Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.197
Filter
1.
Front Neurol ; 15: 1413577, 2024.
Article in English | MEDLINE | ID: mdl-39258157

ABSTRACT

Objective: To comprehensively and quantitatively evaluate the impact of body weight support training (BWST) on balance and gait function in stroke patients based on an evidence-based basis and to identify the most effective intervention strategies. Methods: PubMed, Web of Science, The Cochrane Library, CNKI, Wanfang, and Chinese SinoMed Database were searched until November 25, 2023. Quality assessment and meta-analysis were performed using RevMan 5.2 and Stata 14.0 software. Results: A total of 31 randomized controlled trials involving 1,918 patients were included in the study. The meta-analysis demonstrated that body weight support training (BWST) significantly improved Berg Balance Scale (BBS) scores (MD = 3.60; 95% CI: 1.23 to 5.98; p = 0.003), gait speed (SMD = 0.77; 95% CI: 0.38 to 1.15; p < 0.0001), and step length (SMD = 0.46; 95% CI: 0.19 to 0.72; p = 0.0008) in stroke patients compared to conventional rehabilitation. For enhancing balance function, the most effective interventions were identified as a disease duration of 3-6 months (MD = 5.16; 95% CI: 0.76 to 9.57; p = 0.02), intervention time of 4-8 weeks (MD = 5.70; 95% CI: 2.90 to 8.50; p < 0.0001), a maximum body weight support level above 30% (MD = 3.80; 95% CI: 1.48 to 6.13; p = 0.001), and a maximum training walking speed of 0.2 m/s or more (MD = 4.66; 95% CI: 0.37 to 9.70; p = 0.03). For improving walking function, the optimal interventions were also a disease duration of 3-6 months (gait speed: SMD = 0.59; 95% CI: 0.15 to 1.03; p = 0.008; step length: SMD = 0.27; 95% CI: 0.06 to 0.56; p = 0.04), intervention time of 4-8 weeks (gait speed: SMD = 1.01; 95% CI: 0.44 to 1.59; p = 0.0006; step length: SMD = 0.83; 95% CI: 0.54 to 1.12; p < 0.00001), a maximum body weight support level above 30% (gait speed: SMD = 0.79; 95% CI: 0.36 to 1.22; p = 0.0003; step length: SMD = 0.79; 95% CI: 0.47 to 1.11; p < 0.00001), and a maximum training walking speed of 0.2 m/s or more (gait speed: SMD = 1.26; 95% CI: 0.62 to 1.90; p = 0.0001; step length: SMD = 0.85; 95% CI: 0.38 to 1.31; p = 0.0003). Conclusion: Compared with conventional rehabilitation training, BWST demonstrates superior efficacy in enhancing balance and walking function in stroke patients, with a consistent optimal intervention strategy. The most effective program includes a disease duration of 3-6 months, an intervention period of 4-8 weeks, a maximum body weight support of 30% or more, and a maximum training walking speed of 0.2 m/s or greater. Systematic review registration: http://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022358963.

2.
CNS Neurosci Ther ; 30(9): e70047, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39317457

ABSTRACT

BACKGROUND: The lateral hypothalamus (LHA) is an evolutionarily conserved structure that regulates basic functions of an organism, particularly wakefulness. To clarify the function of LHAGABA neurons and their projections on regulating general anesthesia is crucial for understanding the excitatory and inhibitory effects of anesthetics on the brain. The aim of the present study is to investigate whether LHAGABA neurons play either an inhibitory or a facilitatory role in sevoflurane-induced anesthetic arousal regulation. METHODS: We used fiber photometry and immunofluorescence staining to monitor changes in neuronal activity during sevoflurane anesthesia. Opto-/chemogenetic modulations were employed to study the effect of neurocircuit modulations during the anesthesia. Anterograde tracing was used to identify a GABAergic projection from the LHA to a periaqueductal gray (PAG) subregion. RESULTS: c-Fos staining showed that LHAGABA activity was inhibited by induction of sevoflurane anesthesia. Anterograde tracing revealed that LHAGABA neurons project to multiple arousal-associated brain areas, with the lateral periaqueductal gray (LPAG) being one of the dense projection areas. Optogenetic experiments showed that activation of LHAGABA neurons and their downstream target LPAG reduced the burst suppression ratio (BSR) during continuous sevoflurane anesthesia. Chemogenetic experiments showed that activation of LHAGABA and its projection to LPAG neurons prolonged the anesthetic induction time and promoted wakefulness. CONCLUSIONS: In summary, we show that an inhibitory projection from LHAGABA to LPAGGABA neurons promotes arousal from sevoflurane-induced loss of consciousness, suggesting a complex control of wakefulness through intimate interactions between long-range connections.


