Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.305
Filter
1.
Front Microbiol ; 15: 1291876, 2024.
Article in English | MEDLINE | ID: mdl-38765679

ABSTRACT

Introduction: Antibiotic misuse and overuse have led to the emergence of carbapenem-resistant bacteria. The global spread of resistance to the novel antibiotic combination ceftazidime-avibactam (CZA) is becoming a severe problem. Antimicrobial peptide PAM-1 offers a novel approach for treating infections caused by antibiotic-resistant bacteria. This study explores its antibacterial and anti-biofilm activities and mechanisms against CZA-resistant Escherichia. Coli (E. coli), evaluating its stability and biosafety as well. Methods: The broth microdilution method, growth curve analysis, crystal violet staining, scanning electron microscopy, and propidium iodide staining/N-phenyl-1-naphthylamine uptake experiments were performed to explore the antibacterial action and potential mechanism of PAM-1 against CZA-resistant E. coli. The biosafety in diverse environments of PAM-1 was evaluated by red blood cell hemolysis, and cytotoxicity tests. Its stability was further assessed under different temperatures, serum concentrations, and ionic conditions using the broth microdilution method to determine its minimum inhibitory concentration (MIC). Galleria mellonella infection model and RT-qPCR were used to investigate the in vivo antibacterial and anti-inflammatory effects. Results and discussion: In vitro antibacterial experiments demonstrated that the MICs of PAM-1 ranged from 2 to 8 µg/mL, with its effectiveness sustained for a duration of 24 h. PAM-1 exhibited significant antibiofilm activities against CZA-resistant E. coli (p < 0.05). Furthermore, Membrane permeability test revealed that PAM-1 may exert its antibacterial effect by disrupting membrane integrity by forming transmembrane pores (p < 0.05). Red blood cell hemolysis and cytotoxicity tests revealed that PAM-1 exerts no adverse effects at experimental concentrations (p < 0.05). Moreover, stability tests revealed its effectiveness in serum and at room temperature. The Galleria mellonella infection model revealed that PAM-1 can significantly improve the survival rate of Galleria mellonella (>50%)for in vivo treatment. Lastly, RT-qPCR revealed that PAM-1 downregulates the expression of inflammatory cytokines (p < 0.05). Overall, our study findings highlight the potential of PAM-1 as a therapeutic agent for CZA-resistant E. coli infections, offering new avenues for research and alternative antimicrobial therapy strategies.

3.
Acta Pharmacol Sin ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760543

ABSTRACT

Bevacizumab is a recombinant humanized monoclonal immunoglobulin (Ig) G1 antibody of VEGF, and inhibits angiogenesis and tumor growth in hepatocellular carcinoma (HCC). Ferroptosis, a new form of regulated cell death function independently of the apoptotic machinery, has been accepted as an attractive target for pharmacological intervention; the ferroptosis pathway can enhance cell immune activity of anti-PD1 immunotherapy in HCC. In this study we investigated whether and how bevacizumab regulated ferroptosis and immune activity in liver cancer. Firstly, we performed RNA-sequencing in bevacizumab-treated human liver cancer cell line HepG2 cells, and found that bevacizumab significantly altered the expression of a number of genes including VEGF, PI3K, HAT1, SLC7A11 and IL-9 in liver cancer, bevacizumab upregulated 37 ferroptosis-related drivers, and downregulated 17 ferroptosis-related suppressors in particular. We demonstrated that bevacizumab triggered ferroptosis in liver cancer cells by driving VEGF/PI3K/HAT1/SLC7A11 axis. Clinical data confirmed that the expression levels of VEGF were positively associated with those of PI3K, HAT1 and SLC7A11 in HCC tissues. Meanwhile, we found that bevacizumab enhanced immune cell activity in tumor immune-microenvironment. We identified that HAT1 up-regulated miR-143 targeting IL-9 mRNA 3'UTR in liver cancer cells; bevacizumab treatment resulted in the increase of IL-9 levels and its secretion via VEGF/PI3K/HAT1/miR-143/IL-9 axis, which led to the inhibition of tumor growth in vivo through increasing the release of IL-2 and Granzyme B from activated CD8+ T cells. We conclude that in addition to inhibiting angiogenesis, bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer. This study provides new insight into the mechanisms by which bevacizumab synergistically modulates ferroptosis and CD8+ T cell immune activity in liver cancer.

