Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
iScience ; 27(5): 109784, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38711446

ABSTRACT

GLP-1 receptor agonists (GLP-1 RA) are presently used as the first-line drugs for the clinical treatment of type 2 diabetes mellitus (T2DM). It can regulate blood glucose by stimulating insulin secretion and lowering glucagon levels. We used 16S rRNA amplicon sequencing to detect structural changes in the composition of the intestinal flora of newly diagnosed T2DM after 1 and 48 weeks of dulaglutide administration. Our research found no significant changes in the intestinal flora after the administration of dulaglutide for 1 week to subjects with newly diagnosed T2DM. Nevertheless, after 48 weeks of dulaglutide administration, the composition of the intestinal flora changed significantly, with a significant reduction in the abundance of intestinal flora. Furthermore, we found that fasting glucose levels, fasting c-peptide levels, HbA1c levels, and BMI are also closely associated with intestinal flora. This reveals that intestinal flora may be one of the mechanisms by which dulaglutide treats T2DM.

2.
Nat Food ; 5(4): 301-311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605129

ABSTRACT

Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems. We characterized Hg methylating microorganisms from 67 cropland ecosystems across 3,600 latitudinal kilometres. The simulations of a rice-paddy biogeochemical model show that MeHg accumulation in rice is 1.3-1.7-fold more sensitive to changes in the relative abundance of Geobacteraceae compared to Hg input, which is recognized as the primary parameter in controlling MeHg exposure. These findings open up a window to predict MeHg formation and accumulation in human food webs, enabling more efficient mitigation of risks to human health through regulations of key soil microbiomes.


Subject(s)
Methylmercury Compounds , Oryza , Soil Microbiology , Soil Pollutants , Bioaccumulation , Methylmercury Compounds/metabolism , Methylmercury Compounds/analysis , Microbiota/drug effects , Oryza/metabolism , Oryza/chemistry , Oryza/microbiology , Soil/chemistry , Soil Pollutants/metabolism , Soil Pollutants/analysis
3.
Aging Dis ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38502592

ABSTRACT

Retinal ischemia-reperfusion injury (RIRI) is a complex condition characterized by immune cell-mediated inflammation and consequent neuronal damage. This review delves into the immune response mechanisms in RIRI, particularly emphasizing the roles played by resident and peripheral immune cells. It highlights the pivotal role of microglia, the primary resident immune cells, in exacerbating neuroinflammation and neuronal damage through their activation and subsequent release of pro-inflammatory mediators. Additionally, the review explores the contributions of other glial cell types, such as astrocytes and Müller cells, in modulating the immune response within the retinal environment. The dual role of the complement system in RIRI is also examined, revealing its complex functions in both safeguarding and impairing retinal health. Inflammasomes, triggered by various danger signals, are discussed as crucial contributors to the inflammatory pathways in RIRI, with an emphasis on the involvement of different NOD-like receptor family proteins. The review further analyzes the infiltration and impact of peripheral immune cells like neutrophils, macrophages, and T cells, which migrate to the retina following ischemic injury. Critical to this discussion is the interplay between resident and peripheral immune cells and its implications for RIRI pathophysiology. Finally, the review outlines future research directions, focusing on basic research and the potential for clinical translation to enhance understanding and treatment of RIRI.

