Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Biomater Sci ; 12(9): 2321-2330, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38488841

ABSTRACT

Nanotherapies, valued for their high efficacy and low toxicity, frequently serve as antitumor treatments, but do not readily penetrate deep into tumor tissues and cells. Here we developed an improved tumor-penetrating peptide (TPP)-based drug delivery system. Briefly, the established TPP iNGR was modified to generate a linear NGR peptide capable of transporting nanotherapeutic drugs into tumors through a CendR pathway-dependent, neuropilin-1 receptor-mediated process. Although TPPs have been reported to reach intended tumor targets, they often fail to penetrate cell membranes to deliver tumoricidal drugs to intracellular targets. We addressed this issue by harnessing cell penetrating peptide technology to develop a liposome-based multibarrier-penetrating delivery system (mbPDS) with improved synergistic drug penetration into deep tumor tissues and cells. The system incorporated doxorubicin-loaded liposomes coated with nona-arginine (R9) CPP and cyclic iNGR (CRNGRGPDC) molecules, yielding Lip-mbPDS. Lip-mbPDS tumor-targeting, tumor cell/tissue-penetrating and antitumor capabilities were assessed using CD13-positive human fibrosarcoma-derived cell (HT1080)-based in vitro and in vivo tumor models. Lip-mbPDS evaluation included three-dimensional layer-by-layer confocal laser scanning microscopy, cell internalization/toxicity assays, three-dimensional tumor spheroid-based penetration assays and antitumor efficacy assays conducted in an animal model. Lip-mbPDS provided enhanced synergistic drug penetration of multiple biointerfaces for potentially deep tumor therapeutic outcomes.


Subject(s)
Cell-Penetrating Peptides , Doxorubicin , Drug Delivery Systems , Liposomes , Humans , Animals , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Cell-Penetrating Peptides/chemistry , Cell Line, Tumor , Liposomes/chemistry , Mice , Drug Carriers/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice, Nude , Peptides, Cyclic/chemistry , Peptides, Cyclic/administration & dosage
2.
J Cancer ; 15(8): 2110-2122, 2024.
Article in English | MEDLINE | ID: mdl-38495508

ABSTRACT

Background: DHEA is a steroid hormone produced by the gonads, adrenal cortex, brain, and gastrointestinal tract. While the anti-obesity, anti-atherosclerosis, anti-cancer, and memory-enhancing effects of DHEA have been substantiated through cell experiments, animal studies, and human trials, the precise mechanisms underlying these effects remain unclear. Altered mitochondrial dynamics can lead to mitochondrial dysfunction, which is closely related to many human diseases, especially cancer and aging. This study was to investigate whether DHEA inhibits lung adenocarcinoma through the mitochondrial pathway and its molecular mechanism. Methods: Through animal experiments and cell experiments, the effect of DHEA on tumor inhibition was determined. The correlation between FASTKD2 expression and DHEA was analyzed by Western blot, Reverse transcription-quantitative PCR, Immunohistochemistry, and TCGA database. Results: In this study, DHEA supplementation in the diet can inhibit the tumor size of mice, and the effect of adding DHEA one week before the experiment is the best. DHEA limits the glycolysis process by inhibiting G6PDH activity, increases the accumulation of reactive oxygen species, and initiates apoptosis in the mitochondrial pathway of cancer cells. Conclusion: DHEA suppresses mitochondrial fission and promotes mitochondrial fusion by downregulating the expression of FASTKD2, thereby inhibiting tumor growth and prolonging the overall survival of lung adenocarcinoma patients, which also provides a new target for the prevention and treatment of lung adenocarcinoma.

3.
Plant Biotechnol J ; 22(7): 2020-2032, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38421616

ABSTRACT

P/TGMS (Photo/thermo-sensitive genic male sterile) lines are crucial resources for two-line hybrid rice breeding. Previous studies revealed that slow development is a general mechanism for sterility-fertility conversion of P/TGMS in Arabidopsis. However, the difference in P/TGMS genes between rice and Arabidopsis suggests the presence of a distinct P/TGMS mechanism in rice. In this study, we isolated a novel P/TGMS line, ostms19, which shows sterility under high-temperature conditions and fertility under low-temperature conditions. OsTMS19 encodes a novel pentatricopeptide repeat (PPR) protein essential for pollen formation, in which a point mutation GTA(Val) to GCA(Ala) leads to ostms19 P/TGMS phenotype. It is highly expressed in the tapetum and localized to mitochondria. Under high temperature or long-day photoperiod conditions, excessive ROS accumulation in ostms19 anthers during pollen mitosis disrupts gene expression and intine formation, causing male sterility. Conversely, under low temperature or short-day photoperiod conditions, ROS can be effectively scavenged in anthers, resulting in fertility restoration. This indicates that ROS homeostasis is critical for fertility conversion. This relationship between ROS homeostasis and fertility conversion has also been observed in other tested rice P/TGMS lines. Therefore, we propose that ROS homeostasis is a general mechanism for the sterility-fertility conversion of rice P/TGMS lines.


Subject(s)
Fertility , Homeostasis , Oryza , Plant Infertility , Plant Proteins , Pollen , Reactive Oxygen Species , Oryza/genetics , Oryza/metabolism , Reactive Oxygen Species/metabolism , Fertility/genetics , Pollen/genetics , Pollen/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Infertility/genetics , Gene Expression Regulation, Plant , Temperature , Light , Photoperiod
4.
Cell Discov ; 10(1): 13, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321019

ABSTRACT

Tumor cells are usually considered defective in mitochondrial respiration, but human non-small cell lung cancer (NSCLC) tumor tissues are shown to have enhanced glucose oxidation relative to adjacent benign lung. Here, we reported that oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) inhibited glycolysis and promoted oxidative metabolism in NSCLC cells. CIP2A bound to pyruvate kinase M2 (PKM2) and induced the formation of PKM2 tetramer, with serine 287 as a novel phosphorylation site essential for PKM2 dimer-tetramer switching. CIP2A redirected PKM2 to mitochondrion, leading to upregulation of Bcl2 via phosphorylating Bcl2 at threonine 69. Clinically, CIP2A level in tumor tissues was positively correlated with the level of phosphorylated PKM2 S287. CIP2A-targeting compounds synergized with glycolysis inhibitor in suppressing cell proliferation in vitro and in vivo. These results indicated that CIP2A facilitates oxidative phosphorylation by promoting tetrameric PKM2 formation, and targeting CIP2A and glycolysis exhibits therapeutic potentials in NSCLC.

5.
Plant J ; 118(2): 506-518, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38169508

ABSTRACT

Thermosensitive genic female sterility (TGFS) is a promising property to be utilized for hybrid breeding. Here, we identified a rice TGFS line, tfs2, through an ethyl methyl sulfone (EMS) mutagenesis strategy. This line showed sterility under high temperature and became fertile under low temperature. Few seeds were produced when the tfs2 stigma was pollinated, indicating that tfs2 is female sterile. Gene cloning and genetic complementation showed that a point mutation from leucine to phenylalanine in HEI10 (HEI10tfs2), a crossover formation protein, caused the TGFS trait of tfs2. Under high temperature, abnormal univalents were formed, and the chromosomes were unequally segregated during meiosis, similar to the reported meiotic defects in oshei10. Under low temperature, the number of univalents was largely reduced, and the chromosomes segregated equally, suggesting that crossover formation was restored in tfs2. Yeast two-hybrid assays showed that HEI10 interacted with two putative protein degradation-related proteins, RPT4 and SRFP1. Through transient expression in tobacco leaves, HEI10 were found to spontaneously aggregate into dot-like foci in the nucleus under high temperature, but HEI10tfs2 failed to aggregate. In contrast, low temperature promoted HEI10tfs2 aggregation. This result suggests that protein aggregation at the crossover position contributes to the fertility restoration of tfs2 under low temperature. In addition, RPT4 and SRFP1 also aggregated into dot-like foci, and these aggregations depend on the presence of HEI10. These findings reveal a novel mechanism of fertility restoration and facilitate further understanding of HEI10 in meiotic crossover formation.


Subject(s)
Infertility , Oryza , Crossing Over, Genetic , Point Mutation , Oryza/genetics , Plant Breeding
6.
Eur J Med Chem ; 265: 116061, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38154256

ABSTRACT

A series of ß-carboline derivatives were designed and synthesized by introducing the chalcone moiety into the harmine. The synthesized derivatives were evaluated their anti-proliferative activities against six human cancer cell lines (MCF-7, MDA-MB-231, HepG2, HT29, A549, and PC-3) and one normal cell line (L02). Among them, compound G11 exhibited the potent anti-proliferative activity against MCF-7 cell line, with an IC50 value of 0.34 µM. Further biological studies revealed that compound G11 inhibited colony formation of MCF-7 cells, suppressed MCF-7 cell migration by downregulating migration-associated protein MMP-2. In addition, it could induce apoptosis of MCF-7 cells by downregulating Bcl-2 and upregulating Cleaved-PARP, Bax, and phosphorylated Bim proteins. Furthermore, compound G11 can act as a Topo I inhibitor, affecting DNA synthesis and transcription, thereby inhibiting cancer cell proliferation. Moreover, compound G11 inhibited tumor growth in 4T1 syngeneic transplant mice with an inhibition rate of 43.19 % at a dose of 10 mg/kg, and 63.87 % at 20 mg/kg, without causing significant toxicity to the mice or their organs, achieving the goal of reduced toxicity and increased efficacy. All these results indicate of G11 has enormous potential as an anti-tumor agent and merits further investigation.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Animals , Mice , Cell Line, Tumor , Harmine/pharmacology , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , MCF-7 Cells , Cell Proliferation , Apoptosis , Drug Screening Assays, Antitumor , Structure-Activity Relationship
7.
Surg Open Sci ; 16: 121-126, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37876666

ABSTRACT

Duodenal stump fistula (DSF) is a serious complication of radical gastrectomy for gastric cancer. Herein, we illustrated an innovative choice for treating duodenal stump fistulas by placing a modified sump drainage through trocar puncture into the DSF-related abscess (DSF-abscess) cavity. We retrospectively analyzed 974 consecutive patients who underwent gastrectomy for gastric cancer between 2011 and 2021. Of these patients, 34 who developed postoperative duodenal stump fistulas postoperatively were enrolled into our study, and their clinical data were retrospectively assessed. From January 2011 to December 2017, 15 patients received conventional treatments (percutaneous catheter drainage, PCD group) known as the traditional percutaneous method, and 19 patients from January 2018 to December 2021 received new treatments (Troca's SD group) consisting of conventional therapies and placement of a modified sump drainage through trocar puncture into DSF-abscess cavity. The demographics, clinical characteristics and treatment outcomes were compared between two groups. Compared with the PCD group, the rates of postoperative complications, duodenostomy creation, subsequent surgery, fistula healing rates of the DSF, and length of postoperative hospital stay were significantly decreased in the Troca SD group. However, there was no significant difference in the abscess recurrence rate and mortality rates. Trocar puncture with a modified sump drainage is an safe, effective, and technically feasible treatment for duodenal stump fistula after radical gastrectomy for gastric cancer. This novel technique should be further investigated using large-scale RCT research.