4.
Quant Imaging Med Surg ; 14(5): 3405-3416, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38720839

ABSTRACT

Background: Anterior cruciate ligament (ACL) injuries are closely associated with knee osteoarthritis (OA). However, diagnosing ACL injuries based on knee magnetic resonance imaging (MRI) has been subjective and time-consuming for clinical doctors. Therefore, we aimed to devise a deep learning (DL) model leveraging MRI to enable a comprehensive and automated approach for the detection of ACL injuries. Methods: A retrospective study was performed extracting data from the Osteoarthritis Initiative (OAI). A total of 1,589 knees (comprising 1,443 intact, 90 with partial tears, and 56 with full tears) were enrolled to construct the classification model. This one-stop detection pipeline was developed using a tailored YOLOv5m architecture and a ResNet-18 convolutional neural network (CNN) to facilitate tasks based on sagittal 2-dimensional (2D) intermediate-weighted fast spin-echo sequence at 3.0T. To ensure the reliability and robustness of the classification system, it was subjected to external validation across 3 distinct datasets. The accuracy, sensitivity, specificity, and the mean average precision (mAP) were utilized as the evaluation metric for the model performance by employing a 5-fold cross-validation approach. The radiologist's interpretations were employed as the reference for conducting the evaluation. Results: The localization model demonstrated an accuracy of 0.89 and a sensitivity of 0.93, achieving a mAP score of 0.96. The classification model demonstrated strong performance in detecting intact, partial tears, and full tears at the optimal threshold on the internal dataset, with sensitivities of 0.941, 0.833, and 0.929, specificities of 0.925, 0.947, and 0.991, and accuracies of 0.940, 0.941, and 0.989, respectively. In comparison, on a subset consisting of 171 randomly selected knees from the OAI, the radiologists demonstrated a sensitivity ranging between 0.660 and 1.000, specificity ranging between 0.691 and 1.000, and accuracy ranging between 0.689 and 1.000. On a subset consisting of 170 randomly selected knees from the Chinese dataset, the radiologists exhibited a sensitivity ranging between 0.711 and 0.948, specificity ranging between 0.768 and 0.977, and accuracy ranging between 0.683 and 0.917. After retraining, the model achieved sensitivities ranging between 0.630 and 0.961, specificities ranging between 0.860 and 0.961, and accuracies ranging between 0.832 and 0.951, respectively, on the external validation dataset. Conclusions: The proposed model utilizing knee MRI showcases robust performance in the domains of ACL localization and classification.

5.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732797

ABSTRACT

Flatness is a critical parameter in the manufacturing industry, directly impacting the fit and overall product performance. As the efficiency of manufacturing continues to advance, there is an increasing demand for more accurate and efficient measurement techniques. Existing methods often struggle to strike a balance between precision and efficiency. In response, this article introduces a novel approach that is capable of achieving high-precision and rapid measurements concerning multiple surfaces. By enhancing the traditional phase measuring deflectometry (PMD) method, employing a matching technique based on polar lines and normal vector constraints to address discrete surface measurement challenges, and implementing a plane pre-positioning method to tackle low efficiency in binocular matching and solving, we successfully performed swift and synchronized measurements for a large batch of specular surfaces and obtained the three-dimensional surface profile of each measured surface. Through experimental validation, the method proposed in this paper can perform the batch measurement of specular planes while maintaining high measurement accuracy.

6.
ACS Nano ; 18(19): 12386-12400, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38699808

ABSTRACT

Current cancer vaccines face challenges due to an immunosuppressive tumor microenvironment and their limited ability to produce an effective immune response. To address the above limitations, we develop a 3-(2-spiroadamantyl)-4-methoxy-4-(3-phosphoryloxy)-phenyl-1,2-dioxetane (alkaline phosphatase substrate) and XMD8-92 (extracellular signal-regulated kinase 5 inhibitor)-codelivered copper-tetrahydroxybenzoquinone (Cu-THBQ/AX) nanosized metal-organic framework to in situ-generate therapeutic vaccination. Once inside the early endosome, the alkaline phosphatase overexpressed in the tumor cells' membrane activates the in situ type I photodynamic effect of Cu-THBQ/AX for generating •O2-, and the Cu-THBQ/AX catalyzes O2 and H2O2 to •O2- and •OH via semiquinone radical catalysis and Fenton-like reactions. This surge of ROS in early endosomes triggers caspase-3-mediated proinflammatory pyroptosis via activating phospholipase C. Meanwhile, Cu-THBQ/AX can also induce the oligomerization of dihydrolipoamide S-acetyltransferase to trigger tumor cell cuproptosis. The production of •OH could also trigger the release of XMD8-92 for effectively inhibiting the efferocytosis of macrophages to convert immunosuppressive apoptosis of cancer cells into proinflammatory secondary necrosis. The simultaneous induction of pyroptosis, cuproptosis, and secondary necrosis effectively converts the tumor microenvironment from "cold" to "hot" conditions, making it an effective antigen pool. This transformation successfully activates the antitumor immune response, inhibiting tumor growth and metastasis.


Subject(s)
Cancer Vaccines , Copper , Macrophages , Metal-Organic Frameworks , Pyroptosis , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Animals , Mice , Pyroptosis/drug effects , Macrophages/drug effects , Macrophages/metabolism , Humans , Copper/chemistry , Copper/pharmacology , Cancer Vaccines/chemistry , Tumor Microenvironment/drug effects , Nanoparticles/chemistry , Phagocytosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Mice, Inbred BALB C , Efferocytosis , Nanovaccines
7.
Hepatol Int ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698184

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) and acute liver injury (ALI) were associated with poor outcomes during hospitalization, respectively. However, the clinical outcome of AKI combined with ALI (AKI-ALI) remains unknown. The current study aimed to describe AKI-ALI's incidences, risk factors, and outcomes. METHODS: The study population included patients aged 18-99 years with enough serum creatinine and liver testing hospitalized at 19 medical centers throughout China between 2000 and 2021. AKI was defined by Kidney Disease Improving Global Outcomes and ALI was defined by the change of liver enzymes based on Asia Pacific Association of Study of Liver consensus guidelines. Cox proportional hazard model was used to identify risk factors for AKI-ALI, and a time-dependent Cox proportional hazard regression model was used to estimate the association between AKI-ALI and in-hospital mortality. RESULTS: Among the 18,461 patients with AKI, 1689 (9.1%) combined with ALI. Male patients or those who have used nonsteroidal anti-inflammatory drugs or vasopressors, and who have heart failure or shock, with higher AST or GGT values, were associated with an increased risk of AKI-ALI. Compared with AKI-nonALI, patients with AKI-ALI were at higher risk of in-hospitalized mortality (hazard ratio [HR] 1.76, 95% confidence interval [CI] 1.54, 2.00). In addition, a stronger association between AKI-ALI and in-hospital mortality was found in those with lower AKI grades (p for interaction = 0.037). CONCLUSIONS: ALI was not uncommon among patients with AKI, especially in patients who used vasopressors and had shock. This study highlights the association between AKI-ALI and a significantly increased risk of mortality. It suggests that dynamic monitoring of liver function is essential, particularly in patients with AST and GGT exceeding the normal upper limit, to improve the in-hospital prognosis of AKI patients.

8.
BMC Oral Health ; 24(1): 552, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735923

ABSTRACT

Patients who suffer from myofascial orofacial pain could affect their quality of life deeply. The pathogenesis of pain is still unclear. Our objective was to assess Whether Voltage-gated calcium channel α2δ-1(Cavα2δ-1) is related to myofascial orofacial pain. Rats were divided into the masseter tendon ligation group and the sham group. Compared with the sham group, the mechanical pain threshold of the masseter tendon ligation group was reduced on the 4th, 7th, 10th and 14th day after operation(P < 0.05). On the 14th day after operation, Cavα2δ-1 mRNA expression levels in trigeminal ganglion (TG) and the trigeminal spinal subnucleus caudalis and C1-C2 spinal cervical dorsal horn (Vc/C2) of the masseter tendon ligation group were increased (PTG=0.021, PVc/C2=0.012). Rats were divided into three groups. On the 4th day after ligating the superficial tendon of the left masseter muscle of the rats, 10 ul Cavα2δ-1 antisense oligonucleotide, 10 ul Cavα2δ-1 mismatched oligonucleotides and 10 ul normal saline was separately injected into the left masseter muscle of rats in Cavα2δ-1 antisense oligonucleotide group, Cavα2δ-1 mismatched oligonucleotides group and normal saline control group twice a day for 4 days. The mechanical pain threshold of the Cavα2δ-1 antisense oligonucleotides group was higher than Cavα2δ-1 mismatched oligonucleotides group on the 7th and 10th day after operation (P < 0.01). After PC12 cells were treated with lipopolysaccharide, Cavα2δ-1 mRNA expression level increased (P < 0.001). Cavα2δ-1 may be involved in the occurrence and development in myofascial orofacial pain.


Subject(s)
Calcium Channels , Masseter Muscle , Rats, Sprague-Dawley , Trigeminal Ganglion , Animals , Rats , Masseter Muscle/metabolism , Male , Calcium Channels/metabolism , Trigeminal Ganglion/metabolism , Pain Threshold , Facial Pain/metabolism , Spinal Cord Dorsal Horn/metabolism , Oligonucleotides, Antisense/pharmacology , Myofascial Pain Syndromes , RNA, Messenger/metabolism , Calcium Channels, L-Type
9.
Nat Commun ; 15(1): 3901, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724505

ABSTRACT

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Subject(s)
Cytoplasm , NF-KappaB Inhibitor alpha , NF-kappa B , Protein-Tyrosine Kinases , Transcription Factor RelA , Animals , Phosphorylation , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Mice , Transcription Factor RelA/metabolism , Humans , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , NF-kappa B/metabolism , Cytoplasm/metabolism , Proteolysis , Cell Nucleus/metabolism , Virus Replication , HEK293 Cells , Signal Transduction , Mice, Inbred C57BL , Cytokines/metabolism , Active Transport, Cell Nucleus , Protein Serine-Threonine Kinases
10.
Risk Manag Healthc Policy ; 17: 1287-1299, 2024.
Article in English | MEDLINE | ID: mdl-38770148

ABSTRACT

Purpose: The siphon effect in the health service market is notably pronounced in many countries. How to measure and identify the determinants contributing to the siphon effect presents a substantial challenge. This study aimed to analyse the effect of two different social medical insurances, the Basic Medical Insurance System for Urban Employees (BMISUE), and the Basic Medical Insurance System for Urban and Rural Residents (BMISURR), on the siphon effect in the health services market. Methods: The data used in this study were from the 2021 Health Life Satisfaction Survey of Yangtze River Delta (HLSSYRD) conducted by Shanghai Jiao Tong University. The logistic model was used to evaluate the association between social medical insurances and individual choices of medical institutions, and the Propensity Score Matching method (PSM) was used to check the robustness of basic results. Results: Residents covered by BMISUE were more likely to choose a general hospital when they first sought medical treatment (OR = 5.377, 95% CI: 4.887, 5.915) relative to those insured by BMISURR. Further analysis showed that BMISUE would accelerate the siphon effect of general hospitals, people insured by BMISUE were still more likely to choose general hospitals despite being close to primary hospitals compared to those insured by BMISURR (OR = 3.240, 95% CI: 2.945, 3.565). Heterogeneity analysis indicated BMISUE had a greater impact on residents aged 15-59 years and those with high income compared to older people and individuals with low income. Conclusion: Different social medical insurances can substantially affect residents' first choice of medical institutions. BMISUE with higher benefits level could exacerbate the siphon effect in the health service market. More equitable medical security system should be strengthened to bridge the benefits gap between BMISUE and BMISURR.