4.
J Environ Sci (China) ; 142: 33-42, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38527894

ABSTRACT

Biotoxicity assessment results of environmental waters largely depend on the sample extraction protocols that enrich pollutants to meet the effect-trigger thresholds of bioassays. However, more chemical mixture does not necessarily translate to higher combined biotoxicity. Thus, there is a need to establish the link between chemical extracting efficiency and biotoxicity outcome to standardize extraction methods for biotoxicity assessment of environmental waters. This study compares the performance of five different extraction phases in solid phase extraction (SPE), namely HLB, HLB+Coconut, C18 cartridge, C18 disk and Strata-X, and evaluated their chemical extracting efficiencies and biotoxicity outcomes. We quantitatively assessed cytotoxicity, acute toxicity, genotoxicity, estrogenic activity, and neurotoxicity of the extracts using in vitro bioassays and characterized the chemical extracting efficiencies of the SPE methods through chemical recoveries of 23 model compounds with different polarities and total organic carbon. Using Pareto ranking, we identified HLB+Coconut as the optimal SPE method, which exhibited the highest level of water sample biotoxicity and recovered the most chemicals in water samples. We found that the biotoxicity outcomes of the extracted water samples significantly and positively correlated with the chemical extracting efficiencies of the SPE methods. Moreover, we observed synchronous changing patterns in biotoxicity outcome and chemical extracting efficiencies in response to increasing sample volumes per cartridge (SVPC) during SPE. Our findings underscore that higher chemical extracting efficiency of SPE corresponds to higher biotoxicity outcome of environmental water samples, providing a scientific basis for standardization of SPE methods for adequate assessment of biotoxicities of environmental waters.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Wastewater/toxicity , Water/chemistry , Solid Phase Extraction/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
5.
Water Res ; 253: 121304, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38364463

ABSTRACT

Efforts in water ecosystem conservation require an understanding of causative factors and removal efficacies associated with mixture toxicity during wastewater treatment. This study conducts a comprehensive investigation into the interplay between wastewater estrogenic activity and 30 estrogen-like endocrine disrupting chemicals (EEDCs) across 12 municipal wastewater treatment plants (WWTPs) spanning four seasons in China. Results reveal substantial estrogenic activity in all WWTPs and potential endocrine-disrupting risks in over 37.5 % of final effluent samples, with heightened effects during colder seasons. While phthalates are the predominant EEDCs (concentrations ranging from 86.39 %) for both estrogenic activity and major EEDCs (phthalates and estrogens), with the secondary and tertiary treatment segments contributing 88.59 ± 8.12 % and 11.41 ± 8.12 %, respectively. Among various secondary treatment processes, the anaerobic/anoxic/oxic-membrane bioreactor (A/A/O-MBR) excels in removing both estrogenic activity and EEDCs. In tertiary treatment, removal efficiencies increase with the inclusion of components involving physical, chemical, and biological removal principles. Furthermore, correlation and multiple liner regression analysis establish a significant (p < 0.05) positive association between solid retention time (SRT) and removal efficiencies of estrogenic activity and EEDCs within WWTPs. This study provides valuable insights from the perspective of prioritizing key pollutants, the necessity of integrating more efficient secondary and tertiary treatment processes, along with adjustments to operational parameters like SRT, to mitigate estrogenic activity in municipal WWTPs. This contribution aids in managing endocrine-disrupting risks in wastewater as part of ecological conservation efforts.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Water Purification , Estrone , Wastewater , Ecosystem , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Estrogens/analysis , Estradiol , Endocrine Disruptors/analysis
6.
Water Res ; 250: 121094, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38183799

ABSTRACT

The biological safety of drinking water plays a crucial role in public health protection. However, research on the drinking water microbiome remains in its infancy, especially little is known about the potentially pathogenic bacteria in and functional characteristics of the microbiome in household tap water that people are directly exposed to. In this study, we used a genomic-centric approach to construct a genetic catalogue of the drinking water microbiome by analysing 116 metagenomic datasets of household tap water worldwide, spanning nine countries/regions on five continents. We reconstructed 859 high-quality metagenome-assembled genomes (MAGs) spanning 27 bacterial and 2 archaeal phyla, and found that the core MAGs belonging to the phylum Proteobacteria encoded the highest metabolic functional diversity of the 33 key complete metabolic modules. In particular, we found that two core MAGs of Brevibacillus and Methylomona encoded genes for methane metabolism, which may support the growth of heterotrophic organisms observed in the oligotrophic ecosystem. Four MAGs of complete ammonia oxidation (comammox) Nitrospira were identified and functional metabolic analysis suggested these may enable mixotrophic growth and encode genes for reactive oxygen stress defence and arsenite reduction that could aid survival in the environment of oligotrophic drinking water systems. Four MAGs were annotated as potentially pathogenic bacteria (PPB) and thus represented a possible public health concern. They belonged to the genera Acinetobacter (n = 3) and Mycobacterium (n = 1), with a total relative abundance of 1.06 % in all samples. The genomes of PPB A. junii and A. ursingii were discovered to contain antibiotic resistance genes and mobile genetic elements that could contribute to antimicrobial dissemination in drinking water. Further network analysis suggested that symbiotic microbes which support the growth of pathogenic bacteria can be targets for future surveillance and removal.


Subject(s)
Drinking Water , Microbiota , Humans , Drinking Water/metabolism , Bacteria/metabolism , Archaea/genetics , Metagenome
7.
Chemosphere ; 351: 141231, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237781

ABSTRACT

Simultaneous anammox-denitrification is effectively operated in two types, i.e., the anammox-denitritation (SAD pattern) and the anammox-denitratation (PDA pattern). The nitrate derived from inevitable nitrite oxidization likely determines the practical operational pattern of the coupling system, while little information is available regarding the microbial characteristics during the pattern conversion. Here, the single-stage bioreactor coupling anammox with denitrification was operated under conditions with a changed ratio of influent nitrite and nitrate. Results showed that the bioreactor exhibited a robust performance during the conversion from SAD to PDA patterns, corresponding with the total nitrogen removal efficiency ranging from 89.5% to 92.4%. Distinct community structures were observed in two patterns, while functional bacteria including the genera Denitratisoma, Thauera, Candidatus Brocadia, and Ca. Jettenia steadily co-existed. Meanwhile, the high transcription of hydrazine synthase genes demonstrated a stable anammox process, while the up-regulated transcription of nitrite and nitrous oxide reductase genes indicated that the complete denitrification process was enhanced for total nitrogen removal during the PDA pattern. Ecologically, stochastic processes dominantly governed the community assembly in two patterns. The PDA pattern improved the interconnectivity of communities, especially for the cooperative behaviors between dominant denitrifying bacteria and low-abundant species. These findings deepen our understanding of the microbial mechanism underlying the different patterns of the coupling system and potentially expand its engineering application.


Subject(s)
Nitrates , Nitrites , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Denitrification , Bacteria/genetics , Bioreactors , Nitrogen , Sewage
8.
Nat Food ; 5(1): 72-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177223

ABSTRACT

Dietary exposure to methylmercury (MeHg) causes irreversible damage to human cognition and is mitigated by photolysis and microbial demethylation of MeHg. Rice (Oryza sativa L.) has been identified as a major dietary source of MeHg. However, it remains unknown what drives the process within plants for MeHg to make its way from soils to rice and the subsequent human dietary exposure to Hg. Here we report a hidden pathway of MeHg demethylation independent of light and microorganisms in rice plants. This natural pathway is driven by reactive oxygen species generated in vivo, rapidly transforming MeHg to inorganic Hg and then eliminating Hg from plants as gaseous Hg°. MeHg concentrations in rice grains would increase by 2.4- to 4.7-fold without this pathway, which equates to intelligence quotient losses of 0.01-0.51 points per newborn in major rice-consuming countries, corresponding to annual economic losses of US$30.7-84.2 billion globally. This discovered pathway effectively removes Hg from human food webs, playing an important role in exposure mitigation and global Hg cycling.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Infant, Newborn , Humans , Mercury/metabolism , Oryza/metabolism , Food Chain , Methylmercury Compounds/metabolism , Demethylation
9.
Environ Res ; 246: 118141, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38191046

ABSTRACT

The conventional activated sludge (CAS) process is a widely used method for wastewater treatment due to its effectiveness and affordability. However, it can be prone to sludge abnormalities such as sludge bulking/foaming and sludge loss, which can lead to a decrease in treatment efficiency. To address these issues, a novel bag-based fixed activated sludge (BBFAS) system utilizing mesh bags to contain the sludge was developed for low carbon/nitrogen ratio wastewater treatment. Pilot-scale experiments demonstrated that the BBFAS system could successfully avoid the sludge abnormalities. Moreover, it was not affected by mass transfer resistance and exhibited significantly higher nitrogen removal efficiency, surpassing that of the CAS system by up to 78%. Additionally, the BBFAS system demonstrated comparable organic matter removal efficiency to CAS system. 16S rRNA gene high-throughput sequencing revealed that the bacterial community structure within the BBFAS system was significantly different from that of the CAS system. The bacteria associated with ammonium removal were more abundant in the BBFAS system than in the CAS system. The abundance of Nitrospira in the BBFAS could reach up to 6% and significantly higher than that in the CAS system, and they were likely responsible for both ammonia-oxidizing and nitrite-oxidizing functions. Clear stratification of microbial communities was observed from the outer to inner layers of the bag components due to the gradients of dissolved oxygen and other substrates. Overall, this study presents a promising approach for avoiding activated sludge abnormalities while maintaining high pollutant removal performance.


Subject(s)
Microbiota , Sewage , Sewage/microbiology , Nitrification , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Nitrogen/analysis , Bioreactors/microbiology
10.
J Hazard Mater ; 465: 133493, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38228000

ABSTRACT

Wastewater treatment plants (WWTPs) are known to harbor antibiotic resistance genes (ARGs), which can potentially spread to the environment and human populations. However, the extent and mechanisms of ARG transfer in WWTPs are not well understood due to the high microbial diversity and limitations of molecular techniques. In this study, we used a microfluidic-based mini-metagenomics approach to investigate the transfer potential and mechanisms of ARGs in activated sludge from WWTPs. Our results show that while diverse ARGs are present in activated sludge, only a few highly similar ARGs are observed across different taxa, indicating limited transfer potential. We identified two ARGs, ermF and tla-1, which occur in a variety of bacterial taxa and may have high transfer potential facilitated by mobile genetic elements. Interestingly, genes that are highly similar to the sequences of these two ARGs, as identified in this study, display varying patterns of abundance across geographic regions. Genes similar to ermF found are widely found in Asia and the Americas, while genes resembling tla-1 are primarily detected in Asia. Genes similar to both genes are barely detected in European WWTPs. These findings shed light on the limited horizontal transfer potential of ARGs in WWTPs and highlight the importance of monitoring specific ARGs in different regions to mitigate the spread of antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Sewage , Humans , Anti-Bacterial Agents/pharmacology , Sewage/microbiology , Genes, Bacterial , Wastewater , Microfluidics , Drug Resistance, Microbial/genetics
11.
J Hazard Mater ; 466: 133572, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38280321

ABSTRACT

To reveal the impact of chlorination on the high-risk resistome in size-fractionated bacterial community, we employed metagenomic approaches to decipher dynamics of high-risk antibiotic resistance genes (ARGs) and driving mechanisms in the free-living and particle-associated fractions within a full-scale drinking water treatment system. Our results revealed that chlorination significantly increased the relative abundance of high-risk ARGs in the free-living fraction to 0.33 ± 0.005 copies/cell (cpc), bacitracin and chloramphenicol resistance types were major contributors. Furthermore, chlorination significantly increased the relative abundance of mobile genetic elements (MGEs) in the free-living fraction, while decreasing it in the particle-associated fraction. During chlorination, size-fractionated bacterial communities varied considerably. Multiple statistical analyses highlighted the pivotal role of the bacterial community in altering high-risk ARGs in both the free-living and particle-associated fractions, while MGEs had a more pronounced impact on high-risk ARGs in the free-living fraction. Specifically, the enrichment of pathogenic hosts, such as Comamonas and Pseudomonas, led to an increase in the abundance of high-risk ARGs. Concurrently, MGEs exhibited significant correlations with high-risk ARGs, indicating the potential of horizontal transfer of high-risk ARGs. These findings provide novel insights for mitigating antibiotic resistance risk by considering different bacterial fractions and respective risk ranks in drinking water.


Subject(s)
Drinking Water , Anti-Bacterial Agents/pharmacology , Halogenation , Bacteria/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial
12.
Comput Biol Med ; 170: 108001, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280254

ABSTRACT

Intracranial arterial stenosis (ICAS) is characterized by the pathological narrowing or occlusion of the inner lumen of intracranial blood vessels. However, the retina can indirectly react to cerebrovascular disease. Therefore, retinal fundus images (RFI) serve as valuable noninvasive and easily accessible screening tools for early detection and diagnosis of ICAS. This paper introduces an adversarial learning-based domain adaptation algorithm (ALDA) specifically designed for ICAS detection in multi-source datasets. The primary objective is to achieve accurate detection and enhanced generalization of ICAS based on RFI. Given the limitations of traditional algorithms in meeting the accuracy and generalization requirements, ALDA overcomes these challenges by leveraging RFI datasets from multiple sources and employing the concept of adversarial learning to facilitate feature representation sharing and distinguishability learning. In order to evaluate the performance of the ALDA algorithm, we conducted experimental validation on multi-source datasets. We compared its results with those obtained from other deep learning algorithms in the ICAS detection task. Furthermore, we validated the potential of ALDA for detecting diabetic retinopathy. The experimental results clearly demonstrate the significant improvements achieved by the ALDA algorithm. By leveraging information from diverse datasets, ALDA learns feature representations that exhibit enhanced generalizability and robustness. This makes it a reliable auxiliary diagnostic tool for clinicians, thereby facilitating the prevention and treatment of cerebrovascular diseases.


Subject(s)
Arteries , Retina , Humans , Constriction, Pathologic , Fundus Oculi , Algorithms
13.
Water Res ; 249: 120922, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38043346

ABSTRACT

The risk associated with antibiotic resistance genes (ARGs) in size-fractionated bacterial community during drinking water chlorination remains unclear, and is of paramount importance for risk mitigation through process selection and optimization. This study employed metagenomic approaches to reveal the alterations of ARGs, their potential functions and hosts within the free-living and particle-associated fractions. The total relative abundance of ARGs, mobile genetic elements (MGEs), and virulence factor genes (VFGs) significantly increased in the free-living fraction after chlorination. The contribution of the free-living fraction to the ARG relative abundance rose from 16.40 ± 1.31 % to 93.62 ± 0.47 % after chlorination. Multidrug resistance genes (e.g. mexF and mexW) were major contributors, and their co-occurrence with MGEs in the free-living fraction was enhanced after chlorination. Considering multiple perspectives, including presence, mobility, and pathogenicity, chlorination led to a significant risk of the antibiotic resistome in the free-living fraction. Moreover, potential functions of ARGs, such as cell wall/membrane/envelope biogenesis, defense mechanisms, and transcription in the free-living fraction, were intensified following chlorination. Potential pathogens, including Pseudomonas aeruginosa, Pseudomonas alcaligenes, and Acinetobacter junii, were identified as the predominant hosts of multidrug resistance genes, with their increased abundances primarily contributing to the rise of the corresponding ARGs. Overall, alterations of hosts as well as enhancing mobility and biological functions could collectively aid the proliferation and spread of ARGs in the free-living fraction after chlorination. This study provides novel insights into antibiotic resistance evolution in size-fractionated bacteria community and offers a management strategy for microbiological safety in drinking water.


Subject(s)
Drinking Water , Genes, Bacterial , Drinking Water/microbiology , Halogenation , Drug Resistance, Microbial/genetics , Bacteria/genetics , Anti-Bacterial Agents/pharmacology
14.
Environ Res ; 242: 117782, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38036201

ABSTRACT

As the crucial confluences of rivers and lakes, the estuary areas with varied hydrodynamic exchanges intensively affect the bacterioplankton communities, whereas the ecological characteristics of the bacterioplankton in the areas have not been well understood. Here, the distribution patterns and assembly mechanisms of bacterioplankton communities in the estuary areas of the Taihu Lake were investigated using high-throughput sequencing and multivariate statistical analyses. Our results showed obvious seasonal variations in bacterioplankton diversity and community composition, which had significant correlations with water temperature. Neutral and null models together revealed that stochastic processes (especially dispersal limitation) were the major processes in shaping the communities across different seasons. By contrast, heterogeneous selection in deterministic processes exhibited increased impacts on community assembly during summer and autumn, which was significantly related to the comprehensive water quality index (WQI) rather than any single factor. In this study, rare communities displayed more pronounced seasonal dynamics compared to abundant communities, likely due to their sensitivity towards environmental factors. Accordingly, the heterogeneous selection of deterministic processes largely shaped the rare communities. These results enriched our understanding of the assembly mechanisms of bacterioplankton communities in estuary areas and emphasized the specific co-occurrence patterns of abundant and rare communities.


Subject(s)
Estuaries , Lakes , Aquatic Organisms , Rivers , Seasons , China , Ecosystem
15.
Water Res ; 249: 120891, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38016221

ABSTRACT

Microbially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency. This study presents a holistic review of research on the microbial and metabolic "black box" of AD processes. Recent research on microbiology, functional traits, and metabolic pathways in AD, as well as the responses of functional microbiota and metabolic capabilities to optimization strategies are reviewed. The diverse ecophysiological traits and cooperation/competition interactions of the functional guilds and the biomanipulation of microbial ecology to generate valuable products other than methane during AD are outlined. The results show that AD communities prioritize cooperation to improve functional redundancy, and the dominance of specific microbes can be explained by thermodynamics, resource allocation models, and metabolic division of labor during cross-feeding. In addition, the multi-omics approaches used to decipher the ecological principles of AD consortia are summarized in detail. Lastly, future microbial research and engineering applications of AD are proposed. This review presents an in-depth understanding of microbiome-functionality mechanisms of AD and provides critical guidance for the directional and efficient bioconversion of biowastes into methane and other valuable products.


Subject(s)
Bioreactors , Microbiota , Anaerobiosis , Bioreactors/microbiology , Methane/metabolism , Metabolic Networks and Pathways
16.
Water Res ; 250: 121051, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38157605

ABSTRACT

Rapid and precise quantification of organophosphorus pesticides (OPPs) in environmental water bodies is crucial for evaluating ecological risks and safeguarding human health. Traditional instrumental methods are complex, time-consuming, and expensive, while enzyme-based biosensors suffer from instability and require a constant supply of substrates. Hence, there is an urgent need for a fast, simple, and sensitive biosensor for OPPs. In this study, we developed a novel non-enzymatic biosensor for the detection of methyl parathion (MP) by employing the bioluminescence resonance energy transfer (BRET) Q-body strategy. Optimizing the spacer arm and screening fluorescent dyes identified the R6G BRET MP Q-body sensor with the best performance. Key parameters affecting the sensor's detection performance were optimized by using single-factor experiments. Under optimal conditions, the detection exhibited a detection limit of 5.09 ng·mL-1 and a linear range of 16.21-848.81 ng·mL-1. The sensor's accuracy was validated using standard recovery experiments, yielding a recovery rate of 84.47 %-102.08 % with a standard deviation of 1.93 %-9.25 %. The detection results of actual water samples demonstrate that this fast, simple, and highly sensitive BRET Q-body sensor holds great promise for practical water quality monitoring.


Subject(s)
Biosensing Techniques , Methyl Parathion , Pesticides , Humans , Pesticides/analysis , Organophosphorus Compounds , Energy Transfer , Biosensing Techniques/methods
17.
Environ Res ; 244: 117933, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38097061

ABSTRACT

Despite reliable nitrite supply through partial denitrification, the adaptation of denitrifying bacteria to low temperatures remains elusive in partial denitrification and anammox (PDA) systems. Here, temporal differentiations of the structure, activity, and relevant cold-adaptation mechanism of functional bacteria were investigated in a lab-scale PDA bioreactor at decreased temperature. Although distinct denitrifying bacteria dominated after low-temperature stress, both short- and long-term stresses exerted differential selectivity towards the species with close phylogenetic distance. Species Azonexus sp.149 showed high superiority over Azonexus sp.384 under short-term stress, and long-term stress improved the adaptation of Aquabacterium sp.93 instead of Aquabacterium sp.184. The elevated transcription of nitrite reductase genes suggested that several denitrifying bacteria (e.g., Azonexus sp.149) could compete with anammox bacteria for nitrite. Species Rivicola pingtungensis and Azonexus sp.149 could adapt through various adaptation pathways, such as the two-component system, cold shock protein (CSP), membrane alternation, and electron transport chain. By contrast, species Zoogloea sp.273 and Aquabacterium sp.93 mainly depended on the CSP and oxidative stress response. This study largely deepens our understanding of the performance deterioration in PDA systems during cold shock and provides several references for efficient adaptation to seasonal temperature fluctuation.


Subject(s)
Denitrification , Nitrites , Nitrites/metabolism , Temperature , Anaerobic Ammonia Oxidation , Phylogeny , Bacteria/genetics , Bacteria/metabolism , Oxidation-Reduction , Bioreactors/microbiology , Nitrogen/metabolism , Sewage
18.
Eco Environ Health ; 2(3): 142-151, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38074987

ABSTRACT

Increasing studies of plastisphere have raised public concern about microplastics (MPs) as vectors for pathogens, especially in aquatic environments. However, the extent to which pathogens affect human health through MPs remains unclear, as controversies persist regarding the distinct pathogen colonization on MPs as well as the transmission routes and infection probability of MP-associated pathogens from water to humans. In this review, we critically discuss whether and how pathogens approach humans via MPs, shedding light on the potential health risks involved. Drawing on cutting-edge multidisciplinary research, we show that some MPs may facilitate the growth and long-range transmission of specific pathogens in aquatic environments, ultimately increasing the risk of infection in humans. We identify MP- and pathogen-rich settings, such as wastewater treatment plants, aquaculture farms, and swimming pools, as possible sites for human exposure to MP-associated pathogens. This review emphasizes the need for further research and targeted interventions to better understand and mitigate the potential health risks associated with MP-mediated pathogen transmission.

19.
Transl Neurodegener ; 12(1): 59, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38098067

ABSTRACT

Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/metabolism , Gastrointestinal Microbiome/physiology , Central Nervous System/metabolism , Brain/metabolism
20.
BMC Ophthalmol ; 23(1): 455, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957614

ABSTRACT

PURPOSE: To evaluate the peripapillary retinal nerve fiber layer thickness (pRNFL) in patients with intracranial atherosclerotic stenosis (ICAS). METHODS: A cross-sectional study was performed in a general hospital. The intracranial atherosclerotic stenosis was evaluated by digital subtraction angiography (DSA), computed tomography angiography (CTA) or magnetic resonance angiography (MRA). High-definition optical coherence tomography (HD-OCT) was used to evaluate the peripapillary retinal nerve fiber layer thickness. RESULTS: A total of 102 patients, including 59(57.8%) patients with ICAS and 43(42.2%) patients without ICAS, were finally analysed in the study. The peripapillary retinal nerve fiber layer thickness (pRNFL) was reduced significantly in the average, the superior and the inferior quadrants of the ipsilateral eyes and in the superior quadrant of the contralateral eyes in patients with ICAS compared with patients without ICAS. After multivariate analysis, only the superior pRNFL thickness in the ipsilateral eyes was significantly associated with ICAS (OR,0.968; 95% CI,0.946-0.991; p = 0.006). The area under receiver operator curve was 0.679 (95% CI,0.576-0.782) for it to identify the presence of ICAS. The cut-off value of the superior pRNFL was 109.5 µm, and the sensitivity and specificity were 50.8% and 83.7%, respectively. CONCLUSION: The superior pRNFL in the ipsilateral eye was significantly associated with ICAS in this study. Larger studies are needed to explore the relation between pRNFL and ICAS further.


Subject(s)
Intracranial Arteriosclerosis , Optic Disk , Humans , Retinal Ganglion Cells , Cross-Sectional Studies , Constriction, Pathologic , Nerve Fibers , Tomography, Optical Coherence/methods , Intracranial Arteriosclerosis/complications , Intracranial Arteriosclerosis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...