Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 548
Filter
1.
Acta Pharmacol Sin ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090392

ABSTRACT

Aristolochic acids (AAs) have been identified as a significant risk factor for hepatocellular carcinoma (HCC). Ferroptosis is a type of regulated cell death involved in the tumor development. In this study, we investigated the molecular mechanisms by which AAs enhanced the growth of HCC. By conducting bioinformatics and RNA-Seq analyses, we found that AAs were closely correlated with ferroptosis. The physical interaction between p53 and AAs in HepG2 cells was validated by bioinformatics analysis and SPR assays with the binding pocket sites containing Pro92, Arg174, Asp207, Phe212, and His214 of p53. Based on the binding pocket that interacts with AAs, we designed a mutant and performed RNA-Seq profiling. Interestingly, we found that the binding pocket was responsible for ferroptosis, GADD45A, NRF2, and SLC7A11. Functionally, the interaction disturbed the binding of p53 to the promoter of GADD45A or NRF2, attenuating the role of p53 in enhancing GADD45A and suppressing NRF2; the mutant did not exhibit the same effects. Consequently, this event down-regulated GADD45A and up-regulated NRF2, ultimately inhibiting ferroptosis, suggesting that AAs hijacked p53 to down-regulate GADD45A and up-regulate NRF2 in HepG2 cells. Thus, AAs treatment resulted in the inhibition of ferroptosis via the p53/GADD45A/NRF2/SLC7A11 axis, which led to the enhancement of tumor growth. In conclusion, AAs-hijacked p53 restrains ferroptosis through the GADD45A/NRF2/SLC7A11 axis to enhance tumor growth. Our findings provide an underlying mechanism by which AAs enhance HCC and new insights into p53 in liver cancer. Therapeutically, the oncogene NRF2 is a promising target for liver cancer.

2.
J Am Chem Soc ; 146(29): 20414-20424, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38982611

ABSTRACT

The structural dynamics of artificial assemblies, in aspects such as molecular recognition and structural transformation, provide us with a blueprint to achieve bioinspired applications. Here, we describe the assembly of redox-switchable chiral metal-organic cages Λ8/Δ8-[Pd6(CoIIL3)8]28+ and Λ8/Δ8-[Pd6(CoIIIL3)8]36+. These isomeric cages demonstrate an on-off chirality logic gate controlled by their chemical and stereostructural dynamics tunable through redox transitions between the labile CoII-state and static CoIII-state with a distinct Cotton effect. The transition between different states is enabled by a reversible redox process and chiral recognition originating in the tris-chelate Co-centers. All cages in two states are thoroughly characterized by NMR, ESI-MS, CV, CD, and X-ray crystallographic analysis, which clarify their redox-switching behaviors upon chemical reduction/oxidation. The stereochemical lability of the CoII-center endows the Λ8/Δ8-CoII-cages with efficient chiral-induction by enantiomeric guests, leading to enantiomeric isomerization to switch between Λ8/Δ8-CoII-cages, which can be stabilized by oxidation to their chemically inert forms of Λ8/Δ8-CoIII-cages. Kinetic studies reveal that the isomerization rate of the Δ8-CoIII-cage is at least an order of magnitude slower than that of the Δ8-CoII-cage even at an elevated temperature, while its activation energy is 16 kcal mol-1 higher than that of the CoII-cage.

3.
J Am Chem Soc ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042557

ABSTRACT

Achieving high guest loading and multiguest-binding capacity holds crucial significance for advancement in separation, catalysis, and drug delivery with synthetic receptors; however, it remains a challenging bottleneck in characterization of high-stoichiometry guest-binding events. Herein, we describe a large-sized coordination cage (MOC-70-Zn8Pd6) possessing 12 peripheral pockets capable of accommodating multiple guests and a high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)-based method to understand the solution host-guest chemistry. A diverse range of bulky guests, varying from drug molecules to rigid fullerenes as well as flexible host molecules of crown ethers and calixarenes, could be loaded into open pockets with high capacities. Notably, these hollow cage pockets provide multisites to capture different guests, showing heteroguest coloading behavior to capture binary, ternary, or even quaternary guests. Moreover, a pair of commercially applied drugs for the combination therapy of chronic lymphocytic leukemia (CLL) has been tested, highlighting its potential in multidrug delivery for combined treatment.

