Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Technol Cancer Res Treat ; 23: 15330338241271906, 2024.
Article in English | MEDLINE | ID: mdl-39110418

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) remains a global health concern with persistently high incidence and mortality rates. However, the specific pathogenesis of CRC remains poorly understood. This study aims to investigate the role and pathogenesis of serine and arginine rich splicing factor 10 (SRSF10) in colorectal cancer. METHODS: Bioinformatics analysis was employed to predict SRSF10 gene expression in CRC patients. Functional experiments involving SRSF10 knockdown and overexpression were conducted using CCK8, transwell, scratch assay, and flow cytometry. Additionally, the PRIdictor website was utilized to predict the SRSF10 interaction site with RFC5. The identification of different transcripts of SRSF10-acting RFC5 pre-mRNA was achieved through agarose gel electrophoresis. RESULT: The knockdown of SRSF10 inhibited the proliferation and migration ability of CRC cells, while promoting apoptosis and altering the DNA replication of CRC cells. Conversely, when SRSF10 was highly expressed, it enhanced the proliferation and migration ability of CRC cells and caused changes in the cell cycle of colorectal cancer cells. This study revealed a change in the replicating factor C subunit 5 (RFC5) gene in colorectal cancer cells following SRSF10 knockdown. Furthermore, it was confirmed that SRSF10 increased RFC5 exon2-AS1(S) transcription variants, thereby promoting the development of colorectal cancer through AS1 exclusion to exon 2 of RFC5. CONCLUSION: In summary, this study demonstrates that SRSF10 promotes the progression of colorectal cancer by generating an aberrantly spliced exclusion isoform of AS1 within RFC5 exon 2. These findings suggest that SRSF10 could serve as a crucial target for the clinical diagnosis and treatment of CRC.


Subject(s)
Alternative Splicing , Apoptosis , Cell Movement , Cell Proliferation , Colorectal Neoplasms , Disease Progression , Gene Expression Regulation, Neoplastic , Replication Protein C , Serine-Arginine Splicing Factors , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Cell Proliferation/genetics , Cell Movement/genetics , Apoptosis/genetics , Cell Line, Tumor , Replication Protein C/genetics , Replication Protein C/metabolism , Gene Knockdown Techniques , Repressor Proteins , Cell Cycle Proteins
2.
Front Immunol ; 15: 1402669, 2024.
Article in English | MEDLINE | ID: mdl-39026664

ABSTRACT

Background: The relationship between ferroptosis and the progression and treatment of hematological tumors has been extensively studied, although its precise association with chronic myeloid leukemia (CML) remains uncertain. Methods: Multi-transcriptome sequencing data were utilized to analyze the ferroptosis level of CML samples and its correlation with the tumor microenvironment, disease progression, and treatment response. Machine learning algorithms were employed to identify diagnostic ferroptosis-related genes (FRGs). The consensus clustering algorithm was applied to identify ferroptosis-related molecular subtypes. Clinical samples were collected for sequencing to validate the results obtained from bioinformatics analysis. Cell experiments were conducted to investigate the therapeutic efficacy of induced ferroptosis in drug-resistant CML. Results: Ferroptosis scores were significantly lower in samples from patients with CML compared to normal samples, and these scores further decreased with disease progression and non-response to treatment. Most FRGs were downregulated in CML samples. A high ferroptosis score was also associated with greater immunosuppression and increased activity of metabolic pathways. Through support vector machine recursive feature elimination (SVM-RFE), least absolute shrinkage selection operator (LASSO), and random forest (RF) algorithms, we identified five FRGs (ACSL6, SLC11A2, HMOX1, SLC38A1, AKR1C3) that have high diagnostic value. The clinical diagnostic value of these five FRGs and their effectiveness in differentiating CML from other hematological malignancies were validated using additional validation cohorts and our real-world cohort. There are significant differences in immune landscape, chemosensitivity, and immunotherapy responsiveness between the two ferroptosis-related molecular subtypes. By conducting cellular experiments, we confirmed that CML-resistant cells are more sensitive to induction of ferroptosis and can enhance the sensitivity of imatinib treatment. Conclusion: Our study unveils the molecular signature of ferroptosis in samples from patients with CML. FRG identified by a variety of machine learning algorithms has reliable clinical diagnostic value. Furthermore, the characterization of different ferroptosis-related molecular subtypes provides valuable insights into individual patient characteristics and can guide clinical treatment strategies. Targeting and inducing ferroptosis holds great promise as a therapeutic approach for drug-resistant CML.


Subject(s)
Biomarkers, Tumor , Ferroptosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Ferroptosis/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Tumor Microenvironment , Drug Resistance, Neoplasm/genetics , Computational Biology/methods , Machine Learning
3.
Materials (Basel) ; 17(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38998399

ABSTRACT

A covalently bonded WO3/PEDOT hybrid nanorods array has been prepared through solvothermal, oil bath, and electrochemical deposition methods using KH57 as a coupling agent. The obtained WO3/PEDOT shows substantially increased electrochromic performance with an increased response speed (3.4 s for coloring and 1.2 s for bleaching), excellent optical modulation (86.7% at 633 nm), high coloration efficiency (122.0 cm2/C at 633 nm), and distinguished cyclic stability. It was found that the covalent bond interaction between WO3 and PEDOT plays an essential role in property enhancement. The covalently bonded inorganic/organic hybrid nanorods array may promise great potential in developing smart-display and energy-efficient materials and devices featuring low energy consumption, cost effectiveness, and environmental protection.

4.
Med Image Anal ; 97: 103276, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39068830

ABSTRACT

Radiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment planning, offering electron density data crucial for accurate dose calculations. However, accurately representing patient anatomy is challenging, especially in adaptive radiotherapy, where CT is not acquired daily. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast. Still, it lacks electron density information, while cone beam CT (CBCT) lacks direct electron density calibration and is mainly used for patient positioning. Adopting MRI-only or CBCT-based adaptive radiotherapy eliminates the need for CT planning but presents challenges. Synthetic CT (sCT) generation techniques aim to address these challenges by using image synthesis to bridge the gap between MRI, CBCT, and CT. The SynthRAD2023 challenge was organized to compare synthetic CT generation methods using multi-center ground truth data from 1080 patients, divided into two tasks: (1) MRI-to-CT and (2) CBCT-to-CT. The evaluation included image similarity and dose-based metrics from proton and photon plans. The challenge attracted significant participation, with 617 registrations and 22/17 valid submissions for tasks 1/2. Top-performing teams achieved high structural similarity indices (≥0.87/0.90) and gamma pass rates for photon (≥98.1%/99.0%) and proton (≥97.3%/97.0%) plans. However, no significant correlation was found between image similarity metrics and dose accuracy, emphasizing the need for dose evaluation when assessing the clinical applicability of sCT. SynthRAD2023 facilitated the investigation and benchmarking of sCT generation techniques, providing insights for developing MRI-only and CBCT-based adaptive radiotherapy. It showcased the growing capacity of deep learning to produce high-quality sCT, reducing reliance on conventional CT for treatment planning.


Subject(s)
Cone-Beam Computed Tomography , Magnetic Resonance Imaging , Radiotherapy Planning, Computer-Assisted , Humans , Cone-Beam Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Radiotherapy Dosage , Neoplasms/radiotherapy , Neoplasms/diagnostic imaging , Radiotherapy, Image-Guided/methods
5.
Clin Chim Acta ; 562: 119855, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38981565

ABSTRACT

BACKGROUND AND AIMS: Bladder cancer (BCa) is a highly aggressive malignancy of the urinary system. Timely detection is imperative for enhancing BCa patient prognosis. MATERIALS AND METHODS: This study introduces a novel approach for detecting long non-coding RNA (lncRNA) Mitochondrial RNA Processing Endoribonuclease (RMRP) in urine exosomes from BCa patients using the reverse transcription recombinase-aided amplification (RT-RAA) and clustered regularly interspaced short palindromic repeats and associated Cas12a proteins (CRISPR/Cas12a) technique. Various statistical methods were used to evaluate its diagnostic value for BCa. RESULTS: The specificity of urine exosomal RMRP detection for BCa diagnosis was enhanced by using RT-RAA combined with CRISPR/Cas12a. The testing process duration was reduced to 30 min, which supports rapid detection. Moreover, this approach allows the identification of target signals in real-time using blue light, facilitating immediate detection. In clinical sample analysis, this methodology exhibited a high level of diagnostic efficacy. This was evidenced by larger area under the curve values with receiver operating characteristic curve analysis compared with using traditional RT-qPCR methods, indicating superior diagnostic accuracy and sensitivity. Furthermore, the combined analysis of RMRP expression in urine exosomes detected by RT-RAA-CRISPR/Cas12a and NMP-22 expression may further enhance diagnostic accuracy. CONCLUSIONS: The RT-RAA-CRISPR/Cas12a technology is a swift, sensitive, and uncomplicated method for nucleic acid detection. Because of its convenient and non-invasive sampling approach, user-friendly operation, and reproducibility, this technology is very promising for automated detection and holds favorable application possibilities within clinical environments.


Subject(s)
CRISPR-Cas Systems , Exosomes , RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/urine , Urinary Bladder Neoplasms/genetics , RNA, Long Noncoding/urine , RNA, Long Noncoding/genetics , Exosomes/genetics , CRISPR-Cas Systems/genetics , Male , Middle Aged , Female , Aged
6.
Materials (Basel) ; 17(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793280

ABSTRACT

Electrochromism has emerged as a pivotal technology in the pursuit of energy efficiency and environmental sustainability, spurring significant research efforts aimed at the creation of advanced electrochromic devices. Most electrochromic materials are used for smart window applications. However, current electrochromic materials have been applied to new energy vehicles, cell phone back covers, AR glasses, and so on. More application scenarios put forward more requirements for the color of the colored states. Choosing the right color change in the application will be the trend in the future. In this work, tungsten trioxide (WO3) thin films were prepared by adjusting the in situ heating temperature. WO3 with a crystalline structure showed excellent cyclic stability (5000 cycles), electrochromic performance (ΔT = 77.7% at 633 nm, CE = 37.1 cm2/C), relatively fast bleaching/coloring speed (20.0 s/19.4 s), and the darkest coloring effect (L* = 29.32, a* = 7.41, b* = -22.12 for the colored state). These findings offer valuable insights into the manipulation of smart materials and devices, contributing to the advancement of electrochromic technology.

7.
J Phys Chem B ; 128(22): 5481-5488, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38795040

ABSTRACT

To realize the relationship of structure and property, four novel twistacene-functionalized arenes, namely, 1,4-bis(2,7-di-tert-butyl-9,14-bis(4-(tert-butyl)phenyl)dibenzo[de,qr]tetracen-11-yl)buta-1,3-diyne (4), 1,4-bis(3,5,10,12-tetra-tert-butyltribenzo[a,d,g]coronen-16-yl)buta-1,3-diyne (7), 1,4-bis(2,7-di-tert-butyl-9,14-bis(4-(tert-butyl)phenyl)dibenzo[de,qr]tetracen-10-yl)buta-1,3-diyne (10), 1,4-bis(3,5,10,12-tetra-tert-butyltribenzo[a,d,g]coronen-15-yl)buta-1,3-diyne (13), linked with butadiyne as π bridges have been strategically synthesized and characterized. The nonlinear optical properties are detailly examined in solution through the open-aperture Z-scan method in a comparative manner, indicating that molecules 4 and 7 exhibit better nonlinear optical responses than 10 and 13. Among them, 4 and 7 exhibit excellent optical limiting responses with limiting thresholds of 0.17 and 0.19 J/cm2, respectively, being superior to the state-of-the-art material C60. The ultrafast transient absorption test and DFT calculations suggest that the nonlinear absorption mechanisms belong to TPA-induced ESA. In addition, the effective percentage calculated from TD-DFT can provide a brief glance to evaluate the optical limiting performance.

8.
Front Genet ; 15: 1379784, 2024.
Article in English | MEDLINE | ID: mdl-38812971

ABSTRACT

Solanum pinnatisectum exhibits strong resistance to late blight caused by Phytophthora infestans but only an incomplete genome assembly based on short Illumina reads has been published. In this study, we generated the first chromosome-level draft genome for the wild-type potato species S. pinnatisectum in China using Oxford Nanopore technology sequencing and Hi-C technology. The high-quality assembled genome size is 664 Mb with a scaffold N50 value of 49.17 Mb, of which 65.87% was occupied by repetitive sequences, and predominant long terminal repeats (42.51% of the entire genome). The genome of S. pinnatisectum was predicted to contain 34,245 genes, of which 99.34% were functionally annotated. Moreover, 303 NBS-coding disease resistance (R) genes were predicted in the S. pinnatisectum genome to investigate the potential mechanisms of resistance to late blight disease. The high-quality chromosome-level reference genome of S. pinnatisectum is expected to provide potential valuable resources for intensively and effectively investigating molecular breeding and genetic research in the future.

9.
Cancer Med ; 13(7): e7161, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613173

ABSTRACT

BACKGROUND: Ovarian clear cell carcinoma (OCCC) represents a subtype of ovarian epithelial carcinoma (OEC) known for its limited responsiveness to chemotherapy, and the onset of distant metastasis significantly impacts patient prognoses. This study aimed to identify potential risk factors contributing to the occurrence of distant metastasis in OCCC. METHODS: Utilizing the Surveillance, Epidemiology, and End Results (SEER) database, we identified patients diagnosed with OCCC between 2004 and 2015. The most influential factors were selected through the application of Gaussian Naive Bayes (GNB) and Adaboost machine learning algorithms, employing a Venn test for further refinement. Subsequently, six machine learning (ML) techniques, namely XGBoost, LightGBM, Random Forest (RF), Adaptive Boosting (Adaboost), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), were employed to construct predictive models for distant metastasis. Shapley Additive Interpretation (SHAP) analysis facilitated a visual interpretation for individual patient. Model validity was assessed using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and the area under the receiver operating characteristic curve (AUC). RESULTS: In the realm of predicting distant metastasis, the Random Forest (RF) model outperformed the other five machine learning algorithms. The RF model demonstrated accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and AUC (95% CI) values of 0.792 (0.762-0.823), 0.904 (0.835-0.973), 0.759 (0.731-0.787), 0.221 (0.186-0.256), 0.974 (0.967-0.982), 0.353 (0.306-0.399), and 0.834 (0.696-0.967), respectively, surpassing the performance of other models. Additionally, the calibration curve's Brier Score (95%) for the RF model reached the minimum value of 0.06256 (0.05753-0.06759). SHAP analysis provided independent explanations, reaffirming the critical clinical factors associated with the risk of metastasis in OCCC patients. CONCLUSIONS: This study successfully established a precise predictive model for OCCC patient metastasis using machine learning techniques, offering valuable support to clinicians in making informed clinical decisions.


Subject(s)
Adenocarcinoma, Clear Cell , Ovarian Neoplasms , Female , Humans , Bayes Theorem , Algorithms , Carcinoma, Ovarian Epithelial , Machine Learning
10.
Sci Rep ; 14(1): 7099, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531885

ABSTRACT

Rare earth doped up-conversion luminescent nano-materials exhibit abundant emission colors under suitable excitation condition. In this work, NaYF4:Er/Ho@NaYF4 and NaYbF4:Tm@NaYF4 nanoparticles were synthesized by co-precipitation method. The pure red emission can be realized by the designed NaYF4:Er/Ho@NaYF4 nanocrystals and the R/Gs reach 23.3 and 25 under excitations of 980 and 1550 nm lasers, respectively. The R/G declines as the power increasing with the emission color changing from red to yellow, which is due to the quick saturation of the energy levels, radiating red emissions. Meanwhile, the emission intensity of NaYbF4:Tm@NaYF4 nanocrystals increases by 58.3 folds after encasing the inert shell NaYF4 and the CIE color coordinate reaches (0.1646, 0.0602) under 980 nm laser excitation. Furthermore, broad range multicolor from blue to red and yellow up-conversion emissions is achieved by mixing NaYF4:Er/Ho@NaYF4 and NaYbF4:Tm@NaYF4 nanocrystals, which could be applied to colorful displaying, security anti-counterfeiting and information coding.

11.
Article in English | MEDLINE | ID: mdl-37917901

ABSTRACT

Objective: This study aims to investigate the relationship between folic acid (FA) metabolic gene polymorphisms, homocysteine (Hcy), vitamin B12 (Vit B12), and red blood cell folate (RBCF) with adverse pregnancy. The findings of this study can help in the prevention and treatment of adverse pregnancy in the future. Methods: 118 pregnant women admitted to Qingdao Central Hospital between August 2020 and October 2022 were selected for retrospective analysis, including 62 cases of normal delivery (control group, CG) and 56 cases of adverse pregnancy (research group, RG). The single nucleotide polymorphisms of MTHFR C677T, MTHFR A1298C, and MTRR A66G gene loci were tested in both cohorts. Besides, differences in Hcy, Vit B12, and RBCF levels were observed, as well as Hcy, Vit B12, and RBCF alterations in different genotype carriers in the research group. Results: An elevated proportion of MTHFR 677TT-type gene and MTRR 66GG-type gene carriers and a lower proportion of MTRR 66GG-type gene carriers were found in the research group (χ2 = 4.458, 4.238, 4.206, P = .035, .040, .040). As indicated by the Logistic regression analysis, carriers of MTHFR 677TT and MTRR 66GG gene had an increased risk of adverse pregnancy outcomes (95%CI=2.881-5.942, 1.427-3.809, P < .001), while MTRR 66AG carriers had a decreased risk (95%CI=0.124-1.849, P < .001). Finally, Hcy levels of MTHFR 677TT and MTRR 66GG gene carriers increased, while Vit B12 and RBCF decreased; the opposite was true for MTRR 66AG gene carriers (P < .001). Conclusions: FA metabolic gene polymorphisms, Hcy, Vit B12, and RBCF are closely related to adverse pregnancy outcomes, which is of great significance for future clinical evaluation of adverse pregnancy.

12.
Medicine (Baltimore) ; 102(43): e35530, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37904386

ABSTRACT

The pathogenesis of depression is unclear, and it responds poorly to treatment. It is thus urgent to identify the pathogenesis of depression and possible therapeutic targets. There may be interactions between insulin resistance (IR) and depression. The purpose of this study was to explore the relationship between depression, triglyceride glucose (TyG) index. The study participants were 198 middle-aged and elderly patients who were admitted to the Hebei General Hospital between January 1, 2021, and August 31, 2022, together with 189 healthy adults as controls. Depression was diagnosed according to ICD-10 diagnostic criteria for depression. IR was assessed by the TyG index. Compared with the control group, patients suffering from depression had higher TyG index (P = .00); There were significant differences in the sex ratio (P = .00), family history (P = .00), body mass index (P = .008), total cholesterol (P = .00), fasting blood glucose (P = .004), high-density lipoprotein (P = .00), and low-density lipoprotein (P = .001) levels between the 2 groups. After excluding other confounding factors, the TyG index was found to be independently associated with depression, with an OR of 2.75. These data support an association of depression with the TyG index. IR thus appears to be a risk factor for depression.


Subject(s)
Glucose , Insulin Resistance , Aged , Middle Aged , Humans , Adult , Triglycerides , Cross-Sectional Studies , Blood Glucose , Depression/epidemiology , Biomarkers
13.
Nat Commun ; 14(1): 6813, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884530

ABSTRACT

Shading in combination with extended photoperiods can cause exaggerated stem elongation (ESE) in soybean, leading to lodging and reduced yields when planted at high-density in high-latitude regions. However, the genetic basis of plant height in adaptation to these regions remains unclear. Here, through a genome-wide association study, we identify a plant height regulating gene on chromosome 13 (PH13) encoding a WD40 protein with three main haplotypes in natural populations. We find that an insertion of a Ty1/Copia-like retrotransposon in the haplotype 3 leads to a truncated PH13H3 with reduced interaction with GmCOP1s, resulting in accumulation of STF1/2, and reduced plant height. In addition, PH13H3 allele has been strongly selected for genetic improvement at high latitudes. Deletion of both PH13 and its paralogue PHP can prevent shade-induced ESE and allow high-density planting. This study provides insights into the mechanism of shade-resistance and offers potential solutions for breeding high-yielding soybean cultivar for high-latitude regions.


Subject(s)
Genome-Wide Association Study , Glycine max , Glycine max/genetics , Plant Breeding , Phenotype , Retroelements
14.
Medicine (Baltimore) ; 102(24): e34058, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37327285

ABSTRACT

The triglyceride-glucose (TyG) index has been proposed as a new marker for insulin resistance, which is associated with a risk of major depressive disorder (MDD). This study aims to explore whether the TyG index is correlated with MDD. In total, 321 patients with MDD and 325 non-MDD patients were included in the study. The presence of MDD was identified by trained clinical psychiatrists using the International Classification of Diseases 10th Revision. The TyG index was calculated as follows: Ln (fasting triglyceride [mg/dL] × fasting glucose [mg/dL]/2). The results revealed that the MDD group presented higher TyG index values than the non-MDD group (8.77 [8.34-9.17] vs 8.62 [8.18-9.01], P < .001). We also found significantly higher morbidity of MDD in the highest TyG index group than in the lower TyG index group (59.9% vs 41.4%, P < .001). Binary logistic regression revealed that TyG was an independent risk factor for MDD (odds ratio [OR] 1.750, 95% confidence interval: 1.284-2.384, P < .001). We further assessed the effect of TyG on depression in sex subgroups. The OR was 3.872 (OR 2.014, 95% confidence interval: 1.282-3.164, P = .002) for the subgroup of men. It is suggested that the TyG index could be closely associated with morbidity in MDD patients; thus, it may be a valuable marker for identifying MDD.


Subject(s)
Depressive Disorder, Major , Insulin Resistance , Male , Humans , Glucose , Cross-Sectional Studies , Blood Glucose , Triglycerides , Biomarkers , Risk Factors
15.
ArXiv ; 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-37292471

ABSTRACT

As machine learning (ML) algorithms are increasingly used in high-stakes applications, concerns have arisen that they may be biased against certain social groups. Although many approaches have been proposed to make ML models fair, they typically rely on the assumption that data distributions in training and deployment are identical. Unfortunately, this is commonly violated in practice and a model that is fair during training may lead to an unexpected outcome during its deployment. Although the problem of designing robust ML models under dataset shifts has been widely studied, most existing works focus only on the transfer of accuracy. In this paper, we study the transfer of both fairness and accuracy under domain generalization where the data at test time may be sampled from never-before-seen domains. We first develop theoretical bounds on the unfairness and expected loss at deployment, and then derive sufficient conditions under which fairness and accuracy can be perfectly transferred via invariant representation learning. Guided by this, we design a learning algorithm such that fair ML models learned with training data still have high fairness and accuracy when deployment environments change. Experiments on real-world data validate the proposed algorithm. Model implementation is available at https://github.com/pth1993/FATDM.

16.
Knowl Inf Syst ; 65(4): 1487-1521, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36998311

ABSTRACT

In healthcare domain, complication risk profiling which can be seen as multiple clinical risk prediction tasks is challenging due to the complex interaction between heterogeneous clinical entities. With the availability of real-world data, many deep learning methods are proposed for complication risk profiling. However, the existing methods face three open challenges. First, they leverage clinical data from a single view and then lead to suboptimal models. Second, most existing methods lack an effective mechanism to interpret predictions. Third, models learned from clinical data may have inherent pre-existing biases and exhibit discrimination against certain social groups. We then propose a multi-view multi-task network (MuViTaNet) to tackle these issues. MuViTaNet complements patient representation by using a multi-view encoder to exploit more information. Moreover, it uses a multi-task learning to generate more generalized representations using both labeled and unlabeled datasets. Last, a fairness variant (F-MuViTaNet) is proposed to mitigate the unfairness issues and promote healthcare equity. The experiments show that MuViTaNet outperforms existing methods for cardiac complication profiling. Its architecture also provides an effective mechanism for interpreting the predictions, which helps clinicians discover the underlying mechanism triggering the complication onsets. F-MuViTaNet can also effectively mitigate the unfairness with only negligible impact on accuracy.

17.
J Inorg Biochem ; 239: 112048, 2023 02.
Article in English | MEDLINE | ID: mdl-36496289

ABSTRACT

Six new Pd(II), Pt(II) and Ag(I) complexes, (1);{Pd (L1)]2C6H4}2Cl4} (2); Pt(L2)(DMSO)Cl; 3; {PtL5]2C6H4}2·PhCOO-⋅11NO3-; 4; {[Pt(L4)]2C6H4}; the binuclear cyclometalated complex the polymer chain (5); {[PtL5]C6H4}·NO3-}; and the polymeric silver species (6); Zn(L6)2·AgNO3·CHCl3 were synthesized and thoroughly characterized using X-ray diffraction and spectroscopic techniques (L1=(S,S)-1,4-i-PrOx]2C6H4}2Cl4, L2=Di(2,2-bis(4R-isopropyl-4,5-dihydro-oxazol-2-yl)acetonitrile) zinc (II) (BR1);L3= 1,4-bis(4R-benzyl-4,5-dihydro-oxazol-2-yl)benzene (AR2); L4= 1,4-bis(4R-benzyl-4,5-dihydro-oxazol-2-yl)benzene,L5=1,4-bis(4R-benzyl-4,5-dihydro-oxazol-2-yl)-benzene,L6=Di(2,2-bis(4S-isopropyl-4,5-dihydrooxazol-2-yl)acetonitrile) zinc (II). Complexes 1-6 showed cytotoxic effects against human tumour cell lines, including a multidrug-resistant subline. Oxazoline and Pd complex 1 induced apoptosis in A549 cells. DFT calculations were also performed to exhibit the excellent bioactivity of complex 1 against A549, MDA-MB-231, and KB cells. Complex 1, with the best docking score and a stable interaction network within the binding site of the G-quadruplex, could stably interact with the G-quadruplex. Additionally, complex 1 was further used in the animal experiment of human lung adenocarcinoma cells in nude mice. By comparing with the model control group, the tumour volume, relative tumour volume and relative tumour proliferation rate T/C decreased significantly in the cisplatin group and compound 1 (complex 1) group.


Subject(s)
Antineoplastic Agents , Platinum , Animals , Mice , Humans , Platinum/pharmacology , Platinum/chemistry , Molecular Docking Simulation , Palladium/pharmacology , Palladium/chemistry , Silver/pharmacology , Density Functional Theory , Benzene , Mice, Nude , Cell Line, Tumor , Antineoplastic Agents/chemistry , Zinc
18.
Opt Express ; 30(26): 47485-47496, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558676

ABSTRACT

The process and condition of saturable absorption (SA) and reverse saturable absorption (RSA) of ultrafast nonlinear optics in metal nanoparticles are essential for applications including light generation, amplification, modulation, and switching. Here, we first discover and explore the multiple transformations (SA-RSA-SA) of ultrafast nonlinear absorption behavior of metal nanoparticles in femtosecond pulses. Correspondingly, the energy level model and fitting formula of multiple transformations are established to illustrate the process of optical response. The femtosecond transient absorption spectra provide information about their ultrafast dynamics process and vibrational mode, which further reveals the multiple transformation mechanisms of nonlinear absorption in gold nanobipyramids (Au-NBPs). Furthermore, Au-NBPs exhibit a significantly higher SA modulation depth up to 42% in the femtosecond, which is much higher than the reported values of other nanomaterials. Our results indicate that Au-NBPs can be used as broadband ultrafast Q-switching and mode-locking, and the conversion offers new opportunities for metal nanostructures in applications of optical switching.

19.
Front Oncol ; 12: 888570, 2022.
Article in English | MEDLINE | ID: mdl-36518303

ABSTRACT

Background: An increasing number of studies have revealed the influencing factors of ferroptosis. The influence of immune cell infiltration, inflammation development and lipid metabolism in the tumor microenvironment (TME) on the ferroptosis of tumor cells requires further research and discussion. Methods: We explored the relationship between ferroptosis-related genes and acute myeloid leukemia (AML) from the perspective of large sample analysis and multiomics, used multiple groups to identify and verify ferroptosis-related molecular patterns, and analyzed the sensitivity to ferroptosis and the state of immune escape between different molecular pattern groups. The single-sample gene set enrichment analysis (ssGSEA) algorithm was used to quantify the phenotypes of ferroptosis-related molecular patterns in individual patients. HL-60 and THP-1 cells were treated with ferroptosis inducer RSL3 to verify the therapeutic value of targeted inhibition of GPX4. Results: Three ferroptosis-related molecular patterns and progressively worsening phenotypes including immune activation, immune exclusion and immunosuppression were found with the two different sequencing approaches. The FSscore we constructed can quantify the development of ferroptosis-related phenotypes in individual patients. The higher the FSscore is, the worse the patient's prognosis. The FSscore is also highly positively correlated with pathological conditions such as inflammation development, immune escape, lipid metabolism, immunotherapy resistance, and chemotherapy resistance and is negatively correlated with tumor mutation burden. Moreover, RSL3 can induce ferroptosis of AML cells by reducing the protein level of GPX4. Conclusions: This study revealed the characteristics of immunity, inflammation, and lipid metabolism in the TME of different AML patients and differences in the sensitivity of tumor cells to ferroptosis. The FSscore can be used as a biomarker to provide a reference for the clinical evaluation of the pathological characteristics of AML patients and the design of personalized treatment plans. And GPX4 is a potential target for AML treatment.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121608, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35843059

ABSTRACT

Na3Y(VO4)2:Nd3+,Yb3+,Ho3+,Tm3+ phosphors present significantly improved sensitivity of optical temperature sensing based on thermal-enhanced upconversion luminescence and non-thermally coupled energy levels. Under 808 nm excitation, white upconversion luminescence is successfully achieved in Nd3+-sensitized system. In addition, the emissions intensities originated from 4G5/2→4I9/2 transition of Nd3+ and 3F2,3→3H6 transition of Tm3+ gradually increase with elevating temperature owning to the thermal population effects, as opposed to the blue (1G4→3H6 transition of Tm3+), green (5S2,5F4→5I8 transition of Ho3+) and red (5F5→5I8 transition of Ho3+) emissions intensities show continuous decreasing trend. The temperature sensing behaviors are investigated by employing multiple non-thermally coupled energy levels. Based on non-thermally coupled energy levels of 4G5/2 (Nd3+)/1G4 (Tm3+), the absolute and relative sensitivities are obtained to be 0.433 K-1 and 2.81 % K-1. These results demonstrate that the Na3Y(VO4)2:Nd3+,Yb3+,Ho3+,Tm3+ phosphors with superior optical thermometry performance and white luminescence within a relatively wide temperature range can achieve optical applications in many fields.

SELECTION OF CITATIONS
SEARCH DETAIL