stones, shortens operation time, and improves single-session SFR.


Subject(s)
Kidney Calculi , Ureter , Humans , Ureteroscopy , Retrospective Studies , Ureter/surgery , Kidney Calculi/surgery , Ureteroscopes , Treatment Outcome
15.
Noncoding RNA Res ; 8(4): 550-561, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37602318

ABSTRACT

Background: Laryngeal squamous cell carcinoma (LSCC) is a common cancer of the head and neck in humans. The 5-years survival rate of patients with LSCC have declined in the past four decades. microRNAs (miRNAs) has been reported to be capable of predicting the prognosis outcomes of patients with different cancers. However, there are no reports on the usage of multi-miRNAs model as signature for the diagnosis or prognosis of LSCC. Methods: To establish the miRNAs expression-associated model for diagnosis, prognosis prediction and aided therapy of patients with LSCC, the present study enrolled 107 patients with LSCC in clinic and obtained 117 LSCC samples data from TCGA database for evaluation, respectively. Next generation sequencing (NGS), raw data processing, the least absolute shrinkage and selection operator algorithm, Cox regression analysis, construction of nomogram and cell function assays (including proliferation, migration and invasion assays) were sequentially performed. Results: There were massively dysregulated miRNAs in the LSCC compared to normal tissues. A six-miRNAs signature consists of miR-137-3p, miR-3934-5p, miR-1276, miR-129-5p, miR-7-5p and miR-105-5p was built for prognosis prediction of LSCC patients. The six-miRNAs signature is strongly associated with the poor overall survival (OS, p = 2.5e-05, HR: 4.30 [2.20-8.50]), progression free interval (PFI, p = 0.025, HR: 1.94 [1.08-3.46]) and disease specific survival (DSS, p = 1.1e-05, HR: 5.00 [2.50-10.00]). A nomogram for prediction of 2-, 3- and 5-years OS was also developed based on the six-miRNAs signature and clinical features. Furthermore, blocking the function of each of the six miRNAs inhibited proliferation, invasion and migration of LSCC cells. Conclusions: The performance of six-miRNAs signature described in the current study demonstrated remarkable potential for progression assessment of LSCC. Moreover, the six-miRNAs signature may serve as predictive tool for prognosis and therapeutic targets of LSCC in clinic.

16.
Anal Chem ; 95(35): 13113-13122, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37609888

ABSTRACT

From metabolic waste to biological mediators, exosomes have emerged as the key player in a variety of pathological processes, particularly in oncogenesis. The exosome-mediated communication network involves nearly every step of cancer progression, promoting the proliferation and immune escape of cancer cells. Therefore, the removal of cancer-derived exosomes has profound clinical significance. Current methods for exosome separation and enrichment are either for large-scale samples or require complex pretreatment processes, lacking effective methods for trace-volume exosome capture in situ. Herein, we have developed an in situ exosome capturing and counting device based on the antibody-functionalized capillary. Specific antibodies targeting exosome biomarkers were immobilized to the inner wall of the capillary via biotin-streptavidin interaction for direct cancer exosome capturing. Subsequent exosome staining enabled imaging and enumeration. Acceptable linearity and reproducibility were achieved with our device, with the capturing and detective range between 3.3 × 104 and 3.3 × 108 particles, surpassing the nanoparticle tracking analysis by 2 orders of magnitude while requiring merely 30 µL sample. We demonstrated that MCF-7-derived exosomes induced epithelial-mesenchymal transition of epithelial cells MCF-10A, and our method was able to completely or partially reverse the transition by complete depletion or specific depletion of cancer exosomes without any preprocessing. Moreover, both whole exosomes and cancer-specific exosomes alone from mimic blood samples were successfully captured and counted, without obvious non-specific adsorption. In all, our approach realized the in situ depletion and number-counting of cancer-derived exosomes directly from the complex humoral environment, having the potential to provide a comprehensive tumor therapeutic and prognosis evaluation tool by targeted hemodialysis and counting of tumor-derived exosomes.


Subject(s)
Exosomes , Neoplasms , Humans , Reproducibility of Results , Carcinogenesis , Adsorption , Antibodies
17.
Clin Respir J ; 17(9): 931-940, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37533178

ABSTRACT

INTRODUCTION: Many scales are designed to screen for obstructive sleep apnoea-hypopnoea syndrome (OSAHS); however, there is a lack of an efficiently and easily diagnostic tool, especially for Chinese. Therefore, we conduct a cross-sectional study in China to develop and validate an efficient and simple clinical diagnostic model to help screen patients at risk of OSAHS. METHODS: This study based on 782 high-risk patients (aged >18 years) admitted to the Sleep Medicine department of the Sixth Affiliated Hospital, Sun Yat-sen University from 2015 to 2021. Totally 34 potential predictors were evaluated. We divided all patients into training and validation dataset to develop diagnostic model. The univariable and multivariable logistic regression model were used to build model and nomogram was finally built. RESULTS: Among 602 high-risk patients with median age of 46 (37, 56) years, 23.26% were women. After selecting using the univariate logistic model, 15 factors were identified. We further used the stepwise method to build the final model with five factors: age, BMI, total bilirubin levels, high Berlin score, and symptom of morning dry mouth or mouth breathing. The AUC was 0.780 (0.711, 0.848), with sensitivity of 0.848 (0.811, 0.885), specificity of 0.629 (0.509, 0.749), accuracy of 0.816 (0.779, 0.853). The discrimination ability had been verified in the validation dataset. Finally, we established a nomogram model base on the above final model. CONCLUSION: We developed and validated a predictive model with five easily acquire factors to diagnose OSAHS patient in high-risk population with well discriminant ability. Accordingly, we finally build the nomogram model.