4.
Biosensors (Basel) ; 14(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39056604

ABSTRACT

Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this study, we proposed a synthetic Au24Cd nanoenzyme (ACNE) that significantly enhanced the electrochemical performance of metal electrodes. ACNE-modified electrodes demonstrated a remarkable 10-fold reduction in impedance compared to silver microelectrodes. Furthermore, we validated their excellent electrocatalytic activity and sensitivity using five electrochemical detection methods, including cyclic voltammetry, differential pulse voltammetry, square-wave pulse voltammetry, normal pulse voltammetry, and linear scanning voltammetry. Importantly, the stability of gold microelectrodes (Au MEs) modified with ACNEs was significantly improved, exhibiting a 30-fold enhancement compared to Au MEs. This improved performance suggests that ACNE functionalization holds great promise for developing micro-biosensors with enhanced sensitivity and stability for detecting small molecules.


Subject(s)
Ascorbic Acid , Biosensing Techniques , Dopamine , Electrochemical Techniques , Gold , Microelectrodes , Uric Acid , Dopamine/analysis , Gold/chemistry , Ascorbic Acid/analysis , Uric Acid/analysis , Silver/chemistry , Cadmium/analysis
5.
ACS Appl Mater Interfaces ; 16(28): 36047-36062, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38978477

ABSTRACT

Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.


Subject(s)
Cerium , Gold , Inflammation , Sepsis , Sepsis/drug therapy , Sepsis/immunology , Animals , Inflammation/drug therapy , Inflammation/immunology , Gold/chemistry , Cerium/chemistry , Cerium/therapeutic use , Mice , Humans , Reactive Oxygen Species/metabolism , Catalase/metabolism , Catalase/chemistry , Cytokines/metabolism
6.
Redox Biol ; 75: 103287, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39079388

ABSTRACT

Hepatic ischemia/reperfusion (I/R) injury is an important cause of liver function impairment following liver surgery. The ubiquitin-proteasome system (UPS) plays a crucial role in protein quality control and has substantial impact on the hepatic I/R process. Although OTU deubiquitinase 1 (OTUD1) is involved in diverse biological processes, its specific functional implications in hepatic I/R are not yet fully understood. This study demonstrates that OTUD1 alleviates oxidative stress, apoptosis, and inflammation induced by hepatic I/R injury. Mechanistically, OTUD1 deubiquitinates and activates nuclear factor erythroid 2-related factor 2 (NRF2) through its catalytic site cysteine 320 residue and ETGE motif, thereby attenuating hepatic I/R injury. Additionally, administration of a short peptide containing the ETGE motif significantly mitigates hepatic I/R injury in mice. Overall, our study elucidates the mechanism and role of OTUD1 in ameliorating hepatic I/R injury, providing a theoretical basis for potential treatment using ETGE-peptide.