11.
J Int Med Res ; 52(5): 3000605241253454, 2024 May.
Article in English | MEDLINE | ID: mdl-38759213

ABSTRACT

OBJECTIVE: To explore the prevalence of type I and type II Helicobacter pylori infection and investigate risk factors in a population from Hainan Province in China. METHODS: Data came from a large, cross-sectional study conducted from August 2022 to April 2023 involving five cities of Hainan. Subjects with confirmed 14C-urea breath test (UBT) and positive serological assay were included. All subjects had a gastroscopy. According to presence or absence of CagA/VacA proteins, subjects were classified as either type I (present) or type II strains (absent). Gastroscopic findings and several socio-demographic factors were examined for correlation with antibody serotyping. RESULTS: In total, 410 subjects were investigated for H. pylori strain types. The overall prevalence of the highly virulent, type I H. pylori strain was 79% (324/410) and type II strain was 21% (86/410). There was a strong association between type I strain and peptic ulcer disease. Of several sociodemographic factors investigated, only smoking and data over baseline (DOB) values showed significant differences between type 1 and type II strains. Logistic regression analysis showed a lower risk of type I H. pylori infection in smokers compared with non-smokers, and a higher risk of H. pylori type I infection in subjects with medium and high data over baseline (DOB) values compared with subjects who had low DOB values. CONCLUSION: Highly virulent, type I H. pylori infections predominate in Hainan and the co-positivity of CagA and VacA antibodies are related to type I H. pylori infection. We found that Type I H. pylori was closely associated with peptic ulcer disease and the DOB values were generally high.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/isolation & purification , Helicobacter pylori/immunology , Helicobacter pylori/pathogenicity , Male , Female , China/epidemiology , Helicobacter Infections/microbiology , Helicobacter Infections/epidemiology , Helicobacter Infections/diagnosis , Middle Aged , Risk Factors , Cross-Sectional Studies , Adult , Bacterial Proteins , Prevalence , Antigens, Bacterial/immunology , Peptic Ulcer/microbiology , Peptic Ulcer/epidemiology , Aged , Breath Tests , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology
12.
BMC Oral Health ; 24(1): 572, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760743

ABSTRACT

BACKGROUND: Cleidocranial dysplasia (CCD) is an autosomal dominant hereditary disorder. Besides skeletal abnormalities, CCD is often associated with dental complications, such as multiple supernumerary teeth and permanent teeth impaction or delayed eruption. METHODS: Supernumerary teeth of axial, sagittal and coronal CBCT view was characterized in detail and 3D image reconstruction was performed. Number and location of teeth, morphology of supernumerary teeth, positional relationship between supernumerary and adjacent permanent teeth, direction of supernumerary teeth in CCD patients were analyzed. RESULTS: The mean age of the 3 CCD patients in this study was 16.7 years. Among 36 supernumerary teeth, the majority of them were identified as apical side located and lingual side located. Normal orientation was the most common type in this study, followed by sagittal orientation, and horizontal orientation. Horizontal orientation teeth were all distributed in the mandible. Supernumerary teeth exhibited significantly shorter crown and dental-root lengths, as well as smaller crown mesiodistal and buccolingual diameters (P < 0.01). There was no difference in the number of supernumerary teeth between the maxilla and mandible, and the premolars region had the largest number of supernumerary teeth and the incisor region had the smallest number. CONCLUSIONS: This study compares number and location of teeth, morphology of supernumerary teeth, positional relationship between supernumerary and adjacent permanent teeth and direction of supernumerary teeth, this study also provides a reference for the comprehensive evaluation of CCD patients before surgery.


Subject(s)
Cleidocranial Dysplasia , Cone-Beam Computed Tomography , Imaging, Three-Dimensional , Tooth, Supernumerary , Humans , Cleidocranial Dysplasia/diagnostic imaging , Cleidocranial Dysplasia/complications , Tooth, Supernumerary/diagnostic imaging , Imaging, Three-Dimensional/methods , Adolescent , Male , Female , Tooth Crown/diagnostic imaging , Tooth Crown/abnormalities , Tooth Crown/pathology , Tooth Root/diagnostic imaging , Tooth Root/abnormalities , Odontometry/methods , Young Adult , Mandible/diagnostic imaging , Mandible/abnormalities , Bicuspid/abnormalities , Bicuspid/diagnostic imaging , Maxilla/diagnostic imaging , Image Processing, Computer-Assisted/methods
13.
Sci Rep ; 14(1): 11362, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762613

ABSTRACT

Topographic Rossby waves (TRWs) dominate the low-frequency variability of deep ocean currents and play a crucial role in energy exchange and material mixing. On the continental slope of the southwestern South China Sea, a deep-water mooring was deployed to observe TRWs for a period of ~ 40 days. The TRWs, with a wavelength of 109 km, account for 41.3% of the subinertial variations. A ray-tracing model was applied to investigate the propagation and energy source. The results showed that the TRWs propagated from the northeast of the mooring location and were most likely caused by the mesoscale eddy disturbances off the Vietnam coast. This study provides a new perspective on examining the impact of mesoscale eddies off Vietnam on abyssal currents.

