Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 431
Filter
1.
Heliyon ; 10(14): e34173, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39092243

ABSTRACT

Background: Most studies used animal serum-containing medium for bioengineered-root regeneration, but ethical and safety issues raised by animal serum are a potentially significant risk for clinical use. Thus, this study aimed to find a safer method for bioengineered-root regeneration. Methods: The biological properties of human dental pulp stem cells (hDPSCs) cultured in animal component-free (ACF) medium or serum-containing medium (5%, 10% serum-containing medium, SCM) were compared in vitro. hDPSCs were cultured in a three-dimensional (3D) environment with human-treated dentin matrix (hTDM). The capacity for odontogenesis was compared using quantitative real-time PCR (qPCR) and Western blot. Subsequently, the hDPSCs/hTDM complexes were transplanted into nude mice subcutaneously. Histological staining was then used to verify the regeneration effect in vivo. Results: ACF medium promoted the migration of hDPSCs, but slightly inhibited the proliferation of hDPSCs in the first three days of culture compared to SCM. However, it had no significant effect on cell aging and apoptosis. After 7 days of 3D culture in ACF medium with hTDM, qPCR showed that DMP1, DSPP, OCN, RUNX2, and ß-tubulin III were highly expressed in hDPSCs. In addition, 3D cultured hDPSCs/hTDM complexes in ACF medium regenerated dentin, pulp, and periodontal ligament-like tissues similar to SCM groups in vivo. Conclusion: ACF medium was proved to be an alternative medium for bioengineered-root regeneration. The strategy of using ACF medium to regenerate bioengineered-root can improve clinical safety for tooth tissue engineering.

2.
Int J Biol Macromol ; : 134626, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128759

ABSTRACT

Hydrogel dressings with multiple functions are ideal options for wound repair. This study developed hydrogel dressings by interpenetrating the physically crosslinked xanthan gum (XG)/carboxylated chitosan (CCS) network and the chemically crosslinked polyacrylamide (PAAm) network via a one-pot method. The XG-CCS/PAAm hydrogels were found to display tunable mechanical properties, due to the formation of strong network structure. The hydrogels exhibited the strongest tensile strength of 0.6 MPa at an XG/CCS ratio of 40/60, while the largest compressive strength of 4.5 MPa is achieved at an XG/CCS ratio of 60/40. Moreover, the hydrogel with an XG/CCS ratio of 60/40 exhibited desirable adhesion strength on porcine skin, which was 3.7 kPa. It also had a swelling ratio, as high as 1200 %. After loading with cephalexin, the XG-CCS/PAAm hydrogels can deliver the antibacterial drugs following a first-order kinetic. As a result, both E. coli and S. aureus can be completely inactivated by the cefalexin-loaded hydrogels after 12 h. Furthermore, the XG-CCS/PAAm hydrogels were found to exhibit excellent biocompatibility as well as effective wound healing ability, as proven by the in vitro and in vivo tests. In this regard, XG-CCS/PAAm hydrogels can act as promising multifunctional wound dressings.

3.
Front Microbiol ; 15: 1417904, 2024.
Article in English | MEDLINE | ID: mdl-39176273

ABSTRACT

Introduction: Previous research has established associations between alterations in gut microbiota composition and various gynecologic tumors. However, establishing a causal relationship between gut microbiota and these tumors remains necessary. This study employs a two-sample Mendelian randomization (MR) approach to investigate causality, aiming to identify pathogenic bacterial communities potentially involved in gynecologic tumor development. Methods: Data from the MiBioGen consortium's Genome-Wide Association Study (GWAS) on gut microbiota were used as the exposure variable. Four common gynecologic neoplasms, including uterine fibroids (UF), endometrial cancer (EC), ovarian cancer (OC), and cervical cancer (CC), were selected as outcome variables. Single-nucleotide polymorphisms (SNPs) significantly associated with gut microbiota were chosen as instrumental variables (IVs). The inverse variance-weighted (IVW) method was used as the primary MR analysis to assess the causal relationship. External validation An was conducted using an independent. Sensitivity analyses were performed to ensure robustness. Reverse MR analysis was also conducted to assess potential reverse causation. Results: Combining discovery and validation cohorts, we found that higher relative abundance of Lachnospiraceae is associated with lower UF risk (OR: 0.882, 95% CI: 0.793-0.982, P = 0.022). Conversely, higher OC incidence is associated with increased relative abundance of Lachnospiraceae (OR: 1.329, 95% CI: 1.019-1.732, P = 0.036). Sensitivity analyses confirmed these findings' reliability. Reverse MR analysis showed no evidence of reverse causation between UF, OC, and Lachnospiraceae. Discussion: This study establishes a causal relationship between Lachnospiraceae relative abundance and both UF and OC. These findings provide new insights into the potential role of gut microbiota in mechanisms underlying gynecological tumors development.

4.
Chin Med ; 19(1): 111, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164773

ABSTRACT

In recent years, the prevalence and fatality rates of atherosclerotic cardiovascular disease have not only shown a consistent rise that cannot be ignored, but have also become a pressing social health problem that requires urgent attention. While interventional surgery and drug therapy offer significant therapeutic results, they often come with common side effects. Geniposide, an active component extracted from the Chinese medicine Gardenia jasminoides Ellis, shows promise in the management of cardiac conditions. This review comprehensively outlines the underlying pharmacological mechanisms by which geniposide exerts its effects on atherosclerosis. Geniposide exhibits a range of beneficial effects including alleviating inflammation, inhibiting the development of macrophage foam cells, improving lipid metabolism, and preventing platelet aggregation and thrombosis. It also demonstrates mitochondrial preservation, anti-apoptotic effects, and modulation of autophagy. Moreover, geniposide shows potential in improving oxidative stress and endoplasmic reticulum stress by maintaining the body's antioxidant and oxidative balance. Additionally, this review comprehensively details the biological properties of geniposide, including methods of extraction and purification, as well as its pharmacokinetics and toxicological characteristics. It further discusses the clinical applications of related biopharmaceuticals, emphasizing the potential of geniposide in the prevention and treatment of atherosclerotic cardiovascular diseases. Furthermore, it highlights the limitations of current research, aiming to provide insights for future studies.

5.
Food Chem ; 461: 140918, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39181045

ABSTRACT

Although formononetin has a considerable biological activity, its therapeutic use is limited by its low solubility. Formononetin was dissolved in ethanol, methanol, N, N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) in this investigation, the antisolvent precipitation procedure with the assistance of an external ultrasonic probe was used to manufacture the formononetin nano-particles. The ideal parameters for response surface BBD optimization are as follows: feed volume flow rate of 6 mL/min; ultrasonic power of 860 W; and liquid-liquid ratio of 1:12.5. The formononetin nano-particles have a smaller particle diameter than raw sample; the lowest size can be as small as (329 ± 1.99) nm, which is 45 times smaller than raw. An in vitro digestion test using a solution that simulated intestinal solution revealed that the release rate of the nano-particle was 1.75 times than that of the raw formononetin. The formononetin nano-particles generated by the aforementioned four solvents have the following order of diameter: ethanol > methanol > DMF > DMSO. This study provided a technical reference for the functional food components in deep processing.

6.
Int J Biol Macromol ; : 134660, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134196

ABSTRACT

Checkpoint blockades have emerged as a frontline approach in cancer management, designed to enhance the adaptive immune response against tumors. However, its clinical efficacy is limited to a narrow range of tumor types, which necessitates the exploration of novel strategies that target another main branch of the immune system. One such potential strategy is the therapeutic modulation of pattern recognition receptors (PRRs) pathways in innate immune cells, which have shown promise in tumor eradication. Previously, a ß-1,3/1,6-glucan with high purity from Durvillaea antarctica (BG136) was reported by our group to exhibit pan-antitumor effects. In the current study, we systemically studied the antitumor activity of BG136 in combination with anti-PD1 antibody in MC38 syngeneic tumor model in vivo. Integrated transcriptomic and metabolomic analyses suggested that BG136 enhances the antitumor immunity of anti-PD1 antibody by reprogramming the tumor microenvironment to become more proinflammatory. In addition, an increase in innate and adaptive immune cell infiltration and activation, enhanced lipid metabolism, and a decreased in ascorbate and aldarate metabolism were also found. These findings provide mechanistic insights that support the potent antitumor efficacy of BG136 when combined with immune checkpoint inhibitor antibodies.