7.
Article in English | MEDLINE | ID: mdl-39067046

ABSTRACT

OBJECTIVES: To investigate the ultrasound (US) characteristics of metastatic malignancies (MM) in the major salivary glands and to assess the diagnostic value of the close relationship with the glandular capsule in identifying MM. METHODS: From January 2016 and April 2022, 122 patients with major salivary gland malignancies, including 20 patients with MM and 102 patients with primary malignancies (PM) confirmed by histopathological examination, were enrolled in this study. Their clinicopathologic and US data were recorded and analyzed. The diagnostic performance of the close relationship with the glandular capsule for differentiating MM from PM was analyzed. RESULTS: The mean age of MM were older than that of PM (59.50 ± 14.57 vs. 49.96 ± 15.73, p = 0.013). Compared with PM patients, MM were associated with a higher prevalence of local pain symptoms (p = 0.007) and abnormal facial nerve function (p < 0.001). MM were also more frequently characterized by unclear borders, rough margins, irregular shapes, heterogeneous internal echos, absence of cystic areas, presence of calcifications, close relationship with the glandular capsule, and US-reported positive cervical lymph nodes (all p < 0.05). The close relationship with the glandular capsule showed to be a good indicator in distinguishing between MM and PM, with an area under the receiver operating characteristic curve of 0.863, a sensitivity of 100%, a specificity of 72.5%, and an accuracy of 92.2%. Positive and negative predictive were calculated at 41.7% and 100%, respectively. CONCLUSIONS: The US finding of a close relationship with the glandular capsule is a highly sensitive diagnostic indicator for MM. Following this finding, US-guided needle biopsy should be recommended to further confirm the diagnosis.

8.
Ultrasound Q ; 40(3)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38889436

ABSTRACT

ABSTRACT: We aimed to develop and validate a nomogram based on conventional ultrasound (CUS) radiomics model to differentiate radial scar (RS) from invasive ductal carcinoma (IDC) of the breast. In total, 208 patients with histopathologically diagnosed RS or IDC of the breast were enrolled. They were randomly divided in a 7:3 ratio into a training cohort (n = 145) and a validation cohort (n = 63). Overall, 1316 radiomics features were extracted from CUS images. Then a radiomics score was constructed by filtering unstable features and using the maximum relevance minimum redundancy algorithm and the least absolute shrinkage and selection operator logistic regression algorithm. Two models were developed using data from the training cohort: one using clinical and CUS characteristics (Clin + CUS model) and one using clinical information, CUS characteristics, and the radiomics score (radiomics model). The usefulness of nomogram was assessed based on their differentiating ability and clinical utility. Nine features from CUS images were used to build the radiomics score. The radiomics nomogram showed a favorable predictive value for differentiating RS from IDC, with areas under the curve of 0.953 and 0.922 for the training and validation cohorts, respectively. Decision curve analysis indicated that this model outperformed the Clin + CUS model and the radiomics score in terms of clinical usefulness. The results of this study may provide a novel method for noninvasively distinguish RS from IDC.


Subject(s)
Breast Neoplasms , Breast , Carcinoma, Ductal, Breast , Nomograms , Ultrasonography, Mammary , Humans , Female , Breast Neoplasms/diagnostic imaging , Middle Aged , Diagnosis, Differential , Ultrasonography, Mammary/methods , Carcinoma, Ductal, Breast/diagnostic imaging , Adult , Breast/diagnostic imaging , Cicatrix/diagnostic imaging , Aged , Reproducibility of Results , Retrospective Studies , Radiomics
9.
Article in English | MEDLINE | ID: mdl-38878012

ABSTRACT

BACKGROUND: Purkinje fibers play an important role in initiation and maintenance of ventricular fibrillation (VF) and polymorphic ventricular tachycardia (PMVT). Fascicular substrate modification (FSM) approaches have been suggested to treat recurrent VF in case reports and small case series. OBJECTIVES: The aim of this study was to investigate outcomes of catheter-based FSM to treat VF and PMVT. METHODS: Of 2,212 consecutive patients with ventricular arrhythmia undergoing catheter ablation, 18 (0.81%) underwent FSM of the Purkinje fibers as identified with high-density mapping during sinus rhythm. Fascicular substrate and VF initiation were mapped using a multipolar catheter. The endpoint of the ablation was noninducibility of VF and PMVT. In select patients, remapping revealed elimination of the targeted Purkinje potentials. Demographic, clinical, and follow-up characteristics were prospectively collected in our institutional database. RESULTS: A total of 18 patients (mean age 56 ± 3.8 years, 22% women) were included in the study. Of those, 11 (61.1%) had idiopathic VF, 3 (16.7%) had nonischemic cardiomyopathy, and 4 (22.2%) had mixed cardiomyopathy. The average left ventricular ejection fraction was 42.5%. At least 2 antiarrhythmic drugs had failed preablation. At baseline, all patients had inducible VF or PMVT. At the end of the procedure, no patient demonstrated new evidence of fascicular block or bundle branch block. There were no procedure-related complications. After a median follow-up period of 24 months, 16 patients (88.9%) were arrhythmia free on or off drugs: 11 of 11 patients (100%) with idiopathic VF vs 5 of 7 patients (71.4%) with underlying cardiomyopathy (P = 0.06). CONCLUSIONS: Catheter ablation of human VF and PMVT with FSM is feasible and safe and appears highly effective, with high rates of acute VF noninducibility and long-term freedom from recurrent VF.