14.
Adv Healthc Mater ; : e2400819, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722289

ABSTRACT

Mild photothermal therapy (PTT) is a spatiotemporally controllable method that utilizes the photothermal effect at relatively low temperatures (40-45 °C) to especially eliminate tumor tissues with negligible side effects on the surrounding normal tissues. However, the overexpression of heat shock protein 70 (HSP70) and limited effect of single treatment drastically impede the therapeutic efficacy. Herein, the constructed multifunctional core-shell structured Ag-Cu@SiO2-PDA/GOx nanoreactors (APG NRs) that provide a dual inhibition of HSP70 strategy for the second near-infrared photoacoustic (NIR-II PA) imaging-guided combined mild PTT/chemodynamic therapy (CDT). The Ag-Cu cores can convert endogenous H2O2 to hydroxyl radical (•OH), which can induce lipid peroxidation (LPO) and further degrade HSP70. The polydopamine (PDA)/glucose oxidase (GOx) shells are utilized as the NIR-II photothermal agent to generate low temperature, and the GOx can reduce the energy supplies and inhibit energy-dependent HSP70 expression. Furthermore, both the generation of •OH and GOx-mediated energy shortage can reduce HSP70 expression to sensitize mild PTT under 1064 nm laser, and in turn, GOx and laser self-amplify the catalytic reactions of APG NRs for more production of •OH. The multifunctional nanoreactors will provide more potential possibilities for the clinical employment of mild PTT and the advancement of tumor combination therapies.

15.
Adv Mater ; : e2402000, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738693

ABSTRACT

The disparity between growth substrates and application-specific substrates can be mediated by reliable graphene transfer, the lack of which currently strongly hinders the graphene applications. Conventionally, the removal of soft polymers, that support the graphene during the transfer, would contaminate graphene surface, produce cracks, and leave unprotected graphene surface sensitive to airborne contaminations. In this work, it is found that polyacrylonitrile (PAN) can function as polymer medium for transferring wafer-size graphene, and encapsulating layer to deliver high-performance graphene devices. Therefore, PAN, that is compatible with device fabrication, does not need to be removed for subsequent applications. The crack-free transfer of 4 in. graphene onto SiO2/Si wafers, and the wafer-scale fabrication of graphene-based field-effect transistor arrays with no observed clear doping, uniformly high carrier mobility (≈11 000 cm2 V-1 s-1), and long-term stability at room temperature, are achieved. This work presents new concept for designing the transfer process of 2D materials, in which multifunctional polymer can be retained, and offers a reliable method for fabricating wafer-scale devices of 2D materials with outstanding performance.

16.
Environ Res ; 254: 119152, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754612

ABSTRACT

Several soil functions of alpine wetland depend on microbial communities, including carbon storage and nutrient cycling, and soil microbes are highly sensitive to hydrological conditions. Wetland degradation is often accompanied by a decline in water table. With the water table drawdown, the effects of microbial network complexity on various soil functions remain insufficiently understood. In this research, we quantified soil multifunctionality of flooded and non-flooded sites in the Lalu Wetland on the Tibetan Plateau. We employed high-throughput sequencing to investigate the microbial community responses to water table depth changes, as well as the relationships between microbial network properties and soil multifunctionality. Our findings revealed a substantial reduction in soil multifunctionality at both surface and subsurface soil layers (0-20 cm and 20-40 cm) in non-flooded sites compared to flooded sites. The α-diversity of bacteria in the surface soil of non-flooded sites was significantly lower than that in flooded sites. Microbial network properties (including the number of nodes, number of edges, average degree, density, and modularity of co-occurrence networks) exhibited significant correlations with soil multifunctionality. This study underscores the adverse impact of non-flooded conditions resulting from water table drawdown on soil multifunctionality in alpine wetland soils, driven by alterations in microbial community structure. Additionally, we identified soil pH and moisture content as pivotal abiotic factors influencing soil multifunctionality, with microbial network complexity emerging as a valuable predictor of multifunctionality.

17.
Sci Total Environ ; 933: 173053, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723973

ABSTRACT

Nitrochlorobenzene (NCB) is very common in pesticide and chemical industries, which has become a major problem in soil environment. However, the remediation of NCB contaminated soil is received finite concern. Using biochar as a substrate for nanoscale-zero valent iron (nZVI/p-BC) to activate peroxodisulfate (PDS), a novel heterogeneous oxidative system had been applied in the current study to remediate NCB contaminants in soil. The degradation efficiencies and kinetics of m-NCB, p-NCB, and o-NCB by various systems were contrasted in soil slurry. Key factors including the dosage of nZVI/p-BC, the molar ratio of nZVI/PDS, initial pH and temperature on degradation of NCB were further examined. The results confirmed that the nZVI/p-BC/PDS displayed the remarkable performance for removing NCB compared with other systems. Higher temperature with nZVI/PDS molar ratio of 2:1 under the acidic condition favored the reduction of NCB. The treatment for NCB with optimal conditions were evaluated for the engineering application. The mechanism of nZVI/p-BC/PDS indicated that electron transfer between p-BC and nZVI was responsible for activation of PDS, generating active species (SO4•-, •OH and 1O2) via both the free and non-free radical pathways. Experimental results revealed prominent availability of nZVI/p-BC/PDS system in remediation of actual contaminated field by NCB.

18.
Small ; : e2401089, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705868

ABSTRACT

With ever-increasing requirements for cathodes in the lithium-ion batteries market, an efficiency and eco-friendly upcycling regeneration strategy is imperative to meet the demand for high-performance cathode materials. Herein, a facile, direct and upcycling regeneration strategy is proposed to restore the failed LiCoO2 and enhance the stability at 4.6 V. Double effects combination of relithiation and outside surface reconstruction are simultaneously achieved via a facile solid-phase sintering method. The evolution process of the Li-supplement and grain-recrystallization is systematically investigated, and the high performance of the upcycled materials at high voltage is comprehensively demonstrated. Thanks to the favorable spinel LiCoxMn2-xO4 surface coating, the upcycled sample displays outstanding electrochemical performance, superior to the pristine cathode materials. Notably, the 1% surface-coated LiCoO2 achieves a high discharge-specific capacity of 207.9 mA h g-1 at 0.1 C and delivers excellent cyclability with 77.0% capacity retention after 300 cycles. Significantly, this in situ created spinel coating layer can be potentially utilized for recycling spent LiCoO2, thus providing a viable, promising recycling strategy insights into the upcycling of degraded cathodes.

19.
BMC Genomics ; 25(1): 447, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714941

ABSTRACT

BACKGROUND: The health and size of the testes are crucial for boar fertility. Testicular development is tightly regulated by epigenetics. N6-methyladenosine (m6A) modification is a prevalent internal modification on mRNA and plays an important role in development. The mRNA m6A methylation in boar testicular development still needs to be investigated. RESULTS: Using the MeRIP-seq technique, we identify and profile m6A modification in boar testes between piglets and adults. The results showed 7783 distinct m6A peaks in piglets and 6590 distinct m6A peaks in adults, with 2,471 peaks shared between the two groups. Enrichment of GO and KEGG analysis reveal dynamic m6A methylation in various biological processes and signalling pathways. Meanwhile, we conjointly analyzed differentially methylated and expressed genes in boar testes before and after sexual maturity, and reproductive related genes (TLE4, TSSK3, TSSK6, C11ORF94, PATZ1, PHLPP1 and PAQR7) were identified. Functional enrichment analysis showed that differential genes are associated with important biological functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. CONCLUSION: The results demonstrate that m6A methylation, differential expression and the related signalling pathways are crucial for boar testicular development. These results suggest a role for m6A modification in boar testicular development and provided a resource for future studies on m6A function in boar testicular development.


Subject(s)
Adenosine , Sexual Maturation , Testis , Animals , Male , Testis/metabolism , Testis/growth & development , Adenosine/analogs & derivatives , Adenosine/metabolism , Swine/genetics , Sexual Maturation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Methylation , Gene Expression Regulation, Developmental , Signal Transduction , Gene Expression Profiling
20.
Card Electrophysiol Clin ; 16(2): 175-180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749638

ABSTRACT

The left atrial appendage (LAA) is now recognized as a significant contributor to arrhythmia and thromboembolism in patients with a history of atrial fibrillation. Thoracoscopic exclusion of the LAA is made possible with the AtriClip device. In this report, we describe the case of a 65-year-old man with history of multiple left atrial ablation procedures and LAA clipping. He developed a microreentrant atrial tachycardia originating from the anterior base of the LAA stump, underwent complete isolation of the LAA, and had subsequent resolution of arrhythmogenic activity from the residual LAA stump.


Subject(s)
Atrial Appendage , Humans , Atrial Appendage/surgery , Atrial Appendage/physiopathology , Aged , Male , Catheter Ablation , Atrial Fibrillation/surgery , Atrial Fibrillation/physiopathology , Tachycardia, Supraventricular/surgery , Tachycardia, Supraventricular/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...