7.
BMC Public Health ; 24(1): 1977, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049013

ABSTRACT

BACKGROUND: Caregiver self-efficacy is crucial in improving patient outcomes and caregiver well-being, but there is a lack of suitable scales to assess this concept within the context of Chinese culture. This study aimed to cross-culturally translate the Caregiver Self-Efficacy in Contributing to Patient Self-Care (CSE-CSC) Scale and evaluate its psychometric properties using classical test theory and item response theory. METHODS: The CSE-CSC scale was adapted using Brislin's translation model after obtaining authorization from the original author. A multicenter, cross-sectional study was conducted to assess the psychometric properties of this scale. Classical test theory was used to evaluate reliability (internal consistency, test-retest reliability), validity (content validity, structural validity, convergent validity), and floor and ceiling effects. Item response theory was employed to assess the fit of the rating scale model, reliability, item difficulties, and measurement invariance. RESULTS: The translation and cultural adaptation process was completed. Classical test theory demonstrated good internal consistency (Cronbach's α = 0.935) and test-retest reliability (ICC from 0.784 to 0.829, p<0.001). The I-CVI and K* of each item ranged from 0.875 to 1.00 and 0.871 to 1.00. The first-order 2-factor model fit well (χ2/df = 3.71, RMSEA = 0.082, SRMR = 0.032, CFI = 0.973, TLI = 0.60). Convergent validity showed that the CSE-CSC scores had a strong positive correlation with three separate scales of the CC-SC-CII. There was no floor and ceiling effect in this scale. Rasch analysis showed that the CSE-CSC scale demonstrated a good fit to the rating scale model and exhibited excellent reliability (person/item separation index>2, person/item reliability coefficients>0.8). The Wright map showed that item difficulty matched the respondents' measured abilities. The analysis of differential item functioning (DIF) showed that all items were comparable in gender. CONCLUSIONS: This study indicated that the CSE-CSC scale had good reliability, validity, difficulty degree, and measurement invariance. The CSE-CSC scale can be used to measure caregiver self-efficacy of Chinese patients with multiple chronic conditions.


Subject(s)
Caregivers , Psychometrics , Self Care , Self Efficacy , Humans , China , Caregivers/psychology , Female , Male , Cross-Sectional Studies , Middle Aged , Self Care/psychology , Reproducibility of Results , Adult , Surveys and Questionnaires/standards , Translations , Cross-Cultural Comparison , Aged
8.
Methods Mol Biol ; 2837: 125-135, 2024.
Article in English | MEDLINE | ID: mdl-39044080

ABSTRACT

Hepatitis B virus (HBV) is undoubtedly a master in exploiting host resources while evading host defense for its multiplication within a constrained genetic coding capacity. To further unravel these cunning strategies, a clear picture of virus-host interaction with key subcellular and molecular contexts is needed. Here, we describe a FISH protocol modified from the ViewRNA assay that allows direct visualization of HBV RNA, DNA, and cccDNA in cell culture models (e.g., HepAD38, HepG2-NTCP). It can be coupled with immunofluorescence staining of viral or host proteins or other fluorescent tagging systems which could illuminate numerous aspects of virus-host interactions.


Subject(s)
DNA, Viral , Hepatitis B virus , In Situ Hybridization, Fluorescence , RNA, Viral , Humans , Hepatitis B virus/genetics , In Situ Hybridization, Fluorescence/methods , RNA, Viral/genetics , DNA, Viral/genetics , DNA, Circular/genetics , Hep G2 Cells , Hepatitis B/virology , Cell Culture Techniques/methods , Virus Replication/genetics
9.
Methods Mol Biol ; 2837: 137-148, 2024.
Article in English | MEDLINE | ID: mdl-39044081

ABSTRACT

Hepatitis B virus (HBV) developed highly intricates mechanisms exploiting host resources for its multiplication within a constrained genetic coding capacity. With the aid of a series of classical analytical methods such as ultrafiltration, and Southern and Northern blots, a general framework of HBV life cycle has been established. However, this picture still lacks many key histological contexts which involves pathophysiological changes of hepatocytes, non-parenchymal cells, infiltrated leukocytes, and associated extracellular matrix. Here, we describe a CISH protocol modified from the ViewRNA assay that allows direct visualization of HBV RNA, DNA, and cccDNA in liver tissue of chronic hepatitis B patients. By coupling it with immunohistochemistry and other histological stains, much richer information regarding the HBV-induced pathological changes can be harvested.