10.
Heliyon ; 10(11): e32288, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912485

ABSTRACT

Liver cancer is a heterogeneous disease characterized by poor responses to standard therapies and therefore unfavourable clinical outcomes. Understanding the characteristics of liver cancer and developing novel therapeutic strategies are imperative. Ferroptosis, a type of programmed cell death induced by lipid peroxidation, has emerged as a potential target for treatment. Naringenin, a natural compound that modulates lipid metabolism by targeting AMPK, shows promise in enhancing the efficacy of ferroptosis inducers. In this study, we utilized liver cancer cell lines and xenograft mice to explore the synergistic effects of naringenin in combination with ferroptosis inducers, examining both phenotypic outcomes and molecular mechanisms. Our study results indicate that the use of naringenin at non-toxic doses to hepatocytes can significantly enhance the anticancer effects of ferroptosis inducers (erastin, RSL3, and sorafenib). The combination index method confirmed a synergistic effect between naringenin and ferroptosis inducers. In comparison to naringenin or ferroptosis inducers alone, the combined therapy caused more robust lipid peroxidation and hence more severe ferroptotic damage to cancer cells. The inhibition of aerobic glycolysis mediated by the AMPK-PGC1α signalling axis is the key to naringenin's effect on reducing ferroptosis resistance in liver cancer, and the synergistic cytotoxic effect of naringenin and ferroptosis inducers on cancer cells was reversed after pretreatment with an AMPK inhibitor or a PGC1α inhibitor. Taken together, these findings suggest that naringenin could boost cancer cell sensitivity to ferroptosis inducers, which has potential clinical translational value.

12.
Nat Commun ; 15(1): 3901, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724505

ABSTRACT

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Subject(s)
Cytoplasm , NF-KappaB Inhibitor alpha , NF-kappa B , Protein-Tyrosine Kinases , Transcription Factor RelA , Animals , Phosphorylation , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Mice , Transcription Factor RelA/metabolism , Humans , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , NF-kappa B/metabolism , Cytoplasm/metabolism , Proteolysis , Cell Nucleus/metabolism , Virus Replication , HEK293 Cells , Signal Transduction , Mice, Inbred C57BL , Cytokines/metabolism , Active Transport, Cell Nucleus , Protein Serine-Threonine Kinases
13.
Acta Pharmacol Sin ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760543

ABSTRACT

Bevacizumab is a recombinant humanized monoclonal immunoglobulin (Ig) G1 antibody of VEGF, and inhibits angiogenesis and tumor growth in hepatocellular carcinoma (HCC). Ferroptosis, a new form of regulated cell death function independently of the apoptotic machinery, has been accepted as an attractive target for pharmacological intervention; the ferroptosis pathway can enhance cell immune activity of anti-PD1 immunotherapy in HCC. In this study we investigated whether and how bevacizumab regulated ferroptosis and immune activity in liver cancer. Firstly, we performed RNA-sequencing in bevacizumab-treated human liver cancer cell line HepG2 cells, and found that bevacizumab significantly altered the expression of a number of genes including VEGF, PI3K, HAT1, SLC7A11 and IL-9 in liver cancer, bevacizumab upregulated 37 ferroptosis-related drivers, and downregulated 17 ferroptosis-related suppressors in particular. We demonstrated that bevacizumab triggered ferroptosis in liver cancer cells by driving VEGF/PI3K/HAT1/SLC7A11 axis. Clinical data confirmed that the expression levels of VEGF were positively associated with those of PI3K, HAT1 and SLC7A11 in HCC tissues. Meanwhile, we found that bevacizumab enhanced immune cell activity in tumor immune-microenvironment. We identified that HAT1 up-regulated miR-143 targeting IL-9 mRNA 3'UTR in liver cancer cells; bevacizumab treatment resulted in the increase of IL-9 levels and its secretion via VEGF/PI3K/HAT1/miR-143/IL-9 axis, which led to the inhibition of tumor growth in vivo through increasing the release of IL-2 and Granzyme B from activated CD8+ T cells. We conclude that in addition to inhibiting angiogenesis, bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer. This study provides new insight into the mechanisms by which bevacizumab synergistically modulates ferroptosis and CD8+ T cell immune activity in liver cancer.

14.
Adv Healthc Mater ; : e2400819, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722289

ABSTRACT

Mild photothermal therapy (PTT) is a spatiotemporally controllable method that utilizes the photothermal effect at relatively low temperatures (40-45 °C) to especially eliminate tumor tissues with negligible side effects on the surrounding normal tissues. However, the overexpression of heat shock protein 70 (HSP70) and limited effect of single treatment drastically impede the therapeutic efficacy. Herein, the constructed multifunctional core-shell structured Ag-Cu@SiO2-PDA/GOx nanoreactors (APG NRs) that provide a dual inhibition of HSP70 strategy for the second near-infrared photoacoustic (NIR-II PA) imaging-guided combined mild PTT/chemodynamic therapy (CDT). The Ag-Cu cores can convert endogenous H2O2 to hydroxyl radical (•OH), which can induce lipid peroxidation (LPO) and further degrade HSP70. The polydopamine (PDA)/glucose oxidase (GOx) shells are utilized as the NIR-II photothermal agent to generate low temperature, and the GOx can reduce the energy supplies and inhibit energy-dependent HSP70 expression. Furthermore, both the generation of •OH and GOx-mediated energy shortage can reduce HSP70 expression to sensitize mild PTT under 1064 nm laser, and in turn, GOx and laser self-amplify the catalytic reactions of APG NRs for more production of •OH. The multifunctional nanoreactors will provide more potential possibilities for the clinical employment of mild PTT and the advancement of tumor combination therapies.

15.
Mar Drugs ; 22(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786621

ABSTRACT

Alginate oligosaccharides (AOS), products of alginate degradation by endotype alginate lyases, possess favorable biological activities and have broad applications. Although many have been reported, alginate lyases with homogeneous AOS products and secretory production by an engineered host are scarce. Herein, the alginate lyase AlyC7 from Vibrio sp. C42 was characterized as a trisaccharide-producing lyase exhibiting high activity and broad substrate specificity. With PelB as the signal peptide and 500 mM glycine as the additive, the extracellular production of AlyC7 in Escherichia coli reached 1122.8 U/mL after 27 h cultivation in Luria-Bertani medium. The yield of trisaccharides from sodium alginate degradation by the produced AlyC7 reached 758.6 mg/g, with a purity of 85.1%. The prepared AOS at 20 µg/mL increased the root length of lettuce, tomato, wheat, and maize by 27.5%, 25.7%, 9.7%, and 11.1%, respectively. This study establishes a robust foundation for the industrial and agricultural applications of AlyC7.


Subject(s)
Escherichia coli , Polysaccharide-Lyases , Trisaccharides , Vibrio , Polysaccharide-Lyases/metabolism , Trisaccharides/biosynthesis , Vibrio/enzymology , Substrate Specificity , Alginates , Zea mays , Oligosaccharides
16.
Acta Pharmacol Sin ; 45(8): 1686-1700, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38589688

ABSTRACT

Lymphocyte activation gene 3 (LAG3), an immune checkpoint molecule expressed on activated T cells, functions as a negative regulator of immune responses. Persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression on T cells, contributing to T cell dysfunction. Fibrinogen-like protein 1 (FGL1) has been identified as a major ligand of LAG3, and FGL1/LAG3 interaction forms a novel immune checkpoint pathway that results in tumor immune evasion. In addition, ubiquitin-specific peptidase 7 (USP7) plays a crucial role in cancer development. In this study we investigated the role of USP7 in modulation of FGL1-mediated liver cancer immune evasion. We showed that knockdown of USP7 or treatment with USP7 inhibitor P5091 suppressed liver cancer growth by promoting CD8+ T cell activity in Hepa1-6 xenograft mice and in HepG2 or Huh7 cells co-cultured with T cells, whereas USP7 overexpression produced the opposite effect. We found that USP7 upregulated FGL1 in HepG2 and Huh7 cells by deubiquitination of transcriptional factor PR domain zinc finger protein 1 (PRDM1), which transcriptionally activated FGL1, and attenuated the CD8+ T cell activity, leading to the liver cancer growth. Interestingly, USP7 could be transcriptionally stimulated by PRDM1 as well in a positive feedback loop. P5091, an inhibitor of USP7, was able to downregulate FGL1 expression, thus enhancing CD8+ T cell activity. In an immunocompetent liver cancer mouse model, the dual blockade of USP7 and LAG3 resulted in a superior antitumor activity compared with anti-LAG3 therapy alone. We conclude that USP7 diminishes CD8+ T cell activity by a USP7/PRDM1 positive feedback loop on FGL1 production in liver cancer; USP7 might be a promising target for liver cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Liver Neoplasms , Ubiquitin-Specific Peptidase 7 , Up-Regulation , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Ubiquitin-Specific Peptidase 7/genetics , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Positive Regulatory Domain I-Binding Factor 1/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Fibrinogen , Thiophenes
17.
Nano Lett ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619329

ABSTRACT

Excessive accumulation of reduced nicotinamide adenine dinucleotide (NADH) within biological organisms is closely associated with many diseases. It remains a challenge to efficiently convert superfluous and detrimental NADH to NAD+. NADH oxidase (NOX) is a crucial oxidoreductase that catalyzes the oxidation of NADH to NAD+. Herein, M1M2 (Mi=V/Mn/Fe/Co/Cu/Mo/Rh/Ru/Pd, i = 1 or 2) mated-atom nanozymes (MANs) are designed by mimicking natural enzymes with polymetallic active centers. Excitingly, RhCo MAN possesses excellent and sustainable NOX-like activity, with Km-NADH (16.11 µM) being lower than that of NOX-mimics reported so far. Thus, RhCo MAN can significantly promote the regeneration of NAD+ and regulate macrophage polarization toward the M2 phenotype through down-regulation of TLR4 expression, which may help to recover skin regeneration. However, RhRu MAN with peroxidase-like activity and RhMn MAN with superoxide dismutase-like activity exhibit little modulating effects on eczema. This work provides a new strategy to inhibit skin inflammation and promote skin regeneration.

