Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
RSC Adv ; 9(18): 10272-10281, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-35520938

ABSTRACT

In this article, the catalyst Au/γ-Fe2O3@hydroxyapatite (Au/γ-Fe2O3@HAP) consisting of Au nanoparticles supported on the core-shell structure γ-Fe2O3@HAP was prepared through a deposition-precipitation method. The catalyst was characterized by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, N2 adsorption-desorption and atomic absorption spectrometry. The as-prepared Au/γ-Fe2O3@HAP exhibited excellent performance for the reduction of 4-nitrophenolate (4-NP) to 4-aminophenolate (4-AP) in the presence of NaBH4 at room temperature. Thermodynamic and kinetic data on the reduction of 4-NP to 4-AP catalyzed by the as-prepared catalyst were studied. The as-prepared catalyst could be easily separated by a magnet and recycled 6 times with over 92% conversion of 4-NP to 4-AP. In addition, the as-prepared catalyst showed excellent catalytic performance on other nitrophenolates. The TOF value of this work on the reduction of 4-NP to 4-AP was 241.3 h-1. Au/γ-Fe2O3@HAP might have a promising potential application on the production of 4-AP and its derivatives.

2.
Dalton Trans ; 42(10): 3402-9, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23258545

ABSTRACT

A novel nanostructured carbon/TiO(2) nanocomposite photocatalyst is firstly fabricated via a facile hydrothermal process by using fullerene (C(60)) decorated single-walled carbon nanotubes (SWCNTs) as carbon source, which is denoted as C(60)-d-CNTs. The obtained nanostructured carbon/TiO(2) nanocomposites are characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectra (DRS), Raman spectra, X-ray photoelectron spectroscopy (XPS) and photoluminescence spectra (PL), and then are used as catalysts for photocatalytic hydrogen production. It is found that the kinds and contents of various carbon nanostructured materials (such as SWCNTs, C(60) and C(60)-d-CNTs) coupled with TiO(2) can significantly enhance the photoactivity for hydrogen production, and the 5 wt% C(60)-d-CNTs/TiO(2) nanocomposite exhibits the best performance. Experimental results suggest that the C(60)-d-CNTs as a novel carbon nanostructured material could be more beneficial for the photogenerated carrier separation than SWCNTs and C(60) when these carbon nanostructured materials are coupled with TiO(2).

3.
Biosens Bioelectron ; 26(9): 3801-5, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21419620

ABSTRACT

A novel biosensor for detecting glucose had been constructed by the immobilization of glucose oxidase (GOD) on chitosan-boron-doped carbon-coated nickel (BCNi) nanoparticle modified electrode. The GOD-chitosan-BCNi bionanocomposite film was characterized with scanning electron microscope (SEM). The film was propitious to the immobilization of GOD and to the retention of its bioactivity. The direct electrochemistry and electrocatalysis of GOD on modified electrode had been investigated by cyclic voltammogram (CV) and amperometric measurements. The GOD displayed a pair of stable, well-defined and quasi-reversible redox peaks in pH 7.0 phosphate buffer solution (PBS). Furthermore, the biosensor was applied to detect glucose with a broad linear range from 2.50×10(-5) to 1.19×10(-3) M, the detection limit was brought down to 8.33×10(-6) M at a signal to noise ratio of 3 and with an applied potential of -0.2V. The proposed biosensor showed rapid response (within 3s), low detection limit, high affinity to glucose and accepted storage stability over one-month period, which demonstrated that the chitosan-BCNi film has potential applications in the immobilization of other third-generation enzyme biosensors.


Subject(s)
Biosensing Techniques , Electrochemistry , Glucose Oxidase/chemistry , Glucose/isolation & purification , Boron/chemistry , Chitosan/chemistry , Enzymes, Immobilized/chemistry , Glucose/chemistry , Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Nickel/chemistry
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 24(2): 180-2, 2004 Feb.
Article in Chinese | MEDLINE | ID: mdl-15769011

ABSTRACT

Ultraviolet Absorption Spectrum of Difference in Temperature (UVSDT) of C60 was studied in different solvents by UV-240 ultraviolet-visible spectrophotometer. Two samples were tested, one of which acted as reference sample and the other as ready test sample. During the period of the experiment, the temperature of the reference sample remained constant, while that of the ready test sample was changed to obtain difference in temperature. The two samples were scanned in succession by UV-240 ultraviolet-visible spectrophotometer using a certain range of wavelength. By changing the temperature of the ready test sample, we can get the ultraviolet absorption spectrum changing curve with temperature differential. In addition, the curve was studied by putting C60 in different solvents (alcohol, cyclohexane, n-hexane and 2-propanol). The curve indicates that the intensity of the absorption peak wavelength of C60 decreased with increasing the temperature of the sample, and a negative peak was observed in UVSDT. And the greater the difference in temperature, the higher the intensity of the negative peak. The result reflects that the structure of C60 depends strongly on its temperature, and the dependent relationship is closely related to the type of pi-pi electron transition. So it's valuable to test the absorption rate of C60 and obtain the changing curve in real time. It'll help us to separate, purify, analyze, and characterize C60. And it'll also help to do research on the mechanism of the chemical reactions, which take place in solvents, as well as to improve veracity.


Subject(s)
Absorption/radiation effects , Fullerenes/radiation effects , Hexanes/chemistry , Spectrophotometry, Ultraviolet/methods , Ultraviolet Rays , 2-Propanol/chemistry , Fullerenes/chemistry , Models, Chemical , Nanotechnology/methods , Scattering, Radiation , Solvents/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL