Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Environ Int ; 188: 108743, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38749121

ABSTRACT

Urban populations, especially women, are vunerable to exposure to airborne pollution, particularly inhalable particulates (PM10). Thus, more accurate measurement of PM10 levels and evaluating their health effects is critical for guiding policy to improve human health. Previous studies obtained personal PM10 with time-weighted average by air filter-based sampling (AFS), which ignores individual differences and behavioral patterns. Here, we used nasal filters instead of AFS to obtain actual inhaled PM10 under short-term exposure for urban dwelling women during a severe haze event in Beijing in 2016. The levels of six heavy metals such as As, Cd, Ni, Cr, Pb, and Co in PM10 were investigated, and carcinogenic and non-carcinogenic risks evaluated based on an adjusted US EPA health risk assessment model. The health endpoints for urban dwelling women were further assessed through an exposure-reponse model. We found that the hourly inhaled dose of PM10 obtained through the nasal filter was about 2.5-17.6 times that obtained by AFS, which also resulted in 4.41-11.30 times more morbidity than estimated by AFS (p < 0.05). Proximity to traffic emissions resulted in greater exposure to particulate matter (>18.8 µg/kg·h) and heavy metals (>2.2 ng/kg·h), and these populations are therefore at greatest risk of developing non-cancer (HI = 4.16) and cancer (Rt = 7.8 × 10-3) related morbities.

2.
BMC Plant Biol ; 24(1): 244, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575936

ABSTRACT

BACKGROUND: This study aims to decipher the genetic basis governing yield components and quality attributes of peanuts, a critical aspect for advancing molecular breeding techniques. Integrating genotype re-sequencing and phenotypic evaluations of seven yield components and two grain quality traits across four distinct environments allowed for the execution of a genome-wide association study (GWAS). RESULTS: The nine phenotypic traits were all continuous and followed a normal distribution. The broad heritability ranged from 88.09 to 98.08%, and the genotype-environment interaction effects were all significant. There was a highly significant negative correlation between protein content (PC) and oil content (OC). The 10× genome re-sequencing of 199 peanut accessions yielded a total of 631,988 high-quality single nucleotide polymorphisms (SNPs), with 374 significant SNP loci identified in association with the nine traits of interest. Notably, 66 of these pertinent SNPs were detected in multiple environments, and 48 of them were linked to multiple traits of interest. Five loci situated on chromosome 16 (Chr16) exhibited pleiotropic effects on yield traits, accounting for 17.64-32.61% of the observed phenotypic variation. Two loci on Chr08 were found to be strongly associated with protein and oil contents, accounting for 12.86% and 14.06% of their respective phenotypic variations, respectively. Linkage disequilibrium (LD) block analysis of these seven loci unraveled five nonsynonymous variants, leading to the identification of one yield-related candidate gene and two quality-related candidate genes. The correlation between phenotypic variation and SNP loci in these candidate genes was validated by Kompetitive allele-specific PCR (KASP) marker analysis. CONCLUSIONS: Overall, molecular markers were developed for genetic loci associated with yield and quality traits through a GWAS investigation of 199 peanut accessions across four distinct environments. These molecular tools can aid in the development of desirable peanut germplasm with an equilibrium of yield and quality through marker-assisted breeding.


Subject(s)
Arachis , Genome-Wide Association Study , Arachis/genetics , Quantitative Trait Loci/genetics , Plant Breeding , Chromosome Mapping/methods , Phenotype , Polymorphism, Single Nucleotide/genetics
3.
Genes (Basel) ; 15(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38540324

ABSTRACT

Phenylalanine ammonia-lyase (PAL) is an essential enzyme in the phenylpropanoid pathway, in which numerous aromatic intermediate metabolites play significant roles in plant growth, adaptation, and disease resistance. Cultivated peanuts are highly susceptible to Aspergillus flavus L. infection. Although PAL genes have been characterized in various major crops, no systematic studies have been conducted in cultivated peanuts, especially in response to A. flavus infection. In the present study, a systematic genome-wide analysis was conducted to identify PAL genes in the Arachis hypogaea L. genome. Ten AhPAL genes were distributed unevenly on nine A. hypogaea chromosomes. Based on phylogenetic analysis, the AhPAL proteins were classified into three groups. Structural and conserved motif analysis of PAL genes in A. hypogaea revealed that all peanut PAL genes contained one intron and ten motifs in the conserved domains. Furthermore, synteny analysis indicated that the ten AhPAL genes could be categorized into five pairs and that each AhPAL gene had a homologous gene in the wild-type peanut. Cis-element analysis revealed that the promoter region of the AhPAL gene family was rich in stress- and hormone-related elements. Expression analysis indicated that genes from Group I (AhPAL1 and AhPAL2), which had large number of ABRE, WUN, and ARE elements in the promoter, played a strong role in response to A. flavus stress.


Subject(s)
Arachis , Aspergillus flavus , Aspergillus flavus/genetics , Arachis/genetics , Arachis/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Phylogeny , Promoter Regions, Genetic
5.
BMC Plant Biol ; 24(1): 207, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515036

ABSTRACT

BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum severely affects peanut (Arachis hypogaea L.) yields. The breeding of resistant cultivars is an efficient means of controlling plant diseases. Therefore, identification of resistance genes effective against bacterial wilt is a matter of urgency. The lack of a reference genome for a resistant genotype severely hinders the process of identification of resistance genes in peanut. In addition, limited information is available on disease resistance-related pathways in peanut. RESULTS: Full-length transcriptome data were used to generate wilt-resistant and -susceptible transcript pools. In total, 253,869 transcripts were retained to form a reference transcriptome for RNA-sequencing data analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes revealed the plant-pathogen interaction pathway to be the main resistance-related pathway for peanut to prevent bacterial invasion and calcium plays an important role in this pathway. Glutathione metabolism was enriched in wilt-susceptible genotypes, which would promote glutathione synthesis in the early stages of pathogen invasion. Based on our previous quantitative trait locus (QTL) mapping results, the genes arahy.V6I7WA and arahy.MXY2PU, which encode nucleotide-binding site-leucine-rich repeat receptor proteins, were indicated to be associated with resistance to bacterial wilt. CONCLUSIONS: This study identified several pathways associated with resistance to bacterial wilt and identified candidate genes for bacterial wilt resistance in a major QTL region. These findings lay a foundation for investigation of the mechanism of resistance to bacterial wilt in peanut.


Subject(s)
Arachis , Ralstonia solanacearum , Arachis/genetics , Arachis/microbiology , Transcriptome , Ralstonia solanacearum/physiology , Plant Breeding , Disease Resistance/genetics , Glutathione/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
6.
Genes (Basel) ; 15(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38397150

ABSTRACT

The capability of embryogenic callus induction is a prerequisite for in vitro plant regeneration. However, embryogenic callus induction is strongly genotype-dependent, thus hindering the development of in vitro plant genetic engineering technology. In this study, to examine the genetic variation in embryogenic callus induction rate (CIR) in peanut (Arachis hypogaea L.) at the seventh, eighth, and ninth subcultures (T7, T8, and T9, respectively), we performed genome-wide association studies (GWAS) for CIR in a population of 353 peanut accessions. The coefficient of variation of CIR among the genotypes was high in the T7, T8, and T9 subcultures (33.06%, 34.18%, and 35.54%, respectively), and the average CIR ranged from 1.58 to 1.66. A total of 53 significant single-nucleotide polymorphisms (SNPs) were detected (based on the threshold value -log10(p) = 4.5). Among these SNPs, SNPB03-83801701 showed high phenotypic variance and neared a gene that encodes a peroxisomal ABC transporter 1. SNPA05-94095749, representing a nonsynonymous mutation, was located in the Arahy.MIX90M locus (encoding an auxin response factor 19 protein) at T8, which was associated with callus formation. These results provide guidance for future elucidation of the regulatory mechanism of embryogenic callus induction in peanut.


Subject(s)
Arachis , Genome-Wide Association Study , Arachis/genetics , Polymorphism, Single Nucleotide , Genotype , Genetic Engineering
7.
Genome ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394647

ABSTRACT

For peanut, the lack of stable cytological markers is a barrier to tracking specific chromosomes, elucidating the genetic relationships between genomes and identifying chromosomal variations. Chromosome mapping using single-copy oligonucleotide (oligo) probe libraries has unique advantages for identifying homologous chromosomes and chromosomal rearrangements. In this study, we developed two whole-chromosome single-copy oligo probe libraries, LS-7A and LS-8A, based on the reference genome sequences of chromosomes 7A and 8A of Arachis duranensis. Fluorescence in situ hybridization (FISH) analysis confirmed that the libraries could specifically paint chromosomes 7 and 8. In addition, sequential FISH and electronic localization of LS-7A and LS-8A in A. duranensis (AA) and A. ipaensis (BB) showed that chromosomes 7A and 8A contained translocations and inversions relative to chromosomes 7B and 8B. Analysis of the chromosomes of wild Arachis species using LS-8A confirmed that this library could accurately and effectively identify A genome species. Finally, LS-7A and LS-8A were used to paint the chromosomes of interspecific hybrids and their progenies, which verified the authenticity of the interspecific hybrids and identified a disomic addition line. This study provides a model for developing specific oligo probes to identify the structural variations of other chromosomes in Arachis and demonstrates the practical utility of LS-7A and LS-8A.

8.
Behav Brain Res ; 463: 114885, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38296202

ABSTRACT

The main cause of second-generation antipsychotic (SGA)-induced obesity is considered due to the antagonism of serotonin 2c receptors (5-HT2cR) and activation of ghrelin receptor type 1a (GHSR1a) signalling. It is reported that 5-HT2cR interacted with GHSR1a, however it is unknown whether one of the SGA olanzapine alters the 5-HT2cR/GHSR1a interaction, affecting orexigenic neuropeptide signalling in the hypothalamus. We found that olanzapine treatment increased average energy intake and body weight gain in mice; olanzapine treatment also increased orexigenic neuropeptide (NPY) and GHSR1a signaling molecules, pAMPK, UCP2, FOXO1 and pCREB levels in the hypothalamus. By using confocal fluorescence resonance energy transfer (FRET) technology, we found that 5-HT2cR interacted/dimerised with the GHSR1a in the hypothalamic neurons. As 5-HT2cR antagonist, both olanzapine and S242084 decreased the interaction between 5-HT2cR and GHSR1a and activated GHSR1a signaling. The 5-HT2cR agonist lorcaserin counteracted olanzapine-induced attenuation of interaction between 5-HT2cR and GHSR1a and inhibited activation of GHSR1a signalling and NPY production. These findings suggest that 5-HT2cR antagonistic effect of olanzapine in inhibition of the interaction of 5-HT2cR and GHSR1a, activation GHSR1a downstream signaling and increasing hypothalamic NPY, which may be the important neuronal molecular mechanism underlying olanzapine-induced obesity and target for prevention metabolic side effects of antipsychotic management in psychiatric disorders.


Subject(s)
Antipsychotic Agents , Neuropeptides , Animals , Mice , Antipsychotic Agents/adverse effects , Hypothalamus/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Obesity/chemically induced , Obesity/metabolism , Olanzapine/adverse effects
9.
BMC Genomics ; 25(1): 65, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229017

ABSTRACT

BACKGROUND: Pod shell thickness (PST) is an important agronomic trait of peanut because it affects the ability of shells to resist pest infestations and pathogen attacks, while also influencing the peanut shelling process. However, very few studies have explored the genetic basis of PST. RESULTS: An F2 segregating population derived from a cross between the thick-shelled cultivar Yueyou 18 (YY18) and the thin-shelled cultivar Weihua 8 (WH8) was used to identify the quantitative trait loci (QTLs) for PST. On the basis of a bulked segregant analysis sequencing (BSA-seq), four QTLs were preliminarily mapped to chromosomes 3, 8, 13, and 18. Using the genome resequencing data of YY18 and WH8, 22 kompetitive allele-specific PCR (KASP) markers were designed for the genotyping of the F2 population. Two major QTLs (qPSTA08 and qPSTA18) were identified and finely mapped, with qPSTA08 detected on chromosome 8 (0.69-Mb physical genomic region) and qPSTA18 detected on chromosome 18 (0.15-Mb physical genomic region). Moreover, qPSTA08 and qPSTA18 explained 31.1-32.3% and 16.7-16.8% of the phenotypic variation, respectively. Fifteen genes were detected in the two candidate regions, including three genes with nonsynonymous mutations in the exon region. Two molecular markers (Tif2_A08_31713024 and Tif2_A18_7198124) that were developed for the two major QTL regions effectively distinguished between thick-shelled and thin-shelled materials. Subsequently, the two markers were validated in four F2:3 lines selected. CONCLUSIONS: The QTLs identified and molecular markers developed in this study may lay the foundation for breeding cultivars with a shell thickness suitable for mechanized peanut shelling.


Subject(s)
Arachis , Quantitative Trait Loci , Arachis/genetics , Chromosome Mapping , Plant Breeding , Phenotype
10.
J Cancer Res Ther ; 19(6): 1495-1500, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38156914

ABSTRACT

In December 2022, the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became dominant in China due to its high infectivity and lower mortality rate. The risk of critical illness and mortality among patients with hematologic malignancies who contracted SARS-CoV-2 was particularly high. The aim of this study was to draft a consensus to facilitate effective treatments for these patients based on the type and severity of the disease. Following the outbreak of the novel coronavirus in China, a steering committee consisting of experienced hematologists was formed by the Specialized Committee of Oncology and Microecology of the Chinese Anti-Cancer Association. The expert group drafted a consensus on the management and intervention measures for different types of hematologic malignancies based on the clinical characteristics of the Omicron variant of the SARS-CoV-2 infection, along with relevant guidelines and literature. The expert group drafted independent recommendations on several important aspects based on the epidemiology of the Omicron variant in China and the unique vulnerability of patients with hematologic malignancies. These included prophylactic vaccinations for those with hematologic malignancies, the use of plasma from blood donors who recovered from the novel coronavirus infection, the establishment of negative pressure wards, the use of steady-state mobilization of peripheral blood hematopoietic stem cells, the provision of psychological support for patients and medical staff, and a focus on maintaining a healthy intestinal microecology.


Subject(s)
COVID-19 , Hematologic Neoplasms , Humans , SARS-CoV-2 , Consensus , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , China/epidemiology
11.
ACS Omega ; 8(43): 40099-40109, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37929117

ABSTRACT

Photodegradation, a widely accepted and promising technology, has gained significant attention for addressing the escalating concerns of environmental deterioration. In this article, rhombohedral corundum-type In2O3 nanocrystals were obtained from the transformation of InOOH via a simple calcining process. Under ultraviolet light irradiation, they showed higher photocatalytic activity in the decomposition of rifampin compared to that of the cubic phase In2O3 and P25-TiO2. Furthermore, the probable pathway and the feasible mechanism for the degradation of rifampin were also deeply explored and discussed.

12.
Mol Breed ; 43(10): 72, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37786866

ABSTRACT

Population and genotype data are essential for genetic mapping. The multi-parent advanced generation intercross (MAGIC) population is a permanent mapping population used for precisely mapping quantitative trait loci. Moreover, genotyping-by-target sequencing (GBTS) is a robust high-throughput genotyping technology characterized by its low cost, flexibility, and limited requirements for information management and support. In this study, an 8-way MAGIC population was constructed using eight elite founder lines. In addition, GenoBaits Peanut 40K was developed and utilized for the constructed MAGIC population. A subset (297 lines) of the MAGIC population at the S2 stage was genotyped using GenoBaits Peanut 40K. Furthermore, these lines and the eight parents were analyzed in terms of pod length, width, area, and perimeter. A total of 27 single nucleotide polymorphisms (SNPs) were revealed to be significantly associated with peanut pod size-related traits according to a genome-wide association study. The GenoBaits Peanut 40K provided herein and the constructed MAGIC population will be applicable for future research to identify the key genes responsible for important peanut traits. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01417-w.

13.
BMC Plant Biol ; 23(1): 518, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884908

ABSTRACT

BACKGROUND: Peanut is an important oil crop worldwide. Peanut web blotch is a fungal disease that often occurs at the same time as other leaf spot diseases, resulting in substantial leaf drop, which seriously affects the peanut yield and quality. However, the molecular mechanism underlying peanut resistance to web blotch is unknown. RESULTS: The cytological examination revealed no differences in the conidium germination rate between the web blotch-resistant variety ZH and the web blotch-susceptible variety PI at 12-48 hpi. The appressorium formation rate was significantly higher for PI than for ZH at 24 hpi. The papilla formation rate at 36 hpi and the hypersensitive response rate at 60 and 84 hpi were significantly higher for ZH than for PI. We also compared the transcriptional profiles of web blotch-infected ZH and PI plants at 0, 12, 24, 36, 48, 60, and 84 hpi using an RNA-seq technique. There were more differentially expressed genes (DEGs) in ZH and PI at 12, 36, 60, and 84 hpi than at 24 and 48 hpi. Moreover, there were more DEGs in PI than in ZH at each time-point. The analysis of metabolic pathways indicated that pantothenate and CoA biosynthesis; monobactam biosynthesis; cutin, suberine and wax biosynthesis; and ether lipid metabolism are specific to the active defense of ZH against YY187, whereas porphyrin metabolism as well as taurine and hypotaurine metabolism are pathways specifically involved in the passive defense of ZH against YY187. In the protein-protein interaction (PPI) network, most of the interacting proteins were serine acetyltransferases and cysteine synthases, which are involved in the cysteine synthesis pathway. The qRT-PCR data confirmed the reliability of the transcriptome analysis. CONCLUSION: On the basis of the PPI network for the significantly enriched genes in the pathways which were specifically enriched at different time points in ZH, we hypothesize that serine acetyltransferases and cysteine synthases are crucial for the cysteine-related resistance of peanut to web blotch. The study results provide reference material for future research on the mechanism mediating peanut web blotch resistance.


Subject(s)
Arachis , Transcriptome , Arachis/genetics , Arachis/microbiology , Cysteine/genetics , Reproducibility of Results , Gene Expression Profiling , Acetyltransferases/genetics , Serine/genetics
14.
BMC Genomics ; 24(1): 495, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37641021

ABSTRACT

Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide. Improving its yield is crucial for sustainable peanut production to meet increasing food and industrial requirements. Deciphering the genetic control underlying peanut kernel weight and size, which are essential components of peanut yield, would facilitate high-yield breeding. A high-density single nucleotide polymorphism (SNP)-based linkage map was constructed using a recombinant inbred lines (RIL) population derived from a cross between the variety Yuanza9102 and a germplasm accession wt09-0023. Kernel weight and size quantitative trait loci (QTLs) were co-localized to a 0.16 Mb interval on Arahy07 using inclusive composite interval mapping (ICIM). Analysis of SNP, and Insertion or Deletion (INDEL) markers in the QTL interval revealed a gene encoding a pentatricopeptide repeat (PPR) superfamily protein as a candidate closely linked with kernel weight and size in cultivated peanut. Examination of the PPR gene family indicated a high degree of collinearity of PPR genes between A. hypogaea and its diploid progenitors, Arachis duranensis and Arachis ipaensis. The candidate PPR gene, Arahy.JX1V6X, displayed a constitutive expression pattern in developing seeds. These findings lay a foundation for further fine mapping of QTLs related to kernel weight and size, as well as validation of candidate genes in cultivated peanut.


Subject(s)
Arachis , Quantitative Trait Loci , Arachis/genetics , Plant Breeding , Chromosome Mapping , Cytoplasm
16.
Theor Appl Genet ; 136(5): 105, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37027030

ABSTRACT

KEY MESSAGE: QTLs for growth habit are identified on Arahy.15 and Arahy.06 in peanut, and diagnostic markers are developed and validated for further use in marker-assisted breeding. Peanut is a unique legume crop because its pods develop and mature underground. The pegs derive from flowers following pollination, then reach the ground and develop into pods in the soil. Pod number per plant is influenced by peanut growth habit (GH) that has been categorized into four types, including erect, bunch, spreading and prostrate. Restricting pod development at the plant base, as would be the case for peanut plants with upright lateral branches, would decrease pod yield. On the other hand, GH characterized by spreading lateral branches on the ground would facilitate pod formation on the nodes, thereby increasing yield potential. We describe herein an investigation into the GH traits of 521 peanut recombinant inbred lines grown in three distinct environments. Quantitative trait loci (QTLs) for GH were identified on linkage group (LG) 15 between 203.1 and 204.2 cM and on LG 16 from 139.1 to 139.3 cM. Analysis of resequencing data in the identified QTL regions revealed that single nucleotide polymorphism (SNP) or insertion and/or deletion (INDEL) at Arahy15.156854742, Arahy15.156931574, Arahy15.156976352 and Arahy06.111973258 may affect the functions of their respective candidate genes, Arahy.QV02Z8, Arahy.509QUQ, Arahy.ATH5WE and Arahy.SC7TJM. These SNPs and INDELs in relation to peanut GH were further developed for KASP genotyping and tested on a panel of 77 peanut accessions with distinct GH features. This study validates four diagnostic markers that may be used to distinguish erect/bunch peanuts from spreading/prostrate peanuts, thereby facilitating marker-assisted selection for GH traits in peanut breeding.


Subject(s)
Arachis , Quantitative Trait Loci , Arachis/genetics , Chromosome Mapping , Plant Breeding , Phenotype
17.
Blood Adv ; 7(13): 2972-2982, 2023 07 11.
Article in English | MEDLINE | ID: mdl-36799929

ABSTRACT

Acute myeloid leukemia (AML) with retinoic acid receptor γ (RARG) rearrangement has clinical, morphologic, and immunophenotypic features similar to classic acute promyelocytic leukemia. However, AML with RARG rearrangement is insensitive to alltrans retinoic acid (ATRA) and arsenic trioxide (ATO) and carries a poor prognosis. We initiated a global cooperative study to define the clinicopathological features, genomic and transcriptomic landscape, and outcomes of AML with RARG rearrangements collected from 29 study groups/institutions worldwide. Thirty-four patients with AML with RARG rearrangements were identified. Bleeding or ecchymosis was present in 18 (54.5%) patients. Morphology diagnosed as M3 and M3v accounted for 73.5% and 26.5% of the cases, respectively. Immunophenotyping showed the following characteristics: positive for CD33, CD13, and MPO but negative for CD38, CD11b, CD34, and HLA-DR. Cytogenetics showed normal karyotype in 38% and t(11;12) in 26% of patients. The partner genes of RARG were diverse and included CPSF6, NUP98, HNRNPc, HNRNPm, PML, and NPM1. WT1- and NRAS/KRAS-mutations were common comutations. None of the 34 patients responded to ATRA and/or ATO. Death within 45 days from diagnosis occurred in 10 patients (∼29%). At the last follow-up, 23 patients had died, and the estimated 2-year cumulative incidence of relapse, event-free survival, and overall survival were 68.7%, 26.7%, and 33.5%, respectively. Unsupervised hierarchical clustering using RNA sequencing data from 201 patients with AML showed that 81.8% of the RARG fusion samples clustered together, suggesting a new molecular subtype. RARG rearrangement is a novel entity of AML that confers a poor prognosis. This study is registered with the Chinese Clinical Trial Registry (ChiCTR2200055810).


Subject(s)
Leukemia, Myeloid, Acute , Leukemia, Promyelocytic, Acute , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Promyelocytic, Acute/genetics , Tretinoin , HLA-DR Antigens , Arsenic Trioxide
18.
Clin Proteomics ; 20(1): 3, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36611134

ABSTRACT

BACKGROUND: Non-invasive detection of blood-based markers is a critical clinical need. Plasma has become the main sample type for clinical proteomics research because it is easy to obtain and contains measurable protein biomarkers that can reveal disease-related physiological and pathological changes. Many efforts have been made to improve the depth of its identification, while there is an increasing need to improve the throughput and reproducibility of plasma proteomics analysis in order to adapt to the clinical large-scale sample analysis. METHODS: We have developed and optimized a robust plasma analysis workflow that combines an automated sample preparation platform with a micro-flow LC-MS-based detection method. The stability and reproducibility of the workflow were systematically evaluated and the workflow was applied to a proof-of-concept plasma proteome study of 30 colon cancer patients from three age groups. RESULTS: This workflow can analyze dozens of samples simultaneously with high reproducibility. Without protein depletion and prefractionation, more than 300 protein groups can be identified in a single analysis with micro-flow LC-MS system on a Orbitrap Exploris 240 mass spectrometer, including quantification of 35 FDA approved disease markers. The quantitative precision of the entire workflow was acceptable with median CV of 9%. The preliminary proteomic analysis of colon cancer plasma from different age groups could be well separated with identification of potential colon cancer-related biomarkers. CONCLUSIONS: This workflow is suitable for the analysis of large-scale clinical plasma samples with its simple and time-saving operation, and the results demonstrate the feasibility of discovering significantly changed plasma proteins and distinguishing different patient groups.

19.
Hematol Oncol ; 41(3): 310-322, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36148768

ABSTRACT

Thrombocytopenia, anasarca, fever, reticulin fibrosis/renal failure, and organomegaly (TAFRO) syndrome is rare in clinical practice. It is a systemic inflammatory disease caused by a cytokine storm. Its clinical manifestations include thrombocytopenia, systemic edema, fever, bone marrow fibrosis, renal insufficiency, and organ enlargement. The high mortality rate of TAFRO syndrome is due to the difficulty of acquiring biopsy samples for diagnosis and the rapid disease progression. This disease is poorly understood by clinicians. Early detection, accurate diagnosis, and timely treatment play key roles in prolonging the survival of the patients. This review summarizes the latest progress in the pathogenesis, diagnostic criteria, and treatment regimens of TAFRO syndrome, aiming to help clinicians better understand TAFRO syndrome and improve its diagnosis and treatment.


Subject(s)
Anemia , Castleman Disease , Primary Myelofibrosis , Renal Insufficiency , Thrombocytopenia , Humans , Castleman Disease/therapy , Castleman Disease/drug therapy , Renal Insufficiency/diagnosis , Renal Insufficiency/drug therapy , Primary Myelofibrosis/drug therapy , Edema/etiology , Edema/diagnosis , Edema/drug therapy , Thrombocytopenia/diagnosis , Thrombocytopenia/etiology , Thrombocytopenia/therapy
20.
Front Plant Sci ; 13: 958808, 2022.
Article in English | MEDLINE | ID: mdl-36172561

ABSTRACT

Pod size is one of the most important agronomic features of peanuts, which directly affects peanut yield. Studies on the regulation mechanism underpinning pod size in cultivated peanuts remain hitherto limited compared to model plant systems. To better understand the molecular elements that underpin peanut pod development, we conducted a comprehensive analysis of chronological transcriptomics during pod development in four peanut accessions with similar genetic backgrounds, but varying pod sizes. Several plant transcription factors, phytohormones, and the mitogen-activated protein kinase (MAPK) signaling pathways were significantly enriched among differentially expressed genes (DEGs) at five consecutive developmental stages, revealing an eclectic range of candidate genes, including PNC, YUC, and IAA that regulate auxin synthesis and metabolism, CYCD and CYCU that regulate cell differentiation and proliferation, and GASA that regulates seed size and pod elongation via gibberellin pathway. It is plausible that MPK3 promotes integument cell division and regulates mitotic activity through phosphorylation, and the interactions between these genes form a network of molecular pathways that affect peanut pod size. Furthermore, two variant sites, GCP4 and RPPL1, were identified which are stable at the QTL interval for seed size attributes and function in plant cell tissue microtubule nucleation. These findings may facilitate the identification of candidate genes that regulate pod size and impart yield improvement in cultivated peanuts.

SELECTION OF CITATIONS
SEARCH DETAIL
...