Subject(s)
Anesthetics, Inhalation , Arousal , GABAergic Neurons , Neural Pathways , Periaqueductal Gray , Sevoflurane , Animals , Sevoflurane/pharmacology , Periaqueductal Gray/drug effects , Periaqueductal Gray/metabolism , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Mice , Anesthetics, Inhalation/pharmacology , Male , Arousal/drug effects , Arousal/physiology , Neural Pathways/drug effects , Neural Pathways/physiology , Mice, Inbred C57BL , Hypothalamic Area, Lateral/drug effects , Hypothalamic Area, Lateral/physiology , Mice, Transgenic , Optogenetics , Hypothalamus/drug effects , Hypothalamus/metabolism
3.
Front Endocrinol (Lausanne) ; 15: 1443573, 2024.
Article in English | MEDLINE | ID: mdl-39229378

ABSTRACT

Background: Several urinary biomarkers have good diagnostic value for diabetic kidney disease (DKD); however, the predictive value is limited with the use of single biomarkers. We investigated the clinical value of Luminex liquid suspension chip detection of several urinary biomarkers simultaneously. Methods: The study included 737 patients: 585 with diabetes mellitus (DM) and 152 with DKD. Propensity score matching (PSM) of demographic and medical characteristics identified a subset of 78 patients (DM = 39, DKD = 39). Two Luminex liquid suspension chips were used to detect 11 urinary biomarkers according to their molecular weight and concentration. The biomarkers, including cystatin C (CysC), nephrin, epidermal growth factor (EGF), kidney injury molecule-1 (KIM-1), retinol-binding protein4 (RBP4), α1-microglobulin (α1-MG), ß2-microglobulin (ß2-MG), vitamin D binding protein (VDBP), tissue inhibitor of metalloproteinases-1 (TIMP-1), tumor necrosis factor receptor-1 (TNFR-1), and tumor necrosis factor receptor-2 (TNFR-2) were compared in the DM and DKD groups. The diagnostic values of single biomarkers and various biomarker combinations for early diagnosis of DKD were assessed using receiver operating characteristic (ROC) curve analysis. Results: Urinary levels of VDBP, RBP4, and KIM-1 were markedly higher in the DKD group than in the DM group (p < 0.05), whereas the TIMP-1, TNFR-1, TNFR-2, α1-MG, ß2-MG, CysC, nephrin, and EGF levels were not significantly different between the groups. RBP4, KIM-1, TNFR-2, and VDBP reached p < 0.01 in univariate analysis and were entered into the final analysis. VDBP had the highest AUC (0.780, p < 0.01), followed by RBP4 (0.711, p < 0.01), KIM-1 (0.640, p = 0.044), and TNFR-2 (0.615, p = 0.081). However, a combination of these four urinary biomarkers had the highest AUC (0.812), with a sensitivity of 0.742 and a specificity of 0.760. Conclusions: The urinary levels of VDBP, RBP4, KIM-1, and TNFR-2 can be detected simultaneously using Luminex liquid suspension chip technology. The combination of these biomarkers, which reflect different mechanisms of kidney damage, had the highest diagnostic value for DKD. However, this finding should be explored further to understand the synergistic effects of these biomarkers.


Subject(s)
Biomarkers , Diabetic Nephropathies , Humans , Diabetic Nephropathies/urine , Diabetic Nephropathies/diagnosis , Male , Female , Biomarkers/urine , Middle Aged , Aged , Hepatitis A Virus Cellular Receptor 1/analysis , Hepatitis A Virus Cellular Receptor 1/metabolism
4.
J Hazard Mater ; 478: 135540, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39178783

ABSTRACT

Silicosis represents a form of interstitial lung disease induced by the inhalation of silica particles in production environments. A key pathological characteristic of silica-induced pulmonary fibrosis is its localized tissue heterogeneity, which presents significant challenges in analyzing transcriptomic data due to the loss of important spatial context. To address this, we integrate spatial gene expression data with single-cell analyses and achieve a detailed mapping of cell types within and surrounding fibrotic regions, revealing significant shifts in cell populations in normal and diseased states. Additionally, we explore cell interactions within fibrotic zones using ligand-receptor mapping, deepening our understanding of cellular dynamics in these areas. We identify a subset of fibroblasts, termed Inmt fibroblasts, that play a suppressive role in the fibrotic microenvironment. Validating our findings through a comprehensive suite of bioinformatics, histological, and cell culture studies highlights the role of monocyte-derived macrophages in shifting Inmt fibroblast populations into profibrotic Grem1 fibroblast, potentially disrupting lung homeostasis in response to external challenges. Hence, the spatially detailed deconvolution offered by our research markedly advances the comprehension of cell dynamics and environmental interactions pivotal in the development of pulmonary fibrosis.


Subject(s)
Fibroblasts , Pulmonary Fibrosis , Silicon Dioxide , Silicon Dioxide/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Animals , Lung/pathology , Lung/drug effects , Lung/metabolism , Macrophages/drug effects , Macrophages/metabolism , Single-Cell Analysis , Humans , Mice, Inbred C57BL , Mice , Cellular Microenvironment
5.
Int J Biol Macromol ; 279(Pt 1): 134660, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134196

ABSTRACT

Checkpoint blockades have emerged as a frontline approach in cancer management, designed to enhance the adaptive immune response against tumors. However, its clinical efficacy is limited to a narrow range of tumor types, which necessitates the exploration of novel strategies that target another main branch of the immune system. One such potential strategy is the therapeutic modulation of pattern recognition receptors (PRRs) pathways in innate immune cells, which have shown promise in tumor eradication. Previously, a ß-1,3/1,6-glucan with high purity from Durvillaea antarctica (BG136) was reported by our group to exhibit pan-antitumor effects. In the current study, we systemically studied the antitumor activity of BG136 in combination with anti-PD1 antibody in MC38 syngeneic tumor model in vivo. Integrated transcriptomic and metabolomic analyses suggested that BG136 enhanced the antitumor immunity of anti-PD1 antibody by reprogramming the tumor microenvironment to become more proinflammatory. In addition, an increase in innate and adaptive immune cell infiltration and activation, enhanced lipid metabolism, and a decrease in ascorbate and aldarate metabolism were also found. These findings provide mechanistic insights that support the potent antitumor efficacy of BG136 when combined with immune checkpoint inhibitor antibodies.

6.
Huan Jing Ke Xue ; 45(8): 4791-4801, 2024 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-39168696

ABSTRACT

Identifying the influencing factors of soil heavy metal content changes is the basis for reducing or preventing soil heavy metal pollution. Taking an agricultural experimental field in Changping District of Beijing as an example, the heavy metal content changes in As, Cr, Cu, Ni, Pb, and Zn from 2012 to 2022 were firstly analyzed. Secondly, the influencing factors of the heavy metal content changes were detected based on the geographical detector at the single-target and multi-target levels, respectively. Finally, comparative experiments with the correlation analysis method and existing studies were set up to evaluate the effectiveness of the identification method of influencing factors developed in this study. The results showed that human activity factors have exacerbated the changes in soil heavy metal content in the study area as follows: ① At the single-target level, the land use type was the main influencing factor on the changes in Cr, Cu, and Zn contents, and the annual deposition flux influenced the changes in As. The results of the interaction detection showed that there was an enhancement effect among the factors, and the interaction of the human activity factors dominated for the factor identification. ② The results of the multi-target level detection covered the results of the single-target level detection, which could identify more influencing factors. The land use type affected the changes in Cu, Zn, Cr, Ni, and As, and the changes in As and Zn were influenced by the annual deposition fluxes. ③ The multi-target identification method coupled with geographical detector and principal component analysis could effectively identify the influencing factors of soil heavy metal content changes, which was much more effective than the single soil heavy metal correlation method. The developed multi-target identification method for influencing factors of heavy metal content changes can provide technical support for the regional pollution monitoring and macro-management of soil heavy metals.

7.
J Hematol Oncol ; 17(1): 71, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164791

ABSTRACT

Osteosarcomas are intricate cellular ecosystems, where heterotypic interactions significantly influence disease progression and therapeutic outcomes. Despite their importance, a detailed understanding of their cellular composition and organizational structure remains elusive. In this study, we provide a comprehensive single-cell and spatially resolved transcriptomics analysis of human osteosarcomas. We construct a cellular meta-map to dissect spatial transcriptomic data, unveiling a detailed atlas of osteosarcoma compositional subgroups. We meticulously characterize the unique gene signatures and functional states of each subgroup and investigate the impact of chemotherapy on these cellular subpopulations. Additionally, our spatial transcriptomics analysis identifies a distinct spatial niche, located at the forefront of tumor necrotic zones, potentially associated with chemotherapy resistance. We also delve into the crosstalk between different cellular subgroups. This study furnishes a comprehensive transcriptional atlas of osteosarcoma's cellular architecture, enriching our comprehension of its complexity and laying the groundwork for more targeted therapeutic approaches.


Subject(s)
Bone Neoplasms , Osteosarcoma , Single-Cell Analysis , Humans , Osteosarcoma/pathology , Osteosarcoma/genetics , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Transcriptome , Gene Expression Profiling , Tumor Microenvironment , Gene Expression Regulation, Neoplastic
8.
iScience ; 27(8): 110554, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39184441

ABSTRACT

Zebrafish and organoids, crucial for complex biological studies, necessitate an imaging system with deep tissue penetration, sample protection from environmental interference, and ample operational space. Traditional three-photon microscopy is constrained by short-working-distance objectives and falls short. Our long-working-distance high-collection-efficiency three-photon microscopy (LH-3PM) addresses these challenges, achieving a 58% fluorescence collection efficiency at a 20 mm working distance. LH-3PM significantly outperforms existing three-photon systems equipped with the same long working distance objective, enhancing fluorescence collection and dramatically reducing phototoxicity and photobleaching. These improvements facilitate accurate capture of neuronal activity and an enhanced detection of activity spikes, which are vital for comprehensive, long-term imaging. LH-3PM's imaging of epileptic zebrafish not only showed sustained neuron activity over an hour but also highlighted increased neural synchronization and spike numbers, marking a notable shift in neural coding mechanisms. This breakthrough paves the way for new explorations of biological phenomena in small model organisms.

9.
J Bone Oncol ; 47: 100623, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39157743

ABSTRACT

Background/purpose: This study aimed to summarize the survival and complication profiles of the compress® endoprosthesis (CPS) through a systematic review and meta-analysis. Methods: Online databases (PubMed, EMBASE and Web of Science) were searched from inception to November 2023. Trials were included that involved the use of CPS for endoprosthetic replacement in patients with massive segmental bone defects. Patients' clinical characteristics and demographic data were extracted using a standardized form. The methodological quality of included 13 non-comparative studies was assessed on basis of the Methodological Index for Non-Randomized Studies (MINORS). All the available Kaplan-Meier curves in the included studies were digitized and combined using Engauge-Digitizer software and the R Project for Statistical Computing. Results: The meta-analysis of thirteen included studies indicated: the all-cause failure rates of CPS were 26.3 % after surgery, in which the occurrence rates of aseptic loosening were 5.8 %. And the incidences of other complications were as follows: soft tissue failure (1.8 %), structure failure (8.2 %), infection (9.5 %), tumor progression (1.1 %). The 1-, 4-, and 8-year overall survival rates for all-cause failure with 95 % CI were 89 % (86 %-92 %), 75 % (71 %-79 %) and 65 % (60 %-70 %), respectively. The estimated mean survival time of all-cause failure was 145 months (95 % CI, 127-148 months), and the estimated median survival time of all-cause failure was 187 months (95 % CI, 135-198 months). The 1-, 4-, and 8-year overall survival rates of aseptic loosening with 95 % CI were 96 % (94 %-98 %), 91 % (87 %-95 %) and 88 % (83 %-93 %), respectively. The estimated mean survival time of aseptic loosening was 148 months (95 % CI, 137-153 months). Conclusion: CPS's innovative spring system promotes bone ingrowth by providing immediate and high-compression fixation, thereby reducing the risk of aseptic loosening caused by stress shielding and particle-induced osteolysis. CPS requires less residual bone mass for reconstructing massive segmental bone defects and facilitates easier revision due to its non-cemented fixation. In addition, the survival rate, estimated mean survival time, and complication rates of CPS are not inferior to those of common endoprosthesis.

10.
J Med Virol ; 96(9): e29884, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39206860

ABSTRACT

It is generally acknowledged that antiviral therapy can reduce the incidence of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), there remains a subset of patients with chronic HBV infection who develop HCC despite receiving antiviral treatment. This study aimed to develop a model capable of predicting the long-term occurrence of HCC in patients with chronic HBV infection before initiating antiviral therapy. A total of 1450 patients with chronic HBV infection, who received initial antiviral therapy between April 2006 and March 2023 and completed long-term follow-ups, were nonselectively enrolled in this study. Least absolute shrinkage and selection operator (LASSO) and Cox regression analysis was used to construct the model. The results were validated in an external cohort (n = 210) and compared with existing models. The median follow-up time for all patients was 60 months, with a maximum follow-up time of 144 months, during which, 32 cases of HCC occurred. The nomogram model for predicting HCC based on GGT, AFP, cirrhosis, gender, age, and hepatitis B e antibody (TARGET-HCC) was constructed, demonstrating a good predictive performance. In the derivation cohort, the C-index was 0.906 (95% CI = 0.869-0.944), and in the validation cohort, it was 0.780 (95% CI = 0.673-0.886). Compared with existing models, TARGET-HCC showed promising predictive performance. Additionally, the time-dependent feature importance curve indicated that gender consistently remained the most stable predictor for HCC throughout the initial decade of antiviral therapy. This simple predictive model based on noninvasive clinical features can assist clinicians in identifying high-risk patients with chronic HBV infection for HCC before the initiation of antiviral therapy.


Subject(s)
Antiviral Agents , Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/virology , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/complications , Male , Liver Neoplasms/virology , Female , Antiviral Agents/therapeutic use , Middle Aged , Adult , Risk Factors , Nomograms , Risk Assessment , Aged , Hepatitis B virus/drug effects , Incidence , Follow-Up Studies
11.
Pak J Med Sci ; 40(7): 1533-1538, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092044

ABSTRACT

Objective: To evaluate the clinical efficacy, safety and compliance of quality nursing intervention in the treatment of chronic heart failure combined with respiratory tract infections. Methods: This was a retrospective study. One hundred and twenty patients with chronic heart failure combined with respiratory tract infections were recruited at Baoding No.1 Central Hospital from June 2021 to March 2023 and randomly divided into the control group (n=60) and the experimental group (n=60). Patients in the control group were given regular specialist care on the basis of basic treatment, while those in the experimental group were given a quality care intervention model. The differences in clinical efficacy, improvement time of symptoms after treatment, etc. between the two groups were compared and analyzed. Results: The response rate of the experimental group was 88%, which was significantly higher than that of the control group (73%), with a statistically significant difference (P=0.04). The time of fever reduction, cough subsidence and lung rales disappearance in the experimental group were significantly shorter than those of the control group, with statistically significant differences (P<0.05). The incidence of nursing related adverse events in the experimental group was 8%, which was lower than that of 23% in the control group, with a statistically significant difference(P=0.03). Conclusion: Quality nursing intervention is an effective treatment for patients with chronic heart failure combined with respiratory infections, boasting a variety of benefits such as reduced nursing risk, improved quality of nursing, and increased patient compliance and satisfaction. It contributes to rapid symptom improvement and significant clinical efficacy.

12.
J Hepatol ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094743

ABSTRACT

BACKGROUND & AIMS: Nucleo(s)tide analogue (NUC) cessation can lead to HBsAg clearance but also a high rate of virological relapse. However, the effect of pegylated interferon alpha-2a (PegIFN-α-2a) on virological relapse after NUC cessation is unknown. Therefore, this study aimed to evaluate the effect of switching from NUC to PegIFN-α-2a treatment for 48 weeks on virological relapse until week 96. METHODS: In this multicentre randomized controlled clinical trial, 180 non-cirrhotic HBeAg-negative chronic hepatitis B patients on continuous NUC therapy for ≥ 2.5 years with HBV DNA levels < 60 IU/mL were randomized to discontinue NUC (n=90) or receive 48 weeks of PegIFN-α-2a treatment (n=90) and followed up till 96 weeks. The primary endpoint was the virological relapse rate until week 96. RESULTS: Intention-to-treat analysis revealed patients in the interferon monotherapy group had significantly lower cumulative virological relapse rates than the NUC cessation group until week 96 (20.8% vs. 53.6%, P < 0.0001). Consistently, a significantly lower proportion of patients in the interferon monotherapy group had virological relapse than those in the NUC cessation group at 48 weeks off treatment (17.8% vs. 36.7%, P = 0.007). The virological relapse rate positively correlated with HBsAg levels in the NUC cessation group. The interferon monotherapy group had a lower cumulative clinical relapse rate (7.8% vs. 20.9%, P = 0.008) and a higher HBsAg loss rate (21.5% vs. 9.0%, P = 0.03) than the NUC cessation group. CONCLUSIONS: Switching from NUC to PegIFN-α-2a treatment for 48 weeks significantly reduces virological relapse rates and achieves higher HBsAg loss rates than NUC treatment cessation alone in HBeAg-negative chronic hepatitis B patients. IMPACT AND IMPLICATIONS: Nucleo(s)tide analogue (NUC) cessation can lead to HBsAg clearance but also a high rate of virological relapse, but an optimised scheme to reduce the virological relapse rate after NUC withdrawal is yet to be reported. This randomized controlled trial investigated the effect of switching from NUC to PegIFN-α-2a treatment for 48 weeks on virological relapse until week 96 in HBeAg-negative chronic hepatitis B patients. The interferon monotherapy group had a significantly lower cumulative virological relapse rate (20.8% vs. 53.6%, P < 0.0001) and higher HBsAg loss rate (21.5% vs. 9.0%, P= 0.03) than the NUC cessation group until week 96. This provides an optimized strategy for NUC cessation in HBeAg-negative patients. TRIAL REGISTRATION NUMBER: NCT02594293.

13.
Front Endocrinol (Lausanne) ; 15: 1413890, 2024.
Article in English | MEDLINE | ID: mdl-39135625

ABSTRACT

Introduction: Thyroid-associated ophthalmopathy (TAO) is an autoimmune-driven orbital inflammatory disease. Despite research efforts, its exact pathogenesis remains unclear. This study aimed to characterize the intestinal flora and metabolic changes in patients with TAO to identify the flora and metabolites associated with disease development. Methods: Thirty patients with TAO and 29 healthy controls were included in the study. The intestinal flora and metabolites were analyzed using high-throughput sequencing of the 16S rRNA gene and non-targeted metabolomics technology, respectively. Fresh fecal samples were collected from both populations for analysis. Results: Reduced gut richness and diversity were observed in patients with TAO. Compared to healthy controls, significant differences in relative abundance were observed in patients with TAO at the order level Clostridiales, family level Staphylococcaceae, genus level Staphylococcus, Fournierella, Eubacterium siraeum, CAG-56, Ruminococcus gnavus, Intestinibacter, Actinomyces, and Erysipelotrichaceae UCG-003 (logFC>1 and P<0.05). Veillonella and Megamonas were closely associated with clinical symptoms in patients with TAO. Among the 184 significantly different metabolites, 63 were upregulated, and 121 were downregulated in patients with TAO compared to healthy controls. The biosynthesis of unsaturated fatty acids was the significantly enriched metabolic pathway. Correlation analysis revealed Actinomyces was positively correlated with NAGlySer 15:0/16:0, FAHFA 3:0/20:0, and Lignoceric Acid, while Ruminococcus gnavu was positively correlated with Cer 18:0;2O/16:0; (3OH) and ST 24:1;O4/18:2. Conclusion: Specific intestinal flora and metabolites are closely associated with TAO development. Further investigation into the functional associations between these flora and metabolites will enhance our understanding of TAO pathogenesis.


Subject(s)
Gastrointestinal Microbiome , Graves Ophthalmopathy , High-Throughput Nucleotide Sequencing , Metabolomics , Humans , Graves Ophthalmopathy/microbiology , Graves Ophthalmopathy/metabolism , Graves Ophthalmopathy/genetics , Female , Male , Adult , Middle Aged , Metabolomics/methods , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Case-Control Studies , Metabolome
14.
Front Chem ; 12: 1447312, 2024.
Article in English | MEDLINE | ID: mdl-39206441

ABSTRACT

Tetrodotoxin (TTX) is a highly potent and widely distributed ion-channel marine neurotoxin; it has no specific antidote and poses a great risk to human health. Therefore, detecting and quantifying TTX to effectively implement prevention strategies is important for food safety. The development of novel and highly sensitive, highly specific, rapid, and simple techniques for trace TTX detection has attracted widespread attention. This review summarizes the latest advances in the detection and quantitative analysis of TTX, covering detection methods based on biological and cellular sensors, immunoassays and immunosensors, aptamers, and liquid chromatography-mass spectrometry. It further discusses the advantages and applications of various detection technologies developed for TTX and focuses on the frontier areas and development directions of TTX detection, providing relevant information for further investigations.

15.
Calcif Tissue Int ; 115(4): 362-372, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39017691

ABSTRACT

To evaluate the feasibility of acquiring vertebral height from chest low-dose computed tomography (LDCT) images using an artificial intelligence (AI) system based on 3D U-Net vertebral segmentation technology and the correlation and features of vertebral morphology with sex and age of the Chinese population. Patients who underwent chest LDCT between September 2020 and April 2023 were enrolled. The Altman and Pearson's correlation analyses were used to compare the correlation and consistency between the AI software and manual measurement of vertebral height. The anterior height (Ha), middle height (Hm), posterior height (Hp), and vertebral height ratios (VHRs) (Ha/Hp and Hm/Hp) were measured from T1 to L2 using an AI system. The VHR is the ratio of Ha to Hp or the ratio of Hm to Hp of the vertebrae, which can reflect the shape of the anterior wedge and biconcave vertebrae. Changes in these parameters, particularly the VHR, were analysed at different vertebral levels in different age and sex groups. The results of the AI methods were highly consistent and correlated with manual measurements. The Pearson's correlation coefficients were 0.855, 0.919, and 0.846, respectively. The trend of VHRs showed troughs at T7 and T11 and a peak at T9; however, Hm/Hp showed slight fluctuations. Regarding the VHR, significant sex differences were found at L1 and L2 in all age bands. This innovative study focuses on vertebral morphology for opportunistic analysis in the mainland Chinese population and the distribution tendency of vertebral morphology with ageing using a chest LDCT aided by an AI system based on 3D U-Net vertebral segmentation technology. The AI system demonstrates the potential to automatically perform opportunistic vertebral morphology analyses using LDCT scans obtained during lung cancer screening. We advocate the use of age-, sex-, and vertebral level-specific criteria for the morphometric evaluation of vertebral osteoporotic fractures for a more accurate diagnosis of vertebral fractures and spinal pathologies.


Subject(s)
Neural Networks, Computer , Tomography, X-Ray Computed , Humans , Male , Female , Middle Aged , Tomography, X-Ray Computed/methods , Aged , Adult , Spine/diagnostic imaging , Spine/anatomy & histology , Asian People , China , Aged, 80 and over , Imaging, Three-Dimensional/methods , East Asian People
16.
Article in English | MEDLINE | ID: mdl-39023503

ABSTRACT

Hematogenous metastasis occurs when cancer cells detach from the extracellular matrix in the primary tumor into the bloodstream or lymphatic system. Elucidating the response of metastatic tumor cells in suspension to the flow conditions in lymphatics with valves from a mechanical/fluidic perspective is necessary. A physiologically relevant computational model of a lymphatic vessel with valves was constructed using fully coupled fluid-cell-vessel interactions to investigate the effects of lymphatic vessel contractility, valve properties, and cell size and stiffness on the variations in magnitude and gradient of the flow-induced wall shear stress (WSS) experienced by suspended tumor cells. Results indicated that the maximum WSSmax increased with the increments in cell diameter, vessel contraction amplitude, and valve stiffness. The decrease in vessel contraction period and valve aspect ratio also increased the maximum WSSmax. The influence of the properties of the valve on the WSS was more significant among the factors mentioned above. The maximum WSSmax acting on the cancer cell when the cell reversed the direction of its motion in the valve region increased by 0.5-1.4 times that before the cell entered the valve region. The maximum change in WSS was in the range of 0.004-0.028 Pa/µm depending on the factors studied. They slightly exceeded the values associated with breast cancer cell apoptosis. The results of this study provide biofluid mechanics-based support for mechanobiological research on the metastasis of metastatic cancer cells in suspension within the lymphatics.

17.
Plant Cell Environ ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963294

ABSTRACT

NAC-domain transcription factors (TFs) are plant-specific transcriptional regulators playing crucial roles in plant secondary cell wall (SCW) biosynthesis. SCW is important for plant growth and development, maintaining plant morphology, providing rigid support, ensuring material transportation and participating in plant stress responses as a protective barrier. However, the molecular mechanisms underlying SCW in eggplant have not been thoroughly explored. In this study, the NAC domain TFs SmNST1 and SmNST2 were cloned from the eggplant line 'Sanyue qie'. SmNST1 and SmNST2 expression levels were the highest in the roots and stems. Subcellular localization analysis showed that they were localized in the cell membrane and nucleus. Their overexpression in transgenic tobacco showed that SmNST1 promotes SCW thickening. The expression of a set of SCW biosynthetic genes for cellulose, xylan and lignin, which regulate SCW formation, was increased in transgenic tobacco. Bimolecular fluorescence and luciferase complementation assays showed that SmNST1 interacted with SmNST2 in vivo. Yeast one-hybrid, electrophoretic mobility shift assay (EMSA) and Dual-luciferase reporter assays showed that SmMYB26 directly bound to the SmNST1 promoter and acted as an activator. SmNST1 and SmNST2 interact with the SmMYB108 promoter and repress SmMYB108 expression. Altogether, we showed that SmNST1 positively regulates SCW formation, improving our understanding of SCW biosynthesis transcriptional regulation.

18.
Sensors (Basel) ; 24(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39066156

ABSTRACT

Semi-supervised graph convolutional networks (SSGCNs) have been proven to be effective in hyperspectral image classification (HSIC). However, limited training data and spectral uncertainty restrict the classification performance, and the computational demands of a graph convolution network (GCN) present challenges for real-time applications. To overcome these issues, a dual-branch fusion of a GCN and convolutional neural network (DFGCN) is proposed for HSIC tasks. The GCN branch uses an adaptive multi-scale superpixel segmentation method to build fusion adjacency matrices at various scales, which improves the graph convolution efficiency and node representations. Additionally, a spectral feature enhancement module (SFEM) enhances the transmission of crucial channel information between the two graph convolutions. Meanwhile, the CNN branch uses a convolutional network with an attention mechanism to focus on detailed features of local areas. By combining the multi-scale superpixel features from the GCN branch and the local pixel features from the CNN branch, this method leverages complementary features to fully learn rich spatial-spectral information. Our experimental results demonstrate that the proposed method outperforms existing advanced approaches in terms of classification efficiency and accuracy across three benchmark data sets.

19.
Cancer Innov ; 3(2): e103, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38946930

ABSTRACT

Background: Neuroblastoma is one of the most common extracranial malignant solid tumors in children. AlkB homolog 5 (ALKBH5) is an RNA N6-methyladenosine (m6A) demethylase that plays a critical role in tumorigenesis and development. We assessed the association between single nucleotide polymorphisms (SNPs) in ALKBH5 and the risk of neuroblastoma in a case-control study including 402 patients and 473 non-cancer controls. Methods: Genotyping was determined by the TaqMan method. The association between ALKBH5 polymorphisms (rs1378602 and rs8400) and the risk of neuroblastoma was evaluated using the odds ratio (OR) and 95% confidence interval (CI). Results: We found no strong association of ALKBH5 rs1378602 and rs8400 with neuroblastoma risk. Further stratification analysis by age, sex, primary site, and clinical stage showed that the rs1378602 AG/AA genotype was associated with a lower risk of neuroblastoma in males (adjusted OR = 0.58, 95% CI = 0.35-0.97, p = 0.036) and children with retroperitoneal neuroblastoma (adjusted OR = 0.58, 95% CI = 0.34-0.98, p = 0.040). Conclusions: ALKBH5 SNPs do not seem to be associated with neuroblastoma risk. More studies are required to confirm this negative result and reveal the relationship between gene polymorphisms of the m6A modifier ALKBH5 and neuroblastoma.

20.
MedComm (2020) ; 5(7): e608, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962426

ABSTRACT

Patients with locally advanced head and neck squamous cell carcinoma (LA-HNSCC) have poor survival outcomes. The real-world efficacy of nimotuzumab plus intensity modulated radiotherapy (IMRT)-based chemoradiotherapy in patients with LA-HNSCC remains unclear. A total of 25,442 HNSCC patients were screened, and 612 patients were matched by propensity score matching (PSM) (1:1). PSM was utilized to balance known confounding factors. Patients who completed at least five doses of nimotuzumab were identified as study group. The primary end point was 3-year overall survival (OS) rate. Log-rank test examined the difference between two survival curves and Cloglog transformation test was performed to compare survival at a fixed time point. The median follow-up time was 54.2 (95% confidence interval [CI]: 52.7-55.9) months. The study group was associated with improved OS (hazard ratio [HR] = 0.75, 95% CI: 0.57-0.99, p = 0.038) and progression-free survival (PFS) (HR = 0.74, 95% CI: 0.58-0.96, p = 0.021). Subgroup analysis revealed that aged 50-60 year, IV, N2, radiotherapy dose ≥ 60 Gy, without previous surgery, and neoadjuvant therapy have a trend of survival benefit with nimotuzumab. Nimotuzumab showed favorable safety, only 0.2% had nimotuzumab-related severe adverse events. Our study indicated the nimotuzumab plus chemoradiotherapy provides survival benefits and safety for LA-HNSCC patients in an IMRT era.

SELECTION OF CITATIONS
SEARCH DETAIL