Subject(s)
Nomograms , Sleep Apnea, Obstructive , Humans , Adult , Female , Male , Cross-Sectional Studies , East Asian People , Polysomnography , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea, Obstructive/epidemiology
18.
Front Oncol ; 13: 1055717, 2023.
Article in English | MEDLINE | ID: mdl-37538124

ABSTRACT

Introduction: The incidence of head and neck squamous cell carcinoma (HNSCC), one of the most prevalent tumors, is increasing rapidly worldwide. Cuproptosis, as a new copper-dependent cell death form, was proposed recently. However, the prognosis value and immune effects of cuproptosis-related lncRNAs (CRLs) have not yet been elucidated in HNSCC. Methods: In the current study, the expression pattern, differential profile, clinical correlation, DNA methylation, functional enrichment, univariate prognosis factor, and the immune effects of CRLs were analyzed. A four-CRL signature was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm. Results: Results showed that 20 CRLs had significant effects on the stage progression of HNSCC. Sixteen CRLs were tightly correlated with the overall survival (OS) of HNSCC patients. Particularly, lnc-FGF3-4 as a single risk factor was upregulated in HNSCC tissues and negatively impacted the prognosis of HNSCC. DNA methylation probes of cg02278768 (MIR9-3HG), cg07312099 (ASAH1-AS1), and cg16867777 (TIAM1-AS1) were also correlated with the prognosis of HNSCC. The four-CRL signature that included MAP4K3-DT, lnc-TCEA3-1, MIR9-3HG, and CDKN2A-DT had a significantly negative effect on the activation of T cells follicular helper and OS probability of HNSCC. Functional analysis revealed that cell cycle, DNA replication, and p53 signal pathways were enriched. Discussion: A novel CRL-related signature has the potential of prognosis prediction in HNSCC. Targeting CRLs may be a promising therapeutic strategy for HNSCC.

19.
Anal Bioanal Chem ; 415(26): 6411-6420, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37644324

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease which leads to the formation of immune complex deposits in multiple organs and has heterogeneous clinical manifestations. Currently, exosomes for liquid biopsy have been applied in diagnosis and monitoring of diseases, whereas SLE discrimination based on exosomes at the metabolic level is rarely reported. Herein, we constructed a protocol for metabolomic study of urinary exosomes from SLE patients and healthy controls (HCs) with high efficiency and throughput. Exosomes were first obtained by high-performance liquid size-exclusion chromatography (HPL-SEC), and then metabolic fingerprints of urinary exosomes were extracted by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with high throughput and high efficency. With the statistical analysis by orthogonal partial least-squares discriminant analysis (OPLS-DA) model, SLE patients were efficiently distinguished from HCs, the area under the curve (AUC) of the receiver characteristic curve (ROC) was 1.00, and the accuracy of the unsupervised clustering heatmap was 90.32%. In addition, potential biomarkers and related metabolic pathways were analyzed. This method, with the characteristics of high throughput, high efficiency, and high accuracy, will provide the broad prospect of exosome-driven precision medicine and large-scale screening in clinical applications.

20.
Virol Sin ; 38(4): 485-496, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37419416

ABSTRACT

Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an animal model for HIV/AIDS research. An attenuated EIAV vaccine, which was successfully developed in the 1970s by classical serial passage techniques, is the first and only lentivirus vaccine that has been widely used to date. Restriction factors are cellular proteins that provide an early line of defense against viral replication and spread by interfering with various critical steps in the viral replication cycle. However, viruses have evolved specific mechanisms to overcome these host barriers through adaptation. The battle between the viruses and restriction factors is actually a natural part of the viral replication process, which has been well studied in human immunodeficiency virus type 1 (HIV-1). EIAV has the simplest genome composition of all lentiviruses, making it an intriguing subject for understanding how the virus employs its limited viral proteins to overcome restriction factors. In this review, we summarize the current literature on the interactions between equine restriction factors and EIAV. The features of equine restriction factors and the mechanisms by which the EIAV counteract the restriction suggest that lentiviruses employ diverse strategies to counteract innate immune restrictions. In addition, we present our insights on whether restriction factors induce alterations in the phenotype of the attenuated EIAV vaccine.


Subject(s)
HIV-1 , Infectious Anemia Virus, Equine , Horses , Animals , Humans , Infectious Anemia Virus, Equine/genetics , Antiviral Restriction Factors , Viral Proteins/metabolism , Virus Replication , HIV-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...