Subject(s)
DNA, Viral , Hepatitis B virus , In Situ Hybridization , Liver , RNA, Viral , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Humans , In Situ Hybridization/methods , Liver/virology , Liver/metabolism , DNA, Viral/genetics , RNA, Viral/genetics , Hepatitis B, Chronic/virology , Chromogenic Compounds , Immunohistochemistry/methods , DNA, Circular/genetics , DNA, Circular/analysis
10.
Biosensors (Basel) ; 14(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39056608

ABSTRACT

The demand for accurate and efficient immunoassays calls for the development of precise, high-throughput analysis methods. This paper introduces a novel approach utilizing a weak measurement interface sensor for immunoassays, offering a solution for high throughput analysis. Weak measurement is a precise quantum measurement method that amplifies the weak value of a system in the weak interaction through appropriate pre- and post-selection states. To facilitate the simultaneous analysis of multiple samples, we have developed a chip with six flow channels capable of conducting six immunoassays concurrently. We can perform real-time immunoassay to determine the binding characteristics of spike protein and antibody through real-time analysis of the flow channel images and calculating the relative intensity. The proposed method boasts a simple structure, eliminating the need for intricate nano processes. The spike protein concentration and relative intensity curve were fitted using the Log-Log fitting regression equation, and R2 was 0.91. Utilizing a pre-transformation approach to account for slight variations in detection sensitivity across different flow channels, the present method achieves an impressive limit of detection(LOD) of 0.85 ng/mL for the SARS-CoV-2 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, with a system standard deviation of 5.61. Furthermore, this method has been successfully verified for monitoring molecular-specific binding processes and differentiating binding capacities.


Subject(s)
Biosensing Techniques , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/analysis , Immunoassay/methods , Humans , COVID-19/diagnosis , COVID-19/virology , Limit of Detection , High-Throughput Screening Assays
11.
Neuropathol Appl Neurobiol ; 50(3): e12992, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831600

ABSTRACT

PURPOSE: Radiation-induced brain injury, one of the side effects of cranial radiotherapy in tumour patients, usually results in durable and serious cognitive disorders. Microglia are important innate immune-effector cells in the central nervous system. However, the interaction between microglia and neurons in radiation-induced brain injury remains uncharacterised. METHODS AND MATERIALS: We established a microglia-neuron indirect co-culture model to assess the interaction between them. Microglia exposed to radiation were examined for pyroptosis using lactate dehydrogenase (LDH) release, Annexin V/PI staining, SYTOX staining and western blot. The role of nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) was investigated in microglia exposed to radiation and in mouse radiation brain injury model through siRNA or inhibitor. Mini-mental state examination and cytokines in blood were performed in 23 patients who had experienced cranial irradiation. RESULTS: Microglia exerted neurotoxic features after radiation in the co-culture model. NLRP3 was up-regulated in microglia exposed to radiation, and then caspase-1 was activated. Thus, the gasdermin D protein was cleaved, and it triggered pyroptosis in microglia, which released inflammatory cytokines. Meanwhile, treatment with siRNA NLRP3 in vitro and NLRP3 inhibitor in vivo attenuated the damaged neuron cell and cognitive impairment, respectively. What is more, we found that the patients after radiation with higher IL-6 were observed to have a decreased MMSE score. CONCLUSIONS: These findings indicate that radiation-induced pyroptosis in microglia may promote radiation-induced brain injury via the secretion of neurotoxic cytokines. NLRP3 was evaluated as an important mediator in radiation-induced pyroptosis and a promising therapeutic target for radiation-induced brain injury.


Subject(s)
Brain Injuries , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Pyroptosis/radiation effects , Pyroptosis/physiology , Microglia/metabolism , Microglia/radiation effects , Microglia/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Mice , Humans , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries/etiology , Male , Neurons/metabolism , Neurons/pathology , Neurons/radiation effects , Coculture Techniques , Radiation Injuries/pathology , Radiation Injuries/metabolism , Female , Mice, Inbred C57BL , Middle Aged
12.
Oral Dis ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852165

ABSTRACT

OBJECTIVES: Periodontitis seriously affects oral-related quality of life and overall health. Long intergenic non-coding RNA 01126 (LINC01126) is aberrantly expressed in periodontitis tissues. This study aimed to explore the possible pathogenesis of LINC01126 in periodontitis. METHODS: Inflammatory model of human gingival fibroblasts (HGFs) was established. Cell Counting Kit-8 (CCK-8), wound healing assay, and flow cytometry were utilized to detect biological roles of LINC01126. Binding site of miR-655-3p to LINC01126 and IL-6 was predicted. Then, subcellular localization of LINC01126 and the binding ability of miR-655-3p to LINC01126 and IL-6 in HGFs were verified. Hematoxylin-Eosin (H&E) staining and immunohistochemistry (IHC) staining were utilized to detect tissue morphology and proteins expression of clinical samples. RESULTS: LINC01126 silencing can alleviate cell inflammation induced by lipopolysaccharide derived from Porphyromonas gingivalis, reduce cell apoptosis, and promote cell migration. As a "sponge" for miR-655-3p, LINC01126 inhibits its binding to mRNA of IL-6, thereby promoting inflammation progression and JAK2/STAT3 pathway activation. Quantitative real-time PCR, Western Blot, and IHC results of clinical tissue samples further confirmed that miR-655-3p expression was down-regulated and IL-6/JAK2/STAT3 was abnormally activated in periodontitis tissues. CONCLUSIONS: In summary, serving as an endogenous competitive RNA of miR-655-3p, LINC01126 promotes IL-6/JAK2/STAT3 pathway activation, thereby promoting periodontitis pathogenesis.

13.
J Cardiovasc Nurs ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896538

ABSTRACT

BACKGROUND: Little is known regarding the relationship between perceived control and depression in patients with chronic heart failure (CHF), particularly in terms of their dose-response relationship. OBJECTIVE: The aim of this study was to explore this relationship based on linear and nonlinear hypotheses and potential subgroup differences in patients with CHF. METHODS: A total of 308 patients with CHF were included in the study. Data on perceived control, depression, and relevant covariates, such as gender, age, New York Heart Association classification, and comorbidity burden, were collected. Logistic regression, Spearman correlation, and restricted cubic spline analysis were used for data analysis. RESULTS: Compared with the patients in the first quartiles of perceived control scores (0-16), those in the other 3 quartiles had a lower risk of depression (odds ratios of 0.29, 0.21, and 0.20, respectively; P < .05). Furthermore, a negative correlation between perceived control and depression (r = -0.317, P < .01) was observed. The restricted cubic spline analysis revealed an "L-shaped" curve relationship between perceived control and the presence of depression (P for nonlinear < .01). Compared with patients with a perceived control within the 5th percentile (10 scores), as the perceived control increased, the risk of depression rapidly decreased from "1" until it reached a threshold (20 scores) and stabilized. This trend remained consistent across the subgroups grouped by gender, age, New York Heart Association classification, and comorbidity burden. CONCLUSIONS: Interventions targeting perceived control may hold valuable implications for reducing the risk of depression in patients with CHF, particularly those who have not yet reached the threshold.

14.
ACS Sens ; 9(7): 3625-3632, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38943618

ABSTRACT

Allergy is a prevalent disease, and the potential allergic population is expanding with industrialization and changes in people's living standards. Serum immunoglobulin E (IgE) level is one of the critical indicators for determining allergy. Here, we proposed a simple, real-time monitoring, low chip cost, label-free aptamer biosensing strategy based on weak value amplification (WVA) for the quantitative detection of IgE in serum samples, enabling early and accurate diagnosis of allergic or hypersensitive patients. The aptasensor combined an imaging weak measurement system with the high specificity of the aptamer for the marker IgE. By modifying the amino group at the 3-terminal end, the anti-IgE aptamers can attach to a dopamine-modified prism's surface and selectively recognize IgE in human serum. In the presence of IgE, a specific binding reaction occurred, resulting in a change in the refractive index of the reactive region's surface, manifested as a change in the light intensity of the camera acquired experimental images. As the concentration of IgE increased, the relative light intensity advanced sequentially. The WVA-aptasensing strategy achieved a wide detection range of 0.01 ng/mL to 2 µg/mL in phosphate buffered saline buffer, with the resolution as low as 4.3 pg/mL. IgE testing experiments in human serum have proved the feasibility of our methods in detecting complex samples. In addition, the method specifically recognized IgE without interference from other proteins. We believe that our proposed sensing strategy opens up new possibilities for ultrahigh sensitivity screening of IgE and can be expanded to detecting other biomolecules.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Immunoglobulin E , Immunoglobulin E/blood , Humans , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Limit of Detection
15.
Hepatology ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38904485

ABSTRACT

BACKGROUND AND AIMS: HBsAg serves as an important immune-modulatory factor in chronic hepatitis B. One aspect of such modulation may act through monocytes, which are the major Ag-presenting cells taking up HBsAg. There is evidence for the encapsulation of hepatocellular microRNAs (miRNAs) by HBsAg particles, while its pathobiological significance is unclear. Here, we characterized the miRNA profile in patients with chronic hepatitis B and probed their association with liver inflammation. APPROACHES AND RESULTS: We collected plasma from patients that are treatment-naive with chronic hepatitis B (n = 110) and quantified total/HBsAg-enveloped miRNAs by qRT-PCR and plasma cytokines by ELISA. The biological effects of HBsAg-delivered miRNAs in monocytes were evaluated using multiple approaches. The clinical significance of candidate miRNAs and cytokines was corroborated in patients with HBV-associated advanced liver diseases. The plasma miRNA profile showed 2 major clusters, one significantly associated with HBsAg titer and the other correlated with liver inflammation. Among HBsAg-carried miRNAs, miR-939 displayed the most significant correlation with IL-8. Mechanistically, miR-939 in subviral particles enters monocytes and significantly augments IL-8 production through the mitogen-activated protein kinase (MAPK) p38 signaling pathway. Finally, the findings that miR-939 positively correlated with IL-8 level and inflammation/fibrosis stage in the cohort of HBV-associated advanced liver diseases support its causative role in the progression of liver diseases. CONCLUSIONS: HBsAg particles carry hepatocellular miRNAs, including miR-939, which enter monocytes and alter their functional status, such as IL-8 secretion. Our findings demonstrate that the HBsAg-miR-939-IL-8 axis may play a crucial role in HBV-induced hepatic necro-inflammation and the progression of advanced liver diseases.

16.
Langmuir ; 40(26): 13603-13612, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38875214

ABSTRACT

Plasmonic metal oxides are promising photocatalysts for the artificial photosynthesis of green ammonia due to localized surface plasmon resonance (LSPR) enhanced photoconversion and rich surface oxygen vacancies improved chemisorption and activation of dinitrogen molecules. However, these oxygen vacancies are unstable during the photocatalytic process and could be oxidized by photogenerated holes, leading to the vanishing of the LSPR. Here, we fabricated antimony-doped molybdenum trioxide nanosheets with stable plasmonic absorption extending into the near-infrared (NIR) range, even after harsh treatment in oxidative atmospheric conditions at high temperatures. For undoped plasmonic MoO3-x nanosheets, the LSPR originates from the abundant oxygen vacancies that vanish after heat treatment at high temperatures in air, leading to the disappearance of the LSPR absorption. Sb doping does not significantly increase the concentration of oxygen vacancies while donating more free electrons because Sb can keep a lower oxidation state. Heat treatment diminished the oxygen vacancies while not affecting the low oxidation state of Sb. As a result, heat-treated Sb-doped MoO3-x nanosheets still show strong LSPR absorption in the NIR range. Both experimental results and theoretical calculations demonstrated that add-on states close to the Fermi level are formed due to the Sb doping and high concentration of oxygen vacancies. The prepared samples were used for photocatalytic nitrogen reduction and showed an LSPR-dependent photocatalytic performance. The present work has provided an effective strategy to stabilize the LSPR of plasmonic semiconductor photocatalysts.

17.
BMC Gastroenterol ; 24(1): 200, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886630

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD), a chronic inflammatory condition, is caused by several factors involving aberrant immune responses. Genetic factors are crucial in IBD occurrence. Mendelian randomization (MR) can offer a new perspective in understanding IBD's genetic background. METHODS: Single nucleotide polymorphisms (SNPs) were considered instrumental variables (IVs). We analyzed the relationship between 731 immunophenotypes, 1,400 metabolite phenotypes, and IBD. The total effect was decomposed into indirect and direct effects, and the ratio of the indirect effect to the total effect was calculated. RESULTS: We identified the causal effects of HLA-DR-expressing CD14 + monocytes on IBD through MR analysis. The phenotype "HLA-DR expression on CD14 + monocytes" showed the strongest association among the selected 48 immune phenotypes. Chiro-inositol metabolites mediated the effect of CD14 + monocytes expressing HLA-DR on IBD. An increase in Chiro-inositol metabolites was associated with a reduced risk of IBD occurrence, accounting for 4.97%. CONCLUSION: Our findings revealed a new pathway by which HLA-DR-expressing CD14 + monocytes indirectly reduced the risk of IBD occurrence by increasing the levels of Chiro-inositol metabolites. The results provided a new perspective on the immunoregulatory mechanisms underlying IBD, laying a theoretical foundation for developing new therapeutic targets in the future.


Subject(s)
HLA-DR Antigens , Inflammatory Bowel Diseases , Inositol , Lipopolysaccharide Receptors , Monocytes , Polymorphism, Single Nucleotide , Humans , Monocytes/metabolism , Monocytes/immunology , Lipopolysaccharide Receptors/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , HLA-DR Antigens/genetics , HLA-DR Antigens/metabolism , Inositol/metabolism , Mendelian Randomization Analysis , Phenotype , Immunophenotyping , Female , Male
18.
Elife ; 122024 Jun 26.
Article in English | MEDLINE | ID: mdl-38921957

ABSTRACT

Accurate prediction of the structurally diverse complementarity determining region heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal antibodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein language model and provides a 2.24 Å average RMSDCα between predicted and experimentally determined CDR-H3 loops, thus outperforming other current computational methods in our non-redundant high-quality dataset. The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT through analyzing antibody surface properties and antibody-antigen interactions. This structural prediction tool can be used to optimize antibody-antigen binding and engineer therapeutic antibodies with biophysical properties for specialized drug administration route.


Subject(s)
Complementarity Determining Regions , Deep Learning , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Models, Molecular , Protein Conformation , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Humans
19.
20.
Talanta ; 277: 126302, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38830277

ABSTRACT

A label-free optical sandwich immunoassay sensor, utilizing weak value amplification and total internal reflection, was devised for real-time, high-sensitivity analysis and detection of low-concentration targets. 3D printed channels and sodium chloride solution were employed to ensure reproducibility, reliability, and stability of the measurements for calibration. The sandwich structure demonstrated enhanced responsiveness in the proposed optical biosensor through a comparative analysis of the direct assay and sandwich assay for detecting alpha-fetoprotein (AFP) at the same concentration. By optimizing the binding sequences of the coating antibody, target, and detection antibody in the sandwich method, a more suitable sandwich sensing approach based on weak value amplification was achieved. With this approach, the limit of detection (LOD) of 6.29 ng/mL (pM level) for AFP in PBS solution was achieved. AFP testing and regeneration experiments in human serum have proved the feasibility of our methods in detecting complex samples and the reusability of sensing chips. Additionally, the method demonstrated excellent selectivity for unpaired antigens. The efficacy of this methodology was evaluated by simultaneously detecting AFP, carcinoembryonic antigen (CEA), and CA15-3 on a singular sensor chip. In conclusion, the label-free sandwich immunoassay sensing scheme holds promise for advancing the proposed optical sensors based on weak value amplification in early diagnosis and prevention applications. Compared to other biomarker detection methods, it will be easier to promote in practical applications.


Subject(s)
Biosensing Techniques , Carcinoembryonic Antigen , Limit of Detection , alpha-Fetoproteins , Biosensing Techniques/methods , alpha-Fetoproteins/analysis , Humans , Carcinoembryonic Antigen/blood , Carcinoembryonic Antigen/analysis , Immunoassay/methods , Mucin-1/blood , Mucin-1/analysis , Antibodies, Immobilized/immunology , Antibodies, Immobilized/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL