Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Am J Sports Med ; : 3635465241255918, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904220

ABSTRACT

BACKGROUND: Unrepairable massive rotator cuff tears (UMRCTs) are challenging to surgeons owing to the severely retracted rotator cuff musculotendinous tissues and extreme defects in the rotator cuff tendinous tissues. PURPOSE: To fabricate a tendon stem cell-derived exosomes loaded scaffold (TSC-Exos-S) and investigate its effects on cellular bioactivity in vitro and repair in a rabbit UMRCT model in vivo. STUDY DESIGN: Controlled laboratory study. METHODS: TSC-Exos-S was fabricated by loading TSC-Exos and type 1 collagen (COL-I) into a 3-dimensional bioprinted and polycaprolactone (PCL)-based scaffold. The proliferation, migration, and tenogenic differentiation activities of rabbit bone marrow stem cells (BMSCs) were evaluated in vitro by culturing them in saline, PCL-based scaffold (S), COL-I loaded scaffold (COL-I-S), and TSC-Exos-S. In vivo studies were conducted on a rabbit UMRCT model, where bridging was repaired with S, COL-I-S, TSC-Exos-S, and autologous fascia lata (FL). Histological and biomechanical analyses were performed at 8 and 16 weeks postoperatively. RESULTS: TSC-Exos-S exhibited reliable mechanical strength and subcutaneous degradation, which did not occur before tissue regeneration. TSC-Exos-S significantly promoted the proliferation, migration, and tenogenic differentiation of rabbit BMSCs in vitro. In vivo studies showed that UMRCT repaired with TSC-Exos-S exhibited significant signs of tendinous tissue regeneration at the bridging site with regard to specific collagen staining. Moreover, no significant differences were observed in the histological and biomechanical properties compared with those repaired with autologous FL. CONCLUSION: TSC-Exos-S achieved tendinous tissue regeneration in UMRCT by providing mechanical support and promoting the trend toward tenogenic differentiation. CLINICAL RELEVANCE: The present study proposes a potential strategy for repairing UMRCT with severely retracted musculotendinous tissues and large tendinous tissue defects.

2.
Math Biosci Eng ; 21(4): 4989-5006, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38872523

ABSTRACT

Due to irregular sampling or device failure, the data collected from sensor network has missing value, that is, missing time-series data occurs. To address this issue, many methods have been proposed to impute random or non-random missing data. However, the imputation accuracy of these methods are not accurate enough to be applied, especially in the case of complete data missing (CDM). Thus, we propose a cross-modal method to impute time-series missing data by dense spatio-temporal transformer nets (DSTTN). This model embeds spatial modal data into time-series data by stacked spatio-temporal transformer blocks and deployment of dense connections. It adopts cross-modal constraints, a graph Laplacian regularization term, to optimize model parameters. When the model is trained, it recovers missing data finally by an end-to-end imputation pipeline. Various baseline models are compared by sufficient experiments. Based on the experimental results, it is verified that DSTTN achieves state-of-the-art imputation performance in the cases of random and non-random missing. Especially, the proposed method provides a new solution to the CDM problem.

3.
Small ; : e2311033, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459643

ABSTRACT

The re-tear rate of rotator cuff tears (RCT) after surgical repair is high, especially in aged patients with chronic tears. Senescent tendon stem cells (s-TSCs) generally exist in aged and chronically torn rotator cuff tendons and are closely associated with impaired tendon-to-bone healing results. The present study found a positive feedback cross-talk between s-TSCs and macrophages. The conditioned medium (CM) from s-STCs can promote macrophage polarization mainly toward the M1 phenotype, whose CM reciprocally accelerated further s-TSC senescence. Additional healthy tendon stem-cells derived exosomes (h-TSC-Exos) can break this positive feedback cross-talk by skewing macrophage polarization from the M1 phenotype to the M2 phenotype, attenuating s-TSCs senescence. S-TSC senescence acceleration or attenuation effects induced by M1 or M2 macrophages are associated with the inhibition or activation of the bone morphogenetic protein 4 signaling pathway following RNA sequencing analysis. Using an aged-chronic rotator cuff tear rat model, it is found that h-TSC-Exos can shift the microenvironment in the tendon-to-bone interface from a pro-inflammatory to an anti-inflammatory type at the acute postoperative stage and improve the tendon-to-bone healing results, which are associated with the rejuvenated s-TSCs. Therefore, this study proposed a potential strategy to improve the healing of aged chronic RCT.

4.
Vet Parasitol ; 327: 110117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38262172

ABSTRACT

Neospora caninum, an obligate intracellular parasitic protozoan discovered by Dubey in 1988, is the pathogen of neosporosis, which causes neurological symptoms in dogs and abortions in cows. Since there is no effective drug or vaccine against N. caninum, a deeper understanding of the molecules critical to parasite survival inside host cells is necessary. This study aimed to determine the role of N. caninum peroxiredoxin 1 (NcPrx1) in maintaining redox homeostasis and virulence of N. caninum. By determining the localization of NcPrx1 protein and establishing NcPrx1 gene knockout strain (ΔNcPrx1), the roles of NcPrx1 in N. caninum for invasion, replication, growth, oxidative stress, as well as pathogenicity were investigated. Our results showed that a predicted Alkyl Hydroperoxide1 (AHP1) domain was found in the amino acid sequence of NcPrx1, which displayed a high degree of similarity to homologs of several protozoa. Immunofluorescence assay (IFA) indicated that NcPrx1 was a cytoplasmic protein in N. caninum tachyzoites. Compared to wild type (WT) strain, ΔNcPrx1 strain showed reduced plaque area, invasion and egress rates. Reactive oxygen species (ROS) and malondialdehyde (MDA) were accumulated, and total antioxidant capacity (T-AOC) was attenuated in ΔNcPrx1 tachyzoites, which indicated that ΔNcPrx1 strain was more sensitive to oxidative stress. Furthermore, ΔNcPrx1 strain-infected C57BL/6 mice showed improved survival rate, reduced parasite burden, alleviated pathological changes in tissues, and decreased secretions of IL-6, IL-12, TNF-α, and IFN-γ in serum compared to the WT strain group. These findings suggested that NcPrx1 was a virulence factor of N. caninum which played an important role in maintaining the redox homeostasis of the parasite.


Subject(s)
Cattle Diseases , Coccidiosis , Dog Diseases , Neospora , Rodent Diseases , Female , Mice , Pregnancy , Animals , Cattle , Dogs , Virulence , Antioxidants/metabolism , Mice, Inbred C57BL , Interleukin-12/metabolism , Coccidiosis/parasitology , Coccidiosis/veterinary
5.
Viruses ; 15(9)2023 08 26.
Article in English | MEDLINE | ID: mdl-37766224

ABSTRACT

Midges are widely distributed globally and can transmit various human and animal diseases through blood-sucking. As part of this study, 259,300 midges were collected from four districts in Yunnan province, China, to detect the viral richness and diversity using metavirome analysis techniques. As many as 26 virus families were detected, and the partial sequences of bluetongue virus (BTV), dengue virus (DENV), and Getah virus (GETV) were identified by phylogenetic analysis and PCR amplification. Two BTV gene fragments, 866 bps for the VP2 gene of BTV type 16 and 655 bps for the VP5 gene of BTV type 21, were amplified. The nucleotide sequence identities of the two amplified BTV fragments were 94.46% and 98.81%, respectively, with two classical BTV-16 (GenBank: JN671907) and BTV-21 strains (GenBank: MK250961) isolated in Yunnan province. Furthermore, the BTV-16 DH2021 strain was successfully isolated in C6/36 cells, and the peak value of the copy number reached 3.13 × 107 copies/µL after five consecutive BHK-21 cell passages. Moreover, two 2054 bps fragments including the E gene of DENV genotype Asia II were amplified and shared the highest identity with the DENV strain isolated in New Guinea in 1944. A length of 656 bps GETV gene sequence encoded the partial capsid protein, and it shared the highest identity of 99.68% with the GETV isolated from Shandong province, China, in 2017. Overall, this study emphasizes the importance of implementing prevention and control strategies for viral diseases transmitted by midges in China.


Subject(s)
Alphavirus , Bluetongue virus , Animals , Humans , China/epidemiology , Phylogeny , Asia , Capsid Proteins/genetics
6.
Am J Sports Med ; 51(10): 2688-2700, 2023 08.
Article in English | MEDLINE | ID: mdl-37470279

ABSTRACT

BACKGROUND: To enhance the healing of tendon to bone, various biomimetically hierarchical scaffolds have been proposed. However, the fabrication of such scaffolds is complicated. Furthermore, the most significant result after a routine repair is loss of the transition zone between the tendon and bone, whose main components are similar to fibrocartilage. PURPOSE: To compare tendon-to-bone healing results in a rabbit model using a monophasic graft (decellularized fibrocartilage graft; DFCG) and hierarchical graft (decellularized tendon-to-bone complex; DTBC) that contain the native hierarchical enthesis. STUDY DESIGN: Controlled laboratory study. METHODS: DFCG and DTBC were harvested from allogenic rabbits. A rabbit model of a chronic rotator cuff tear was established, and 3 groups were assessed: direct repair or repair with DFCG or DTBC fixed between the tendon and bone. Hierarchical evaluations of the repaired tendon-to-bone interface were performed with regard to the tendon zone, transition zone, and bone zone using histological staining and micro-computed tomography scanning. Biomechanical analysis was performed to evaluate the general healing strength. RESULTS: The healing results in the tendon zone exhibited no significant difference among the 3 groups at any time point. In the transition zone, the grade in the direct repair group was significantly lower than that in the DFCG and DTBC groups at 4 weeks, and the grade in the DFCG group was significantly lower than that in the DTBC group at this time point. However, any significant difference between the DFCG group and DTBC group could no longer be detected at 8 and 16 weeks, which was inconsistent with the results of the biomechanical analysis. Micro-computed tomography analysis showed no significant difference among the 3 groups with regard to bone mineral density at 16 weeks. CONCLUSION: A monophasic DFCG was able to achieve enhanced tendon-to-bone healing similar to that with hierarchical DTBC over the long term, with regard to both histological and biomechanical properties. CLINICAL RELEVANCE: Fabrication of a monophasic scaffold instead of a hierarchical scaffold to promote regeneration and remodeling of a transition zone, which was mainly composed of fibrocartilaginous matrix between the tendon and bone, may be sufficient to enhance tendon-to-bone healing.


Subject(s)
Rotator Cuff Injuries , Rotator Cuff , Animals , Rabbits , Rotator Cuff/diagnostic imaging , Rotator Cuff/surgery , Wound Healing , X-Ray Microtomography , Tendons/surgery , Rotator Cuff Injuries/diagnostic imaging , Rotator Cuff Injuries/surgery , Rotator Cuff Injuries/pathology , Biomechanical Phenomena
7.
ACS Appl Mater Interfaces ; 15(24): 28964-28980, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37306312

ABSTRACT

Healing of a damaged tendon-to-bone enthesis occurs through the formation of fibrovascular scar tissue with greatly compromised histological and biomechanical properties instead of the regeneration of a new enthesis due to the lack of graded tissue-engineering zones in the interface during the healing process. In the present study, a structure-, composition-, and mechanics-graded biomimetic scaffold (GBS) coated with specific decellularized extracellular matrix (dECM) (GBS-E) aimed to enhance its cellular differentiation inducibilities was fabricated using a three-dimensional (3-D) bioprinting technique. In vitro cellular differentiation studies showed that from the tendon-engineering zone to the bone-engineering zone in the GBS, the tenogenic differentiation inducibility decreased in correspondence with an increase in the osteogenic differentiation inducibility. The chondrogenic differentiation inducibility peaked in the middle, which was in consistent with the graded cellular phenotypes observed in a native tendon-to-bone enthesis, while specific dECM coating from the tendon-engineering zone to the bone-engineering zone (tendon-, cartilage-, and bone-derived dECM, respectively) further enhanced its cellular differentiation inducibilities (GBS-E). In a rabbit rotator cuff tear model, histological analysis showed that the GBS-E group exhibited well-graded tendon-to-bone differentiated properties in the repaired interface that was similar to a native tendon-to-bone enthesis at 16 weeks. Moreover, the biomechanical properties in the GBS-E group were also significantly higher than those in other groups at 16 weeks. Therefore, our findings suggested a promising tissue-engineering strategy for the regeneration of a complex enthesis using a three-dimensional bioprinting technique.


Subject(s)
Bioprinting , Decellularized Extracellular Matrix , Animals , Rabbits , Osteogenesis , Biomimetics , Tendons , Extracellular Matrix , Tissue Scaffolds
8.
Front Vet Sci ; 10: 1137392, 2023.
Article in English | MEDLINE | ID: mdl-37124563

ABSTRACT

Since 2013, a dengue epidemic has broken out in Yunnan, China and neighboring countries. However, after the COVID-19 pandemic in 2019, the number of dengue cases decreased significantly. In this retrospective study, epidemiological and genetic diversity characterizations of dengue viruses (DENV) isolated in Yunnan between 2017 and 2018 were performed. The results showed that the dengue outbreak in Yunnan from 2017 to 2018 was mainly caused by DENV1 (genotype I and genotype V) and DENV2 (Asia I, Asia II, and Cosmopolitan). Furthermore, correlation analysis indicated a significant positive correlation between the number of imported and local cases (correlation coefficient = 0.936). Multiple sequence alignment and phylogenetic divergence analysis revealed that the local isolates are closely related to the isolates from Myanmar and Laos. Interestingly, recombination analysis found that the DENV1 and DENV2 isolates in this study had widespread intra-serotype recombination. Taken together, the results of the epidemiological investigation imply that the dengue outbreak in Yunnan was primarily due to imported cases. This study provides a new reference for further investigations on the prevalence and molecular epidemiology of DENV in Yunnan, China.

9.
PLoS Negl Trop Dis ; 17(5): e0011325, 2023 05.
Article in English | MEDLINE | ID: mdl-37167198

ABSTRACT

Clonorchis sinensis is a zoonotic parasite associated with liver fibrosis and cholangiocarcinoma development. The role of toll-like receptors (TLRs) in C. sinensis infection has not yet been fully elucidated. Here, the TLR3 signaling pathway, cytokine expression and liver fibrosis were examined in C. sinensis-infected wildtype (WT) and TLR3-/- mice. Polyinosinic-polycytidylic acid (Poly (I:C)) was used to treat C. sinensis infections. The results showed that TLR3 deficiency caused severe clonorchiasis with increased parasite burden, exacerbated proinflammatory cytokine expression and liver lesions, promoted the TGF-ß1/Smad2/3 pathway and myofibroblast activation, exacerbated liver fibrosis (compared to WT mice). Poly (I:C) intervention increased the body weight, decreased mouse mortality and parasite burden, reduced liver inflammation, and alleviated C. sinensis-induced liver fibrosis. Furthermore, C. sinensis extracellular vesicles (CsEVs) promote the production of IL-6, TNF in WT biliary epithelial cells (BECs) via p38/ERK pathway, compared with control group, while TLR3 deletion induced much higher levels of IL-6 and TNF in TLR3-/- BECs than that in WT BECs. Taken together, TLR3 inhibit IL-6 and TNF production via p38/ERK signaling pathway, a phenomenon that resulted in the alleviation of C. sinensis-induced liver fibrosis. Poly (I:C) is a potential treatment for clonorchiasis.


Subject(s)
Clonorchiasis , Liver Cirrhosis , Toll-Like Receptor 3 , Animals , Mice , Clonorchiasis/complications , Clonorchis sinensis , Cytokines/metabolism , Interleukin-6/metabolism , Liver/parasitology , Liver Cirrhosis/parasitology , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism
10.
Viruses ; 15(3)2023 02 24.
Article in English | MEDLINE | ID: mdl-36992334

ABSTRACT

Japanese encephalitis virus (JEV), which uses a mosquito primary vector and swine as a reservoir host, poses a significant risk to human and animal health. JEV can be detected in cattle, goats and dogs. A molecular epidemiological survey of JEV was conducted in 3105 mammals from five species, swine, fox, racoon dog, yak and goat, and 17,300 mosquitoes from 11 Chinese provinces. JEV was detected in pigs from Heilongjiang (12/328, 3.66%), Jilin (17/642, 2.65%), Shandong (14/832, 1.68%), Guangxi (8/278, 2.88%) and Inner Mongolia (9/952, 0.94%); in goats (1/51, 1.96%) from Tibet; and mosquitoes (6/131, 4.58%) from Yunnan. A total of 13 JEV envelope (E) gene sequences were amplified in pigs from Heilongjiang (5/13), Jilin (2/13) and Guangxi (6/13). Swine had the highest JEV infection rate of any animal species, and the highest infection rates were found in Heilongjiang. Phylogenetic analysis indicated that the predominant strain in Northern China was genotype I. Mutations were found at residues 76, 95, 123, 138, 244, 474 and 475 of E protein but all sequences had predicted glycosylation sites at 'N154. Three strains lacked the threonine 76 phosphorylation site from non-specific (unsp) and protein kinase G (PKG) site predictions; one lacked the threonine 186 phosphorylation site from protein kinase II (CKII) prediction; and one lacked the tyrosine 90 phosphorylation site from epidermal growth factor receptor (EGFR) prediction. The aim of the current study was to contribute to JEV prevention and control through the characterization of its molecular epidemiology and prediction of functional changes due to E-protein mutations.


Subject(s)
Culicidae , Encephalitis Virus, Japanese , Encephalitis Viruses, Japanese , Encephalitis, Japanese , Cattle , Animals , Humans , Swine , Dogs , Encephalitis Virus, Japanese/genetics , Phylogeny , China/epidemiology , Genotype , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Threonine/genetics , Mammals
11.
Parasitol Res ; 122(3): 781-788, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36596902

ABSTRACT

Neospora caninum is a protozoan parasite which can infect a range of animals, including dogs, cattle, and sheep. Bovine neosporosis, which mainly causes abortion in cattle, results in substantial economic losses worldwide. To study the effects of N. caninum infection on the placenta, a pregnant mouse model for N. caninum infection was established. The litter size (8.6 ± 1.5) and the number of live pups (6.4 ± 1.8) of infected dams were significantly lower compared with those of non-infected dams. Trophoblast cell shrinkage and a large number of apoptosomes were detected in the placentas of the infected group. The parasite load in the placental tissue was significantly higher with time after infection. Likewise, apoptosis of placental trophoblast cells significantly increased with time after infection. Among the 66 apoptotic genes detected in this study, eight genes, including Bcl-2, were significantly differentially expressed by about > tenfold in infected and uninfected mice. The expression of BAX and tumor necrosis factor-alpha (TNF-α) was upregulated in the placental cells of the infected mice, whereas the expression of BCL-2 was downregulated. Enzyme-linked immunosorbent assays (ELISAs) showed that apoptotic protease caspase-3 level was significantly increased in placental cell suspension, and insulin-like growth factor (IGF)-2 level was significantly reduced. Acetylcholine (ACH) and placental prolactin (PL) levels were initially decreased but eventually increased. In summary, infection of mice with N. caninum caused apoptotic damage to the placental tissues, cells, and genes and affected the normal physiological functions of placenta, which may largely explain the adverse pregnancy outcomes caused by N. caninum infection in mice.


Subject(s)
Cattle Diseases , Coccidiosis , Neospora , Pregnancy , Animals , Cattle , Female , Mice , Dogs , Sheep , Placenta/parasitology , Mice, Inbred BALB C , Coccidiosis/veterinary , Trophoblasts , Neospora/genetics , Proto-Oncogene Proteins c-bcl-2 , Cattle Diseases/parasitology
12.
J Environ Public Health ; 2022: 3065435, 2022.
Article in English | MEDLINE | ID: mdl-36267552

ABSTRACT

Today, with the rapid development of the Internet, society has entered the era of "information explosion." Financial data are a particularly important part of network information, and it has also reached a new level of public demand. The frequent appearance of words such as "carbon peak" and "green" indicates the transition of national policies to the field of sustainable development. Sustainable development would become an inevitable choice, and a green supply chain has become a new trend under this policy background. Supply chain finance uses the ideas and methods of key supply management to provide financial services to related enterprises. If an enterprise cannot acquire, organize, and use the information and data in the supply chain, it is likely to be outdated or even abandoned in the short term. This paper takes the artificial intelligence green financial system as the background and uses the cooperation theory model to analyze and predict the big data information of the enterprise supply chain. It realizes the transformation of information into sustainable resources for enterprises and releases the huge potential of big data. In this model, this model not only helped the company's overall profit increase by about 8.79% but also provided scientific support for corporate decision-making and promoted the development of the company.


Subject(s)
Artificial Intelligence , Big Data , Sustainable Development , Carbon , China
13.
Stem Cells Int ; 2022: 1455226, 2022.
Article in English | MEDLINE | ID: mdl-35646125

ABSTRACT

Glucocorticoid (GC) injections are commonly used in clinical practice to relieve pain and improve function in patients with multiple shoulder disabilities but cause detrimental effects on rotator cuff tendons. Adipose stem cell-derived exosomes (ASC-Exos) reportedly recover impaired tendon matrix metabolism by maintaining tissue homeostasis. However, it is unclear whether additional treatment with ASC-Exos overrides the detrimental effects of GCs without interfering with their anti-inflammatory effects. Thus, we aimed to investigate the anti-inflammatory effect of ASC-Exos with GCs and protective effect of ASC-Exos against GC-induced detriments. The present study comprised in vitro and in vivo studies. In vitro inflammatory analysis revealed that ASC-Exos exerted a synergic anti-inflammatory effect with GCs by significantly decreasing secretion of proinflammatory cytokines by RAW cells and increasing secretion of anti-inflammatory cytokines. In vitro cytoprotective analysis showed that ASC-Exos overrode GC-induced detrimental effects on tenocytes by significantly improving GC-suppressed cellular proliferation, migration, and transcription of tenocytic matrix molecules and degradative enzyme inhibitors and significantly decreasing GC-induced cell senescence, apoptosis, and transcription of ROS and tenocytic degradative enzymes. In vivo studies revealed that additional ASC-Exo injection restored impairments in histological and biomechanical properties owing to GC administration. Collectively, these results suggest that ASC-Exos exert a stronger anti-inflammatory effect in combination with GCs, overriding their detrimental effects on rotator cuff tendons.

14.
Am J Sports Med ; 50(8): 2234-2246, 2022 07.
Article in English | MEDLINE | ID: mdl-35736557

ABSTRACT

BACKGROUND: Retraction and degenerative changes of chronic rotator cuff tears limit the healing capacity after routine surgical repair. PURPOSE: To fabricate a mesenchymal stem cell-derived exosome (MSC-Exos) loaded patch and evaluate the effect of this patch on the activity of rabbit tenocytes in vitro and on the repair of chronic rotator cuff tears associated with degenerative changes in vivo. STUDY DESIGN: Controlled laboratory study. METHODS: The MSC-Exos loaded patch was fabricated using a dynamic wet-spinning system. In the in vitro studies, the proliferation and migration activities of tenocytes were evaluated by culturing tenocytes with saline, a fiber-aligned patch, or an MSC-Exos loaded patch. In the in vivo studies, a rabbit model of chronic rotator cuff tear was established and directly repaired, repaired with fiber-aligned patch augmentation (RFPA group), and repaired with MSC-Exos loaded patch augmentation (REPA group). Histological and biomechanical analyses were performed at 4, 8, and 12 weeks after surgery. RESULTS: An MSC-Exos loaded patch with inner aligned fibers, a loose microstructure, and reliable initial strength was fabricated using a dynamic wet-spinning system. The MSC-Exos loaded patch significantly promoted tenocyte proliferation and migration activities in vitro. In vivo, the REPA group exhibited significantly higher tendon maturing scores at 8 and 12 weeks after surgery compared with both the control and the RFPA groups. Fatty infiltration was significantly reduced in the REPA group at 4, 8, and 12 weeks compared with both the control and the RFPA groups. Biomechanical properties, including load to failure and stress, were also significantly improved at 12 weeks in the REPA group compared with both the control and the RFPA groups. CONCLUSION: Results in the present study suggested that an MSC-Exos loaded patch was able to enhance the repair of a chronic rotator cuff tear by providing mechanical support and minimizing degeneration. CLINICAL RELEVANCE: This work supported the idea that loading bioactive MSC-Exos into a traditionally designed rotator cuff patch might exert a better effect on the repair of chronic rotator cuff tears than augmented patch repair alone.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Rotator Cuff Injuries , Animals , Humans , Rabbits , Rotator Cuff/pathology , Rotator Cuff/surgery , Rotator Cuff Injuries/pathology , Rotator Cuff Injuries/surgery , Tendons
15.
Curr Pharm Des ; 28(17): 1433-1443, 2022.
Article in English | MEDLINE | ID: mdl-35546767

ABSTRACT

BACKGROUND: Impaired wound healing is one of the most noteworthy features and troublesome complications of diabetes mellitus, which arouses a rising global health concern without potent remedies. Thrombin is the major hemostatic agent applied at wound healing initiation and recently gained therapeutic credits in later phases. However, a rare investigation achieved prolonged use of thrombin and probed the detailed mechanism. OBJECTIVE: The objective of this study is to investigate the effects and mechanism of thrombin on diabetic skin wound healing. METHODS: The effect of thrombin on fibroblast proliferation, α-SMA, and Collagen I expression was firstly studied in vitro by Cell Counting Kit 8 (CCK8) and western blotting. Then, the specific phosphorylation site of SMAD2/3 and their ERK1/2 dependence during thrombin treatment were assessed by western blotting for mechanism exploration. After that, full-thickness wound defects were established in diabetic male SD rats and treated with thrombin in the presence or absence of PD98059 to observe the in vivo effects of thrombin and to confirm its ERK dependence. RESULTS: We found that thrombin promoted fibroblast proliferation and their α-SMA and Collagen I production. Mechanistically, thrombin induced phosphorylation of Smad2 linker region (Ser245/250/255) through ERK1/2 phosphorylation but promoted phosphorylation of Smad3 linker region (Ser204) independent of ERK1/2. Histological results showed that thrombin facilitated wound healing by promoting α-SMA and Collagen I expression, which was not abolished by inhibiting ERK phosphorylation. CONCLUSION: Collectively, this study validated the therapeutic efficacy of thrombin on diabetic wound healing and identified both ERK-dependent and -independent Smad2/3 linker region phosphorylation as the essential signaling events in this process.


Subject(s)
Diabetes Mellitus , Thrombin , Animals , Collagen/metabolism , Extracellular Signal-Regulated MAP Kinases , Male , Phosphorylation , Rats , Rats, Sprague-Dawley , Smad2 Protein , Smad3 Protein , Thrombin/pharmacology , Wound Healing
16.
IEEE Trans Pattern Anal Mach Intell ; 44(10): 6546-6561, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34156936

ABSTRACT

Reconstructing a 3D shape from a single-view image using deep learning has become increasingly popular recently. Most existing methods only focus on reconstructing the 3D shape geometry based on image constraints. The lack of explicit modeling of structure relations among shape parts yields low-quality reconstruction results for structure-rich man-made shapes. In addition, conventional 2D-3D joint embedding architecture for image-based 3D shape reconstruction often omits the specific view information from the given image, which may lead to degraded geometry and structure reconstruction. We address these problems by introducing VGSNet, an encoder-decoder architecture for view-aware joint geometry and structure learning. The key idea is to jointly learn a multimodal feature representation of 2D image, 3D shape geometry and structure so that both geometry and structure details can be reconstructed from a single-view image. To this end, we explicitly represent 3D shape structures as part relations and employ image supervision to guide the geometry and structure reconstruction. Trained with pairs of view-aligned images and 3D shapes, the VGSNet implicitly encodes the view-aware shape information in the latent feature space. Qualitative and quantitative comparisons with the state-of-the-art baseline methods as well as ablation studies demonstrate the effectiveness of the VGSNet for structure-aware single-view 3D shape reconstruction.

17.
Am J Sports Med ; 49(4): 899-908, 2021 03.
Article in English | MEDLINE | ID: mdl-33719604

ABSTRACT

BACKGROUND: Adipose stem cell-derived exosomes (ASC-Exos) are reported to effectively prevent muscle atrophy and degeneration of torn rat rotator cuff, but their influence on human samples and their potential mechanism are still unclear. PURPOSE: We aimed to investigate the effects of ASC-Exos on the metabolic activities of torn human rotator cuff tendons and explore the potential mechanism behind it. STUDY DESIGN: Controlled laboratory study. METHODS: Diseased supraspinatus tendons were harvested from 15 patients with a mean ± SD age of 65.8 ± 3.2 years who underwent reverse shoulder arthroplasty for chronic rotator cuff tears associated with glenohumeral pathological changes. Each tendon was dissected into 3 × 4 × 4-mm explants: the ones derived from the same tendon were placed into 12-well plates and cultured in complete culture media (control) or in complete culture media supplemented with ASC-Exos for 72 hours. Afterward, the concentrations of cytokines secreted into the culture media-including interleukin 1ß (IL-1ß), IL-6, IL-8, and matrix metalloproteinase 9 (MMP-9)-were measured using enzyme-linked immunosorbent assay (ELISA). Tendons were stained with hematoxylin and eosin and immunohistochemistry (type I and III collagens) for histological analyses. Moreover, the expression of anabolic genes (TIMP-1 and TIMP-3; type I and III collagen encoding) and catabolic genes (MMP-9 and MMP-13) in tendons were measured using real-time quantitative polymerase chain reaction. Phosphorylated AMPKα and Wnt/ß-catenin pathways were assayed by western blotting to explore the potential mechanism of action of ASC-Exos. RESULTS: Secretion of proinflammatory cytokines, including IL-1ß, IL-6, and MMP-9, was significantly reduced in the ASC-Exos group as compared with the control group. Supraspinatus tendons in the ASC-Exos group exhibited superior histological properties, as demonstrated by higher tendon maturing scores and more type I collagen content, but there was no significant difference in type III collagen content between groups. Expression of MMP-9 and MMP-13 genes was decreased in the ASC-Exos group versus the control group. Increased expression of type I and III collagens and an elevated type I/III ratio were found in the ASC-Exos group when compared with the control group. There was no significant difference in the secretion of IL-8 and expression of TIMP-1 and TIMP-3 genes between the ASC-Exos and control groups. Western blotting revealed that ASC-Exos enhanced phosphorylated AMPKα and decreased ß-catenin levels to prevent tendon degeneration. CONCLUSION: ASC-Exos maintained metabolic homeostasis of torn human rotator cuff tendons to improve their histological properties, which might be achieved by enhancing AMPK signaling to suppress Wnt/ß-catenin activity. CLINICAL RELEVANCE: ASC-Exos could be used as an effective biological tool to promote healing in torn human rotator cuff tendons.


Subject(s)
Exosomes , Rotator Cuff Injuries , Animals , Homeostasis , Humans , Rats , Rotator Cuff/surgery , Rotator Cuff Injuries/surgery , Stem Cells , Tendons
18.
J Shoulder Elbow Surg ; 30(3): 544-553, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32650072

ABSTRACT

BACKGROUND: Strategies involving microfracture, biomaterials, growth factors, and chemical agents have been evaluated for improving enthesis healing. Kartogenin (KGN) promotes selective differentiation of bone marrow mesenchymal stem cells (BMSCs) into chondrocytes. Gelatin methacryloyl (GelMA) is a promising biomaterial for engineering scaffolds and drug carriers. Herein, we investigated KGN-loaded GelMA hydrogel scaffolds with a bone marrow-stimulating technique for the repair of rotator cuff tear. METHODS: KGN-loaded GelMA hydrogel scaffolds were obtained by ultraviolet GelMA crosslinking and vacuum freeze-drying. Fifty-four New Zealand rabbits were randomly divided into (1) repair only (control), (2) microfracture + repair (BMS), and (3) microfracture + repair augmentation with a KGN-loaded GelMA hydrogel scaffold (combined) groups. Tendons were repaired by transosseous sutures. The structure, degradation, and in vitro KGN release of the scaffolds were characterized. Animals were euthanized 4, 8, and 12 weeks after repair. Enthesis healing was evaluated by macroscopy, microcomputed tomography, histology, and biomechanical tests. RESULTS: The KGN-loaded GelMA hydrogel scaffolds are porous with a 60.4 ± 28.2-µm average pore size, and they degrade quickly in 2.5 units/mL collagenase solution. Nearly 81% of KGN was released into phosphate-buffered saline within 12 hours, whereas the remaining KGN was released in 7 days. Macroscopically, the repaired tendons were attached to the footprint. No differences were detected postoperatively in microcomputed tomography analysis among groups. Fibrous scar tissue was the main component at the tendon-to-bone interface in the control group. Disorderly arranged cartilage formation was observed at the tendon-to-bone interface in the BMS and combined groups 4 weeks after repair; the combined group exhibited relatively more cartilage. The combined group showed improved cartilage regeneration 8 and 12 weeks after repair. Similar results were found in tendon maturation scores. The ultimate load to failure and stiffness of the repaired tendon increased in all 3 groups. At 4 weeks after repair, the BMS and combined groups exhibited greater ultimate load to failure than the control group, although there was no difference in stiffness among groups. The BMS and combined groups exhibited greater ultimate load to failure and stiffness than the control group, and the combined group exhibited better values than the BMS group at 8 and 12 weeks after repair. CONCLUSION: Compared with the bone marrow-stimulating technique, the KGN-loaded GelMA hydrogel scaffold with bone marrow stimulation improved enthesis healing by promoting fibrocartilage formation and improving the mechanical properties.


Subject(s)
Rotator Cuff Injuries , Rotator Cuff , Anilides , Animals , Biomechanical Phenomena , Bone Marrow , Gelatin , Hydrogels , Phthalic Acids , Rabbits , Wound Healing , X-Ray Microtomography
19.
Parasit Vectors ; 13(1): 459, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32907616

ABSTRACT

BACKGROUND: Equine piroplasmosis (EP) is a tick-borne hemoprotozoan disease of equids, caused by Theileria equi and Babesia caballi. Equine piroplasmosis represents a serious challenge to the equine industry due to important economic losses worldwide. The present study aimed to evaluate the prevalence of Theileria equi and Babesia caballi infections in equids from Jilin Province, China. METHODS: A total of 220 blood samples (192 horses and 28 donkeys/mules) were collected from March 2018 to October 2019 in five districts of Jilin Province and analyzed by PCR. Potential risk factors, including the region, sex, management, and host species of the animals were assessed in relation to T. equi infection. Moreover, the V4 hypervariable region of the T. equi 18S rRNA gene was analyzed to identify specific genotypes. RESULTS: The overall prevalence of T. equi in equids was 27.7%, whereas B. caballi infection was not identified. The district with the highest positive rate was Baicheng (43.3%), followed by Tonghua (28.9%), Yanbian (26.4%), Jilin (23.3%), and Liaoyuan (20.9%). The sex of the animals and farm management were identified as main risk factors, which were significantly associated with the prevalence of Equine piroplasmosis (P < 0.05). The risk factor analysis indicated that the females were at a higher risk (OR: 2.48, 95% CI: 1.17-5.27) of being infected compared to the males, whereas the organized farm was protective factor (OR: 0.42, 95% CI: 0.22-0.80). The phylogenetic analyses revealed that there were two T. equi genotypes (A and E) in Jilin. CONCLUSIONS: Our findings provided important epidemiological data for the prevention and control of T. equi infection in Jilin, China.


Subject(s)
Babesia , Babesiosis/epidemiology , Equidae/parasitology , Theileria , Theileriasis/epidemiology , Animals , Babesia/genetics , Babesia/isolation & purification , Cattle/parasitology , China/epidemiology , Genes, Protozoan , Genetic Variation , Horse Diseases/epidemiology , Horses/parasitology , Phylogeny , Prevalence , RNA, Ribosomal, 18S/genetics , Risk Factors , Sex Factors , Theileria/genetics , Theileria/isolation & purification , Tick-Borne Diseases/veterinary
20.
Mater Sci Eng C Mater Biol Appl ; 103: 109833, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349499

ABSTRACT

The different lineage-specific biological properties of articular cartilage and subchondral bone present a great challenge in the construction of bi-lineage scaffolds for simultaneous osteochondral regeneration. To overcome this challenge, strontium incorporated calcium silicate (Sr-CS) ceramic was prepared for bi-lineage formation of scaffolds in this study. The positive result of Sr-CS in the regeneration of osteochondral defects was first proven by its improved effect on the osteogenesis and chondrogenesis induction of mesenchymal stem cells (MSCs). After that, scaffold-mediated macrophage polarization between classically activated inflammatory macrophages (termed M1Ф) and alternatively activated inflammatory macrophages (termed M2Ф) was assayed to investigate whether the incorporation of Sr into calcium silicate could alter host-to-scaffold immune response. Furthermore, the interactions between Sr-CS pretreated macrophages and MSCs differentiation were performed to prove the enhancement effect of suppressed inflammatory response on osteogenesis and chondrogenesis. In vivo transplantation showed that the Sr-CS scaffolds distinctly improved the regeneration of cartilage and subchondral bone, as compared to the calcium silicate scaffolds. On the one hand, the mechanism attributes to enhancement of strontium on the osteogenic and chondrogenic differentiation of MSCs. On the other hand, the reason can partially be attributed to suppressed synovial inflammatory response, which has improved effects on enhancement of osteogenesis and chondrogenesis. These findings suggest that monophasic Sr-CS scaffolds with a bi-lineage conducive property and an inflammatory response regulatory property represents a viable strategy for simultaneous regeneration of osteochondral defects.


Subject(s)
Chondrogenesis/drug effects , Immunologic Factors , Macrophages/immunology , Mesenchymal Stem Cells/immunology , Osteogenesis/drug effects , Strontium , Tissue Scaffolds/chemistry , Animals , Calcium Compounds/chemistry , Calcium Compounds/pharmacokinetics , Calcium Compounds/pharmacology , Cells, Cultured , Chondrogenesis/immunology , Immunologic Factors/chemistry , Immunologic Factors/pharmacokinetics , Immunologic Factors/pharmacology , Osteogenesis/immunology , Rabbits , Silicates/chemistry , Silicates/pharmacokinetics , Silicates/pharmacology , Strontium/chemistry , Strontium/pharmacokinetics , Strontium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...