18.
Bioconjug Chem ; 35(4): 540-550, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38557019

ABSTRACT

Ultrasmall Au25(MPA)18 clusters show great potential in biocatalysts and bioimaging due to their well-defined, tunable structure and properties. Hence, in vivo pharmacokinetics and toxicity of Au nanoclusters (Au NCs) are very important for clinical translation, especially at high dosages. Herein, the in vivo hematological, tissue, and neurological effects following exposure to Au NCs (300 and 500 mg kg-1) were investigated, in which the concentration is 10 times higher than in therapeutic use. The biochemical and hematological parameters of the injected Au NCs were within normal limits, even at the ultrahigh level of 500 mg kg-1. Meanwhile, no histopathological changes were observed in the Au NC group, and immunofluorescence staining showed no obvious lesions in the major organs. Furthermore, real-time near-infrared-II (NIR-II) imaging showed that most of the Au25(MPA)18 and Au24Zn1(MPA)18 can be metabolized via the kidney. The results demonstrated that Au NCs exhibit good biosafety by evaluating the manifestation of toxic effects on major organs at ultrahigh doses, providing reliable data for their application in biomedicine.


Subject(s)
Gold , Metal Nanoparticles , Gold/toxicity , Gold/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry
19.
Dentomaxillofac Radiol ; 53(4): 222-232, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38426379

ABSTRACT

OBJECTIVES: Preoperative identification of different stromal subtypes of pleomorphic adenoma (PA) of the salivary gland is crucial for making treatment decisions. We aimed to develop and validate a model based on histogram analysis (HA) of ultrasound (US) images for predicting tumour stroma ratio (TSR) in salivary gland PA. METHODS: A total of 219 PA patients were divided into low-TSR (stroma-low) and high-TSR (stroma-high) groups and enrolled in a training cohort (n = 151) and a validation cohort (n = 68). The least absolute shrinkage and selection operator regression algorithm was used to screen the most optimal clinical, US, and HA features. The selected features were entered into multivariable logistic regression analyses for further selection of independent predictors. Different models, including the nomogram model, the clinic-US (Clin + US) model, and the HA model, were built based on independent predictors using logistic regression. The performance levels of the models were evaluated and validated on the training and validation cohorts. RESULTS: Lesion size, shape, cystic areas, vascularity, HA_mean, and HA_skewness were identified as independent predictors for constructing the nomogram model. The nomogram model incorporating the clinical, US, and HA features achieved areas under the curve of 0.839 and 0.852 in the training and validation cohorts, respectively, demonstrating good predictive performance and calibration. Decision curve analysis and clinical impact curves further confirmed its clinical usefulness. CONCLUSIONS: The nomogram model we developed offers a practical tool for preoperative TSR prediction in PA, potentially enhancing clinical decision-making.


Subject(s)
Adenoma, Pleomorphic , Nomograms , Salivary Gland Neoplasms , Ultrasonography , Humans , Adenoma, Pleomorphic/diagnostic imaging , Adenoma, Pleomorphic/pathology , Female , Salivary Gland Neoplasms/diagnostic imaging , Salivary Gland Neoplasms/pathology , Male , Middle Aged , Ultrasonography/methods , Adult , Aged , Retrospective Studies , Adolescent , Predictive Value of Tests
20.
J Laryngol Otol ; : 1-5, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38465382

ABSTRACT

OBJECTIVES: This research aimed to print realistically detailed and magnified three-dimensional models of the inner ear, specifically focusing on visualising its complex labyrinth structure and functioning simulation. METHODS: Temporal bone computed-tomography data were imported into Mimics software to construct an initial three-dimensional inner-ear model. Subsequently, the model was amplified and printed with precision using a three-dimensional printer. Five senior attending physicians evaluated the printed model using a Likert scale to gauge its morphological accuracy, clinical applicability and anatomical teaching value. RESULTS: The printed inner-ear model effectively demonstrated the intricate internal structure. All five physicians agreed that the model closely resembled the real inner ear in shape and structure, and simulated certain inner-ear functions. The model was considered highly valuable for understanding anatomical structure and disorders. CONCLUSION: The three-dimensionally printed inner-ear model is highly simulated and provides a valuable visual tool for studying inner-ear anatomy and clinical teaching, benefiting otologists.

SELECTION OF CITATIONS
SEARCH DETAIL