Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Artif Cells Nanomed Biotechnol ; 52(1): 300-308, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38753524

ABSTRACT

Lung cancer is a dangerous disease that is lacking in an ideal therapy. Here, we evaluated the anti-lung cancer effect in nude mice of a fully human single-chain antibody (scFv) against the associated antigen 7 transmembrane receptor (Ts7TMR), which is also called G protein-coupled receptor, between A549 cells and Trichinella spiralis (T. spiralis). Our data showed that anti-Ts7TMR scFv could inhibit lung cancer growth in a dose-dependent manner, with a tumour inhibition rate of 59.1%. HE staining did not reveal any obvious tissue damage. Mechanistically, immunohistochemical staining revealed that the scFv down-regulated the expression of PCNA and VEGF in tumour tissues. Overall, this study found that anti-Ts7TMR scFv could inhibit A549 lung cancer growth by suppressing cell proliferation and angiogenesis, which may provide a new strategy for treating lung cancer.


Subject(s)
Lung Neoplasms , Single-Chain Antibodies , Trichinella spiralis , Animals , Humans , Mice , A549 Cells , Cell Proliferation/drug effects , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Mice, Nude , Neovascularization, Pathologic/immunology , Proliferating Cell Nuclear Antigen/immunology , Proliferating Cell Nuclear Antigen/metabolism , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacology , Trichinella spiralis/immunology , Vascular Endothelial Growth Factor A/immunology , Vascular Endothelial Growth Factor A/metabolism , Xenograft Model Antitumor Assays
2.
Exp Parasitol ; 262: 108788, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759775

ABSTRACT

Giardiasis is a common waterborne zoonotic disease caused by Giardia intestinalis. Upon infection, Giardia releases excretory and secretory products (ESPs) including secreted proteins (SPs) and extracellular vesicles (EVs). Although the interplay between ESPs and intestinal epithelial cells (IECs) has been previously described, the functions of EVs in these interactions and their differences from those of SPs require further exploration. In the present study, EVs and EV-depleted SPs were isolated from Giardia ESPs. Proteomic analyses of isolated SPs and EVs showed 146 and 91 proteins, respectively. Certain unique and enriched proteins have been identified in SPs and EVs. Transcriptome analysis of Caco-2 cells exposed to EVs showed 96 differentially expressed genes (DEGs), with 56 upregulated and 40 downregulated genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) indicated that Caco-2 genes related to metabolic processes, the HIF-1 signaling pathway, and the cAMP signaling pathway were affected. This study provides new insights into host-parasite interactions, highlighting the potential significance of EVs on IECs during infections.


Subject(s)
Extracellular Vesicles , Giardia lamblia , Intestinal Mucosa , Humans , Caco-2 Cells , Giardia lamblia/genetics , Giardia lamblia/metabolism , Extracellular Vesicles/metabolism , Intestinal Mucosa/parasitology , Intestinal Mucosa/metabolism , Gene Expression Profiling , Epithelial Cells/parasitology , Epithelial Cells/metabolism , Proteomics , Host-Parasite Interactions , Gene Expression , Transcriptome , Giardiasis/parasitology
3.
Parasitol Res ; 123(4): 176, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573530

ABSTRACT

Giardiasis is a common intestinal infection caused by Giardia duodenalis, which is a major economic and health burden for humans and livestock. Currently, a convenient and effective detection method is urgently needed. CRISPR/Cas12a-based diagnostic methods have been widely used for nucleic acid-based detection of pathogens due to their high efficiency and sensitivity. In this study, a technique combining CRISPR/Cas12a and RPA was established that allows the detection of G. duodenalis in faecal samples by the naked eye with high sensitivity (10-1 copies/µL) and specificity (no cross-reactivity with nine common pathogens). In clinical evaluations, the RPA-CRISPR/Cas12a-based detection assay detected Giardia positivity in 2% (1/50) of human faecal samples and 47% (33/70) of cattle faecal samples, respectively, which was consistent with the results of nested PCR. Our study demonstrated that the RPA-CRISPR/Cas12a technique for G. duodenalis is stable, efficient, sensitive, specific and has low equipment requirements. This technique offers new opportunities for on-site detection in remote and poor areas.


Subject(s)
Giardia lamblia , Giardiasis , Humans , Animals , Cattle , Giardia lamblia/genetics , CRISPR-Cas Systems , Giardiasis/diagnosis , Giardiasis/veterinary , Giardia/genetics , Biological Assay
4.
J Basic Microbiol ; 64(7): e2400008, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38548685

ABSTRACT

Arthrobotrys flagrans, a nematode-eating fungus, is an effective component of animal parasitic nematode biocontrol agents. In the dried formulation, the majority of spores are in an endogenous dormant state. This study focuses on dormant chlamydospore and nondormant chlamydospore of A. flagrans to investigate the differences in cyclic adenosine monophosphate (cAMP) and protein content between the two types of spores. cAMP and soluble proteins were extracted from the nondormant chlamydospore and dormant chlamydospore of two isolates of A. flagrans. The cAMP Direct Immunoassay Kit and Bradford protein concentration assay kit (Coomassie brilliant blue method) were used to detect the cAMP and protein content in two types of spores. Results showed that the content of cAMP in dormant spores of both isolates was significantly higher than that in nondormant spores (p < 0.05). The protein content of dormant spores in DH055 bacteria was significantly higher than that of nondormant spores (p < 0.05). In addition, the protein content of dormant spores of the SDH035 strain was slightly higher than that of nondormant spores, but the difference was not significant (p > 0.05). The results obtained in this study provide evidence for the biochemical mechanism of chlamydospore dormancy or the germination of the nematophagous fungus A. flagrans.


Subject(s)
Cyclic AMP , Fungal Proteins , Spores, Fungal , Spores, Fungal/growth & development , Fungal Proteins/metabolism , Cyclic AMP/metabolism , Ascomycota/growth & development , Ascomycota/chemistry , Ascomycota/metabolism , Ascomycota/isolation & purification , Animals , Nematoda/microbiology
5.
Animals (Basel) ; 14(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38338149

ABSTRACT

Fasciolosis is a global zoonotic parasitic disease caused by F. hepatica infection that is particularly harmful to cattle and sheep. A biotin-streptavidin signal amplification ELISA (streptavidin-ELISA/SA-ELISA) based on circulating antigens can allow for the early detection of F. hepatica-infected animals and is suitable for batch detection. It is considered to be a better means of detecting F. hepatica infection than traditional detection methods. In this study, using the serum of sheep artificially infected with F. hepatica, the cDNA expression library of F. hepatica was screened, 17 immunodominant antigen genes of F. hepatica were obtained, and glutathione s-transferase (GST) was selected as the candidate detection antigen. Firstly, the GST cDNA sequence was amplified from F. hepatica, followed by the preparation of recombinant protein GST (rFhGST). Then, monoclonal and polyclonal antibodies against rFhGST were prepared using the GST protein. Afterward, the immunolocalization of the target protein in the worm was observed via confocal microscopy, and it was found that the GST protein was localized in the uterus, intestinal tract, and body surface of F. hepatica. Finally, a double-antibody sandwich SA-ELISA based on the detection of circulating antigens was established. There was no cross-reaction with positive sera infected with Dicrocoelium lanceatum (D. lanceatum), Haemonchus contortus (H. contortus), Neospora caninum (N. caninum), or Schistosoma japonicum (S. japonicum). Forty serum and fecal samples from the same batch of sheep in Nong'an County, Changchun City, Jilin Province, China were analyzed using the established detection method and fecal detection method. The positive rate of the SA-ELISA was 17.5%, and the positive rate of the fecal detection method was 15%. The detection results of this method were 100% consistent with commercial ELISA kits. A total of 152 sheep serum samples were tested in Nong'an County, Changchun City, Jilin Province, and the positive rate was 5.92%. This study laid the foundation for the development of serological detection preparations for F. hepatica infection based on the detection of circulating antigens.

7.
Article in English | WPRIM (Western Pacific) | ID: wpr-50092

ABSTRACT

Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis, we detected 2 strains of T. vaginalis; the virus-infected (V⁺) and uninfected (V⁻) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in V⁺ compared with V⁻ isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in V⁺ isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in V⁺ and V⁻ isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.


Subject(s)
Glucose-6-Phosphate Isomerase , Glycogen Phosphorylase , Heat-Shock Proteins , Host-Parasite Interactions , Malate Dehydrogenase , Metabolism , Polymerase Chain Reaction , Proteome , Reticuloendotheliosis virus , Ribosomal Proteins , RNA, Double-Stranded , RNA, Messenger , Trichomonas vaginalis , Trichomonas , Triose-Phosphate Isomerase , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL