Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
1.
Small ; : e2402028, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970557

ABSTRACT

2D-3D tin-based perovskites are considered as promising candidates for achieving efficient lead-free perovskite solar cells (PSCs). However, the existence of multiple low-dimensional phases formed during the film preparation hinders the efficient transport of charge carriers. In addition, the non-homogeneous distribution of low-dimensional phases leads to lattice distortion and increases the defect density, which are undesirable for the stability of tin-based PSCs. Here, mixed spacer cations [diethylamine (DEA+) and phenethylamine (PEA+)] are introduced into tin perovskite films to modulate the distribution of the 2D phases. It is found that compared to the film with only PEA+, the combination of DEA+ and PEA+ favors the formation of homogeneous low-dimensional perovskite phases with three octahedral monolayers (n = 3), especially near the bottom interface between perovskite and hole transport layer. The homogenization of 2D phases help improve the film quality with reduced lattice distortion and released strain. With these merits, the tin PSC shows significantly improved stability with 94% of its initial efficiency retained after storing in a nitrogen atmosphere for over 4600 h, and over 80% efficiency maintained after continuous illumination for 400 h.

2.
J Med Chem ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031090

ABSTRACT

Targeting the programmed cell death-1/ligand 1 (PD-1/PD-L1) pathway is one of the most promising cancer treatment strategies. Studies have shown that HDAC inhibitors can enhance the antitumor immune response by modulating the expression of PD-L1. Herein, we designed and synthesized a series of novel hydrazide-based small molecule HDAC inhibitors; among them, compound HQ-30 showed selective HDAC3 inhibition (IC50 = 89 nM) and remarkable PD-L1-degrading activity (DC50 = 5.7 µM, Dmax = 80% at 10 µM). Further studies revealed that HQ-30 induced the degradation of PD-L1 by regulating cathepsin B (CTSB) in the lysosomes. Further, HQ-30 could enhance the infiltration of CD3+ CD4+ helper T and CD3+ CD8+ cytotoxic T cells in tumors, thus activating the tumor immune microenvironment. Moreover, HQ-30 possessed a benign toxicity profile (LD50 > 1000 mg/kg) and favorable pharmacokinetic properties (F = 57%). Taken together, HQ-30 is worthy of further investigation as a small molecule-based epigenetic modulator of tumor immunotherapy.

3.
Angew Chem Int Ed Engl ; : e202317648, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837493

ABSTRACT

Molecular sieving is an ideal separation mechanism, but controlling pore size, restricting framework flexibility, and avoiding strong adsorption are all very challenging. Here, we report a flexible adsorbent showing molecular sieving at ambient temperature and high pressure, even under high humidity. While typical guest-induced transformations are observed, a high transition pressure of 16.6 atm is observed for C2H4 at 298 K because of very weak C2H4 adsorption (~16 kJ mol-1). Also, C2H6 is completely excluded below the pore-opening pressure of 7.7 atm, giving single-component selectivity of ca. 300. Quantitative high-pressure column breakthrough experiments using 1:1 C2H4/C2H6 mixture at 10 atm as input confirms molecular sieving with C2H4 adsorption of 0.73 mmol g-1 or 32 cm3(STP) cm-3 and negligible C2H6 adsorption of 0.001(2) mmol g-1, and the adsorbent can be completely regenerated by inert gas purging. Furthermore, it is highly hydrophobic with negligible water adsorption, and the C2H4/C2H6 separation performance is unaffected at high humidity.

4.
Heliyon ; 10(10): e30809, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38774326

ABSTRACT

Objective: To evaluate the efficacy of different combinations of immune checkpoint inhibitors (ICIs) and chemotherapy (CT) in the treatment of advanced non-small cell lung cancer (NSCLC). Methods: We obtained relevant randomized controlled trials (RCTs) from databases such as PubMed, Embase, Web of Science, and The Cochrane Library up to May 31, 2023. The analysis of clinical prognostic factors was performed using R 4.2.3 and STATA 15.0. The main outcomes measured were overall survival (OS) and progression-free survival (PFS), while secondary outcomes included the objective response rate (ORR), disease control rate (DCR), and treatment-related adverse events of grade 3-5 severity (Grade ≥3 TRAE). Results: A total of 17 randomized controlled trials (RCTs) were conducted between 2012 and 2023, involving 7792 patients. These trials evaluated 11 different treatment methods. The results of these trials showed that in terms of overall survival (OS) and progression-free survival (PFS), the combination of tislelizumab with chemotherapy and the combination of camrelizumab with chemotherapy were particularly effective. Moreover, when compared with other combination therapies, pembrolizumab combined with chemotherapy showed superiority in terms of disease control rate (DCR) and objective response rate (ORR). Subgroup analyses further demonstrated that the addition of immune checkpoint inhibitors (ICIs) to chemotherapy significantly improved PFS and OS in patients without liver metastasis and in those with brain metastasis. Additionally, carboplatin-based combination therapy was found to confer favorable survival benefits in terms of PFS, while cisplatin-based combination therapy showed the most favorable outcomes in terms of OS. The results of subgroup analyses for overall survival (OS) showed that the combination of immunotherapy and chemotherapy yielded positive outcomes in specific subgroups. These subgroups were characterized by PD-L1 Tumor Proportion Score (TPS) of 50 % or higher, usage of anti-PD-1 medications, age below 65, male gender, smoking history, and non-squamous cell carcinoma histology. Superior effectiveness was demonstrated only in extending the progression-free survival (PFS) of female patients and patients with squamous carcinoma. Meanwhile, other patient cohorts did not show the same level of improvement. Conclusions: Tislelizumab, camrelizumab or pembrolizumab combined with chemotherapy may be the optimal first-line treatment strategies for NSCLC.

5.
J Am Chem Soc ; 146(20): 13886-13893, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739909

ABSTRACT

Guest-induced (crystal-to-crystal) transformation, i.e., periodic flexibility, is a typical feature of molecule-based crystalline porous materials, but its role for adsorptive separation is controversial. On the other hand, aperiodic flexibility is rarely studied. This work reports a pair of isomeric Cu(I) triazolate frameworks, namely, α-[Cu(fetz)] (MAF-2Fa) and ß-[Cu(fetz)] (MAF-2Fb), which show typical periodic and aperiodic flexibility for CO chemical adsorption, respectively. Quantitative mixture breakthrough experiments show that, while MAF-2Fa exhibits high adsorption capacity at high pressures but negligible adsorption below the threshold pressure and with leakage concentrations of 3-8%, MAF-2Fb exhibits relatively low adsorption capacity at high pressures but no leakage (residual CO concentration <1 ppb). Tandem connection of MAF-2Fa and MAF-2Fb can combine their advantages of high CO adsorption capacities at high and low pressures, respectively. MAF-2Fa and MAF-2Fb can both keep the separation performances unchanged at high relative humidities, but only MAF-2Fb shows a unique coadsorption behavior at a relative humidity of 82%, which can be used to improve purification performances.

6.
J Am Chem Soc ; 146(19): 12969-12975, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38625041

ABSTRACT

Separation of methanol/benzene azeotrope mixtures is very challenging not only by the conventional distillation technique but also by adsorbents. In this work, we design and synthesize a flexible Ca-based metal-organic framework MAF-58 consisting of cheap raw materials. MAF-58 shows selective methanol-induced pore-opening flexibility. Although the opened pores are large enough to accommodate benzene molecules, MAF-58 shows methanol/benzene molecular sieving with ultrahigh experimental selectivity, giving 5.1 mmol g-1 high-purity (99.99%+) methanol and 2.0 mmol g-1 high-purity (99.97%+) benzene in a single adsorption/desorption cycle. Computational simulations reveal that the preferentially adsorbed, coordinated methanol molecules act as the gating component to selectively block the diffusion of benzene, offering a new gating adsorption mechanism.

7.
Radiat Res ; 202(1): 51-58, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38679421

ABSTRACT

We conducted this study to investigate the radioprotective effects of recombinant human thrombopoietin (rhTPO) on beagle dogs irradiated with 3.0 Gy 60Co gamma rays. Fifteen healthy adult beagles were randomly assigned to a control group with alleviating care, and 5 and 10 µg/kg rhTPO treatment group. All animals received total-body irradiation using 60Co γ-ray source at a dose of 3.0 Gy (dose rate was 69.1 cGy/min). The treatment group received intramuscular injection of rhTPO 5 and 10 µg/kg at 2 h postirradiation, and the control group was administrated the same volume of normal saline. The survival rate, clinical signs, peripheral hemogram, serum biochemistry, and histopathological examination of animals in each group were assessed. Single administration of 10 µg/kg rhTPO at 2 h postirradiation promoted the recovery of multilineage hematopoiesis and improved the survival rate of beagles irradiated with 3 Gy 60Co γ rays. The administration of 10 µg/kg rhTPO alleviated fever and bleeding, reduced the requirement for supportive care, and may have mitigated multiple organ damage.


Subject(s)
Gamma Rays , Hematopoiesis , Radiation-Protective Agents , Recombinant Proteins , Thrombopoietin , Whole-Body Irradiation , Animals , Dogs , Thrombopoietin/pharmacology , Thrombopoietin/administration & dosage , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Hematopoiesis/drug effects , Hematopoiesis/radiation effects , Humans , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/administration & dosage , Male , Cobalt Radioisotopes , Female , Dose-Response Relationship, Radiation
8.
Bioorg Chem ; 147: 107376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640722

ABSTRACT

The inhibition of the programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway with small molecules is a promising approach for cancer immunotherapy. Herein, novel small molecules compounds bearing various scaffolds including thiophene, thiazole, tetrahydroquinoline, benzimidazole and indazole were designed, synthesized and evaluated for their inhibitory activity against the PD-1/PD-L1 interaction. Among them, compound Z13 exhibited the most potent activity with IC50 of 189.6 nM in the homogeneous time-resolved fluorescence (HTRF) binding assay. Surface plasmon resonance (SPR) assay demonstrated that Z13 bound to PD-L1 with high affinity (KD values of 231 nM and 311 nM for hPD-L1 and mPD-L1, respectively). In the HepG2/Jurkat T co-culture cell model, Z13 decreased the viability rate of HepG2 cells in a concentration-dependent manner. In addition, Z13 showed significant in vivo antitumor efficacy (TGI = 52.6 % at 40 mg/kg) without obvious toxicity in the B16-F10 melanoma model. Furthermore, flow cytometry analysis demonstrated that Z13 inhibited tumor growth in vivo by activating the tumor immune microenvironment. These findings indicate that Z13 is a promising PD-1/PD-L1 inhibitor deserving further investigation.


Subject(s)
Antineoplastic Agents , B7-H1 Antigen , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Indazoles , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Structure-Activity Relationship , Indazoles/chemistry , Indazoles/pharmacology , Indazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Molecular Structure , Mice , Cell Proliferation/drug effects , Drug Discovery , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Mice, Inbred C57BL , Hep G2 Cells , Cell Survival/drug effects
9.
Front Pharmacol ; 15: 1374988, 2024.
Article in English | MEDLINE | ID: mdl-38560356

ABSTRACT

Background: This study will explore the therapeutic value of traditional Chinese medicine (TCM) in Hepatocellular Carcinoma (HCC) through meta-analysis, combined with network pharmacology analysis. Methods: The results of randomized controlled trials on TCM and HCC were retrieved and summarized from multiple databases. The effective active com-pounds and target genes of the high-frequency TCM were obtained using the TCMSP database, and disease targets of HCC were acquired through the public disease database. The network pharmacology analysis was used to get the core genes and investigate the potential oncogenic molecular mechanism. Results: A total of 14 meta-analysis studies with 1,831 patients suggested that therapy combined TCM is associated with better clinical efficacy and survival prognosis, as well as avoiding many adverse events. A total of 156 compounds, 247 herbal target genes and 36 core genes were identified. The function analysis suggested above genes may participate development in HCC through regulating some pathways, such as HIF-1 pathway and PD-L1 immune-related pathway. Conclusion: TCM, as a novel, safe, and effective multi-mechanism therapy, holds greater value in the treatment of HCC.

10.
J Mater Chem B ; 12(14): 3509-3520, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38516824

ABSTRACT

Both chemodynamic therapy and photodynamic therapy, based on the production of reactive oxygen (ROS), have excellent potential in cancer therapy. However, the abnormal redox homeostasis in tumor cells, especially the overexpressed glutathione (GSH) could scavenge ROS and reduce the anti-tumor efficiency. Therefore, it is essential to develop a simple and effective tumor-specific drug delivery system for modulating the tumor microenvironment (TME) and achieving synergistic therapy at the tumor site. In this study, self-assembled nanoparticles (named CDZP NPs) were developed using copper ion (Cu2+), doxorubicin (Dox), zinc phthalocyanine (ZnPc) and a trace amount of poly(2-(di-methylamino)ethylmethacrylate)-poly[(R)-3-hydroxybutyrate]-poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA-PHB-PDMAEMA) through chelation, π-π stacking and hydrophobic interaction. These triple factor-responsive (pH, laser and GSH) nanoparticles demonstrated unique advantages through the synergistic effect. Highly controllable drug release ensured its effectiveness at the tumor site, Dox-induced chemotherapy and ZnPc-mediated fluorescence (FL) imaging exhibited the distribution of nanoparticles. Meanwhile, Cu2+-mediated GSH-consumption not only reduced the intracellular ROS elimination but also produced Cu+ to catalyze hydrogen peroxide (H2O2) and generated hydroxyl radicals (˙OH), thereby enhancing the chemodynamic and photodynamic therapy. Herein, this study provides a green and relatively simple method for preparing multifunctional nanoparticles that can effectively modulate the TME and improve synergetic cancer therapy.


Subject(s)
Methacrylates , Methylmethacrylates , Nanoparticles , Neoplasms , Nylons , Humans , Copper/therapeutic use , Reactive Oxygen Species , Hydrogen Peroxide/therapeutic use , Nanoparticles/chemistry , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Neoplasms/drug therapy , Glutathione/chemistry , Oxidation-Reduction , Tumor Microenvironment
11.
Cancer Med ; 13(4): e7081, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38457217

ABSTRACT

BACKGROUND: The intra- and inter-tumoral heterogeneity of gliomas and the complex tumor microenvironment make accurate treatment of gliomas challenging. At present, research on gliomas mainly relies on cell lines, stem cell tumor spheres, and xenotransplantation models. The similarity between traditional tumor models and patients with glioma is very low. AIMS: In this study, we aimed to address the limitations of traditional tumor models by generating patient-derived glioma organoids using two methods that summarized the cell diversity, histological features, gene expression, and mutant profiles of their respective parent tumors and assess the feasibility of organoids for personalized treatment. MATERIALS AND METHODS: We compared the organoids generated using two methods through growth analysis, immunohistological analysis, genetic testing, and the establishment of xenograft models. RESULTS: Both types of organoids exhibited rapid infiltration when transplanted into the brains of adult immunodeficient mice. However, organoids formed using the microtumor method demonstrated more similar cellular characteristics and tissue structures to the parent tumors. Furthermore, the microtumor method allowed for faster culture times and more convenient operational procedures compared to the Matrigel method. DISCUSSION: Patient-derived glioma organoids, especially those generated through the microtumor method, present a promising avenue for personalized treatment strategies. Their capacity to faithfully mimic the cellular and molecular characteristics of gliomas provides a valuable platform for elucidating tumor biology and evaluating therapeutic modalities. CONCLUSION: The success rates of the Matrigel and microtumor methods were 45.5% and 60.5%, respectively. The microtumor method had a higher success rate, shorter establishment time, more convenient passage and cryopreservation methods, better simulation of the cellular and histological characteristics of the parent tumor, and a high genetic guarantee.


Subject(s)
Glioma , Adult , Humans , Animals , Mice , Glioma/pathology , Cell Culture Techniques/methods , Organoids/metabolism , Organoids/pathology , Neoplastic Stem Cells , Tumor Microenvironment
12.
Bioact Mater ; 36: 238-255, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38481566

ABSTRACT

Apoptosis has long been recognized as a significant mechanism for inhibiting tumor formation, and a plethora of stimuli can induce apoptosis during the progression and treatment of tumors. Moreover, tumor-derived apoptotic extracellular vesicles (apoEVs) are inevitably phagocytosed by live tumor cells, promoting tumor heterogeneity. Understanding the mechanism by which apoEVs regulate tumor cells is imperative for enhancing our knowledge of tumor metastasis and recurrence. Herein, we conducted a series of in vivo and in vitro experiments, and we report that tumor-derived apoEVs promoted lung adenocarcinoma (LUAD) metastasis, self-renewal and chemoresistance. Mechanistically, we demonstrated that apoEVs facilitated tumor metastasis and stemness by initiating the epithelial-mesenchymal transition program and upregulating the transcription of the stem cell factor SOX2. In addition, we found that ALDH1A1, which was transported by apoEVs, activated the NF-κB signaling pathway by increasing aldehyde dehydrogenase enzyme activity in recipient tumor cells. Furthermore, targeting apoEVs-ALDH1A1 significantly abrogated these effects. Collectively, our findings elucidate a novel mechanism of apoEV-dependent intercellular communication between apoptotic tumor cells and live tumor cells that promotes the formation of cancer stem cell-like populations, and these findings reveal that apoEVs-ALDH1A1 may be a potential therapeutic target and biomarker for LUAD metastasis and recurrence.

13.
Molecules ; 29(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398568

ABSTRACT

Ionizing radiation (IR)-induced hematopoietic injury has become a global concern in the past decade. The underlying cause of this condition is a compromised hematopoietic reserve, and this kind of hematopoietic injury could result in infection or bleeding, in addition to lethal mishaps. Therefore, developing an effective treatment for this condition is imperative. Fluacrypyrim (FAPM) is a recognized effective inhibitor of STAT3, which exhibits anti-inflammation and anti-tumor effects in hematopoietic disorders. In this context, the present study aimed to determine whether FAPM could serve as a curative agent in hematopoietic-acute radiation syndrome (H-ARS) after total body irradiation (TBI). The results revealed that the peritoneally injection of FAPM could effectively promote mice survival after lethal dose irradiation. In addition, promising recovery of peripheral blood, bone marrow (BM) cell counts, hematopoietic stem cell (HSC) cellularity, BM colony-forming ability, and HSC reconstituting ability upon FAPM treatment after sublethal dose irradiation was noted. Furthermore, FAPM could reduce IR-induced apoptosis in hematopoietic stem and progenitor cells (HSPCs) both in vitro and in vivo. Specifically, FAPM could downregulate the expressions of p53-PUMA pathway target genes, such as Puma, Bax, and Noxa. These results suggested that FAPM played a protective role in IR-induced hematopoietic damage and that the possible underlying mechanism was the modulation of apoptotic activities in HSCs.


Subject(s)
Apoptosis Regulatory Proteins , Hematopoietic Stem Cells , Pyrimidines , Mice , Animals , Apoptosis Regulatory Proteins/metabolism , Acrylates/pharmacology , Apoptosis , Whole-Body Irradiation , Mice, Inbred C57BL
14.
Nat Mater ; 23(1): 116-123, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37957269

ABSTRACT

Carbon monoxide (CO) separation relies on chemical adsorption but suffers from the difficulty of desorption and instability of open metal sites against O2, H2O and so on. Here we demonstrate quasi-open metal sites with hidden or shielded coordination sites as a promising solution. Possessing the trigonal coordination geometry (sp2), Cu(I) ions in porous frameworks show weak physical adsorption for non-target guests. Rational regulation of framework flexibility enables geometry transformation to tetrahedral geometry (sp3), generating a fourth coordination site for the chemical adsorption of CO. Quantitative breakthrough experiments at ambient conditions show CO uptakes up to 4.1 mmol g-1 and CO selectivity up to 347 against CO2, CH4, O2, N2 and H2. The adsorbents can be completely regenerated at 333-373 K to recover CO with a purity of >99.99%, and the separation performances are stable in high-concentration O2 and H2O. Although CO leakage concentration generally follows the structural transition pressure, large amounts (>3 mmol g-1) of ultrahigh-purity (99.9999999%, 9N; CO concentration < 1 part per billion) gases can be produced in a single adsorption process, demonstrating the usefulness of this approach for separation applications.

15.
Sci Rep ; 13(1): 18232, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880319

ABSTRACT

Liver ischemia/reperfusion (I/R) injury is a common injury after liver transplantation and hepatectomy. Skimmianine (Ski) has antibacterial, antiviral pharmacological effects. However, it is not clear whether Ski has a protective effect against liver I/R injury. In the present study, we established a mouse liver I/R model and an AML12 cell hypoxia-reoxygenation (H/R) model, both pretreated with different concentrations of Ski. Serum transaminase levels, necrotic liver area, cell viability, inflammatory factors, oxidative stress and apoptosis-related levels were measured to assess the protective effect of Ski against liver I/R injury. Western blotting was used to detect apoptosis-related proteins and PI3K-AKT pathway-related proteins. Mice and cells were also treated with PI3K inhibitor LY294002 to assess changes in indicators of liver injury. The results showed that Ski significantly reduced transaminase levels, liver necrosis area, oxidative stress, and apoptosis levels in mice with I/R. Ski also inhibited cell injury and apoptosis after H/R. Moreover, Ski activated phosphorylation of PI3K-AKT pathway-related proteins after liver I/R and cell H/R. Importantly, the PI3K inhibitor LY294002 effectively reversed the alleviation of I/R injury caused by Ski. These results confirm that Ski exerts a protective effect against liver I/R injury through activation of the PI3K-AKT pathway.


Subject(s)
Proto-Oncogene Proteins c-akt , Reperfusion Injury , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Oxidative Stress , Liver/metabolism , Inflammation/metabolism , Apoptosis , Transaminases/metabolism
16.
Sci Bull (Beijing) ; 68(20): 2370-2381, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37604722

ABSTRACT

Developing artificial "CO2-sugar" platforms is meaningful for addressing challenges posed by land scarcity and climate change to the supply of dietary sugar. However, upcycling CO2 into complex polyoxygenated carbohydrates involves several major challenges, including achieving enantioselective and thermodynamically driven transformation and expanding product repertoires while reducing energy consumption. We present a versatile chemoenzymatic roadmap based on aldol condensation, iso/epimerization, and dephosphorylation reactions for asymmetric CO2 and H2 assembly into sugars with perfect stereocontrol. In particular, we developed a minimum ATP consumption and the shortest pathway for bottom-up biosynthesis of the fundamental precursor, fructose-6-phosphate, which is valuable for synthesizing structure-diverse sugars and derivatives. Engineering bottleneck-associated enzyme catalysts aided in the thermodynamically driven synthesis of several energy-dense and functional hexoses, such as glucose and D-allulose, featuring higher titer (63 mmol L-1) and CO2-product conversion rates (25 mmol C L-1 h-1) compared to established in vitro CO2-fixing pathways. This chemical-biological platform demonstrated greater carbon conversion yield than the conventional "CO2-bioresource-sugar" process and could be easily extended to precisely synthesize other high-order sugars from CO2.


Subject(s)
Carbon Dioxide , Hexoses , Carbon Dioxide/metabolism , Hexoses/metabolism , Glucose/metabolism , Carbohydrates , Sugars
17.
Front Public Health ; 11: 1089625, 2023.
Article in English | MEDLINE | ID: mdl-37529424

ABSTRACT

Background: The fulfillment of contractual obligations by rural-oriented tuition-waived medical students (RTMSs) to work in rural medical institutions after graduation directly impacts the improvement of rural health quality. This study aimed to not only quantitatively measure the direct impact of honesty-credit, specialty identity, and career identity on willingness to fulfill the contract of RTMSs but also to quantify the intermediary role of specialty identity and career identity between honesty-credit and willingness to fulfill the contract. The research results provided recommendations for the rural-oriented tuition-waived medical education (RTME) program to achieve its goal of training rural primary healthcare personnel. Methods: From March to May 2022, 1162 RTMSs were selected as the research objects. The honesty-credit, specialty identity, career identity, and willingness to fulfill the contract were quantitated using a self-completed questionnaire. Pearson's correlation analysis and structural equation modeling were used for statistical analysis and mediating effect evaluation. Results: A total of 455 (42.3%) RTMSs had high willingness to fulfill the contract, and honesty-credit had a significant direct positive effect on willingness (ß = 0.198, P < 0.001), specialty identity (ß = 0.653, P < 0.001), and career identity (ß = 0.180, P < 0.001). In the intermediary path between honesty-credit and willingness, career identity [95% confidence interval (CI): 0.007-0.051] had significant mediating effects. Career identity (95% CI: 0.030-0.149) also had significant mediating effects between specialty identity and willingness, and specialty identity (95% CI: 0.465-0.760) had significant mediating effects between honesty-credit and career identity. These results strongly confirmed that honesty-credit, specialty identity, and career identity are early and powerful predictors of the willingness to fulfill the contract of RTMSs. Conclusion: The honesty-credit of RTMSs can predict their willingness to fulfill the contract early, significantly and positively. For the students who fail to pass the credit assessment for many times and have a strong tendency to default, their training qualifications should be canceled in time, so that students who are truly willing to serve rural areas can enter the project, and finally achieve the policy goal of "strengthening the rural primary medical and health system".


Subject(s)
Rural Health Services , Students, Medical , Humans , Cross-Sectional Studies , Career Choice , China
18.
Thorac Cancer ; 14(23): 2275-2287, 2023 08.
Article in English | MEDLINE | ID: mdl-37424293

ABSTRACT

BACKGROUND: Serine protease inhibitors clade B serpins (SERPINBs) are the largest subclass of protease inhibitors, once thought of as a tumor suppressor gene family. However, some SERPINBs exhibit functions unrelated to the inhibition of catalytic activity. METHODS: The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Gene Set Cancer Analysis (GSCA), and cBioPortal databases were utilized to investigate SERPINBs expression, prognostic correlation, and genomic variation in 33 cancer types. We also conducted a comprehensive transcriptome analysis in multiple lung adenocarcinoma (LUAD) cohorts to reveal the molecular mechanism of SERPINB5 in LUAD. Then, qPCR and immunohistochemistry were used to verify the expression and prognostic value of SERPINB5 in LUAD patients. Furthermore, knockdown and overexpression of SERPINB5 in LUAD cell lines were performed to evaluate cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). RESULTS: The expression of SERPINB5 was upregulated and demethylated in LUAD, and its abnormally high expression was significantly correlated with poor overall survival (OS). In addition, the expression of SERPINB5 was analyzed to determine its prognostic value in LUAD and confirmed that SERPINB5 was an independent predictor of LUAD in TCGA and GEO cohorts and qPCR validation with 106 clinical samples. At last, A knockdown of SERPINB5 in LUAD cells reduced proliferation, migration, and EMT. Proliferation, migration, and invasion are promoted by the overexpression of SERPINB5. CONCLUSION: Therefore, SERPINB5 has shown potential as a prognostic biomarker for LUAD, and it may become a potential therapeutic target for lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Serpins , Humans , Serpins/genetics , Epithelial-Mesenchymal Transition , Prognosis , Adenocarcinoma of Lung/genetics , Cell Proliferation , Lung Neoplasms/genetics , Biomarkers
19.
Oncogene ; 42(32): 2439-2455, 2023 08.
Article in English | MEDLINE | ID: mdl-37400529

ABSTRACT

The Wnt/ß-catenin signaling is usually abnormally activated in hepatocellular carcinoma (HCC), and pituitary tumor-transforming gene 1 (PTTG1) has been found to be highly expressed in HCC. However, the specific mechanism of PTTG1 pathogenesis remains poorly understood. Here, we found that PTTG1 is a bona fide ß-catenin binding protein. PTTG1 positively regulates Wnt/ß-catenin signaling by inhibiting the destruction complex assembly, promoting ß-catenin stabilization and subsequent nuclear localization. Moreover, the subcellular distribution of PTTG1 was regulated by its phosphorylation status. Among them, PP2A induced PTTG1 dephosphorylation at Ser165/171 residues and prevented PTTG1 translocation into the nucleus, but these effects were effectively reversed by PP2A inhibitor okadaic acid (OA). Interestingly, we found that PTTG1 decreased Ser9 phosphorylation-inactivation of GSK3ß by competitively binding to PP2A with GSK3ß, indirectly leading to cytoplasmic ß-catenin stabilization. Finally, PTTG1 was highly expressed in HCC and associated with poor patient prognosis. PTTG1 could promote the proliferative and metastasis of HCC cells. Overall, our results indicated that PTTG1 plays a crucial role in stabilizing ß-catenin and facilitating its nuclear accumulation, leading to aberrant activation of Wnt/ß-catenin signaling and providing a feasible therapeutic target for human HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Cell Line , Wnt Signaling Pathway/genetics , Cell Line, Tumor
20.
Biology (Basel) ; 12(6)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37372093

ABSTRACT

Recent studies have highlighted the combination of activation of host immunogenic cell death (ICD) and tumor-directed cytotoxic strategies. However, overall multiomic analysis of the intrinsic ICD property in lung adenocarcinoma (LUAD) has not been performed. Therefore, the aim of this study was to develop an ICD-based risk scoring system to predict overall survival (OS) and immunotherapeutic efficacy in patients. In our study, both weighted gene co-expression network analysis (WGCNA) and LASSO-Cox analysis were utilized to identify ICDrisk subtypes (ICDrisk). Moreover, we identify genomic alterations and differences in biological processes, analyze the immune microenvironment, and predict the response to immunotherapy in patients with pan-cancer. Importantly, immunogenicity subgroup typing was performed based on the immune score (IS) and microenvironmental tumor neoantigens (meTNAs). Our results demonstrate that ICDrisk subtypes were identified based on 16 genes. Furthermore, high ICDrisk was proved to be a poor prognostic factor in LUAD patients and indicated poor efficacy of immune checkpoint inhibitor (ICI) treatment in patients with pan-cancer. The two ICDrisk subtypes displayed distinct clinicopathologic features, tumor-infiltrating immune cell patterns, and biological processes. The ISlowmeTNAhigh subtype showed low intratumoral heterogeneity (ITH) and immune-activated phenotypes and correlated with better survival than the other subtypes within the high ICDrisk group. This study suggests effective biomarkers for the prediction of OS in LUAD patients and immunotherapeutic response across Pan-cancer and contributes to enhancing our understanding of intrinsic immunogenic tumor cell death.

SELECTION OF CITATIONS
SEARCH DETAIL