8.
Plant Biotechnol J ; 21(8): 1659-1670, 2023 08.
Article in English | MEDLINE | ID: mdl-37205779

ABSTRACT

In rice breeding, thermosensitive genic male sterility (TGMS) lines based on the tms5 locus have been extensively employed. Here, we reported a novel rice TGMS line ostms15 (Oryza sativa ssp. japonica ZH11) which show male sterility under high temperature and fertility under low temperature. Field evaluation from 2018 to 2021 revealed that its sterility under high temperature is more stable than that of tms5 (ZH11), even with occasional low temperature periods, indicating its considerable value for rice breeding. OsTMS15 encodes an LRR-RLK protein MULTIPLE SPOROCYTE1 (MSP1) which was reported to interact with its ligand to initiate tapetum development for pollen formation. In ostms15, a point mutation from GTA (Val) to GAA (Glu) in its TIR motif of the LRR region led to the TGMS phenotype. Cellular observation and gene expression analysis showed that the tapetum is still present in ostms15, while its function was substantially impaired under high temperature. However, its tapetum function was restored under low temperature. The interaction between mOsTMS15 and its ligand was reduced while this interaction was partially restored under low temperature. Slow development was reported to be a general mechanism of P/TGMS fertility restoration. We propose that the recovered protein interaction together with slow development under low temperature compensates for the defective tapetum initiation, which further restores ostms15 fertility. We used base editing to create a number of TGMS lines with different base substitutions based on the OsTMS15 locus. This work may also facilitate the mechanistic investigation and breeding of other crops.


Subject(s)
Infertility, Male , Oryza , Male , Humans , Temperature , Ligands , Plant Breeding , Fertility , Oryza/genetics , Plant Infertility/genetics
9.
Cells ; 11(19)2022 10 10.
Article in English | MEDLINE | ID: mdl-36231139

ABSTRACT

Ethylene was previously reported to repress stamen development in both cucumber and Arabidopsis. Here, we performed a detailed analysis of the effect of ethylene on anther development. After ethylene treatment, stamens but not pistils display obvious developmental defects which lead to sterility. Both tapetum and microspores (or microsporocytes) degenerated after ethylene treatment. In ein2-1 and ein3-1 eil1-1 mutants, ethylene treatment did not affect their fertility, indicating the effects of ethylene on anther development are mediated by EIN2 and EIN3/EIL1 in vivo. The transcription of EIN2 and EIN3 are activated by ethylene in the tapetum layer. However, ectopic expression of EIN3 in tapetum did not induce significant anther defects, implying that the expression of EIN3 are regulated post transcriptional level. Consistently, ethylene treatment induced the accumulation of EIN3 in the tapetal cells. Thus, ethylene not only activates the transcription of EIN2 and EIN3, but also stabilizes of EIN3 in the tapetum to disturb its development. The expression of several ethylene related genes was significantly increased, and the expression of the five key transcription factors required for tapetum development was decreased after ethylene treatment. Our results thus point out that ethylene inhibits anther development through the EIN2-EIN3/EIL1 signaling pathway. The activation of this signaling pathway in anther wall, especially in the tapetum, induces the degeneration of the tapetum and leads to pollen abortion.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Ethylenes/metabolism , Ethylenes/pharmacology , Receptors, Cell Surface/metabolism , Signal Transduction , Transcription Factors/metabolism
10.
Plant Biotechnol J ; 20(10): 2023-2035, 2022 10.
Article in English | MEDLINE | ID: mdl-35781755

ABSTRACT

Thermosensitive genic male sterility (TGMS) lines serve as the major genetic resource for two-line hybrid breeding in rice. However, their unstable sterility under occasional low temperatures in summer highly limits their application. In this study, we identified a novel rice TGMS line, ostms18, of cultivar ZH11 (Oryza sativa ssp. japonica). ostms18 sterility is more stable in summer than the TGMS line carrying the widely used locus tms5 in the ZH11 genetic background, suggesting its potential application for rice breeding. The ostms18 TGMS trait is caused by the point mutation from Gly to Ser in a glucose-methanol-choline (GMC) oxidoreductase; knockout of the oxidoreductase was previously reported to cause complete male sterility. Cellular analysis revealed the pollen wall of ostms18 to be defective, leading to aborted pollen under high temperature. Further analysis showed that the tapetal transcription factor OsMS188 directly regulates OsTMS18 for pollen wall formation. Under low temperature, the flawed pollen wall in ostms18 is sufficient to protect its microspore, allowing for development of functional pollen and restoring fertility. We identified the orthologous gene in Arabidopsis. Although mutants for the gene were fertile under normal conditions (24°C), fertility was significantly reduced under high temperature (28°C), exhibiting a TGMS trait. A cellular mechanism integrated with genetic mutations and different plant species for fertility restoration of TGMS lines is proposed.


Subject(s)
Arabidopsis , Oryza , Oxidoreductases , Plant Infertility , Pollen , Arabidopsis/genetics , Arabidopsis/physiology , Choline/metabolism , Glucose/metabolism , Methanol/metabolism , Mutation , Oryza/genetics , Oryza/physiology , Oxidoreductases/genetics , Plant Infertility/genetics , Pollen/genetics , Pollen/growth & development , Temperature , Transcription Factors/genetics
11.
J Cell Mol Med ; 26(12): 3557-3567, 2022 06.
Article in English | MEDLINE | ID: mdl-35607269

ABSTRACT

Atrial fibrillation (AF) is a rapid supraventricular arrhythmia. However, the pathogenesis of atrial fibrillation remains controversial. We obtained transcriptome expression profiles GSE41177, GSE115574 and GSE79768 from GEO database. WGCNA was performed, DEGs were screened, PPI network was constructed using STRING database. CTD database was used to identify the reference score of hub genes associated with cardiovascular diseases. Prediction of miRNAs of hub genes was performed by TargetScan. DIANA-miRPath v3.0 was applied to make functional annotation of miRNA. The animal model of atrial fibrillation was constructed, RT-PCR was used to verify the expression of hub genes. Immunofluorescence assay for THBS2 and VCAN was made to identify molecular. Design of BP neural network was made to explore the prediction relationship of CXCR4 and TYROBP on AF. The merged datasets contained 104 up-regulated and 34 down-regulated genes. GO and KEGG enrichment analysis results of DEGs showed they were mainly enriched in 'regulation of release of sequestered calcium ion into cytosol', 'actin cytoskeleton organization' and 'focal adhesion'. The hub genes were CXCR4, SNAI2, S100A4, IGFBP3, CSNK2A1, CHGB, VCAN, APOE, C1QC and TYROBP, which were up-regulated expression in the AF compared with control tissues. There was strong correlation among the CXCR4, TYROBP and AF based on the BP neural network. Through training, best training performance is 9.6474e-05 at epoch 14, and the relativity was 0.99998. CXCR4 and TYROBP might be involved in the development of atrial fibrillation by affecting inflammation-related signalling pathways and may serve as targets for early diagnosis and preventive treatment.


Subject(s)
Atrial Fibrillation , MicroRNAs , Adaptor Proteins, Signal Transducing/genetics , Atrial Fibrillation/genetics , Computational Biology/methods , Gene Expression Profiling/methods , Gene Regulatory Networks , Humans , Inflammation/genetics , Membrane Proteins/genetics , MicroRNAs/genetics , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Transcriptome
12.
Rice (N Y) ; 14(1): 4, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33409767

ABSTRACT

BACKGROUND: During anther development, the tapetum provides essential nutrients and materials for pollen development. In rice, multiple transcription factors and enzymes essential for tapetum development and pollen wall formation have been cloned from male-sterile lines. RESULTS: In this study, we obtained several lines in which the MYB transcription factor OsMS188 was knocked out through the CRISPR-Cas9 approach. The osms188 lines exhibited a male-sterile phenotype with aberrant development and degeneration of tapetal cells, absence of the sexine layer and defective anther cuticles. CYP703A3, CYP704B2, OsPKS1, OsPKS2, DPW and ABCG15 are sporopollenin synthesis and transport-related genes in rice. Plants with mutations in these genes are male sterile, with a defective sexine layer and anther cuticle. Further biochemical assays demonstrated that OsMS188 binds directly to the promoters of these genes to regulate their expression. UDT1, OsTDF1, TDR, bHLH142 and EAT1 are upstream regulators of rice tapetum development. Electrophoretic mobility shift assays (EMSAs) and activation assays revealed that TDR directly regulates OsMS188 expression. Additionally, protein interaction assays indicated that TDR interacts with OsMS188 to regulate downstream gene expression. CONCLUSION: Overall, OsMS188 is a key regulator of tapetum development and pollen wall formation. The gene regulatory network established in this work may facilitate future investigations of fertility regulation in rice and in other crop species.

13.
Int J Mol Med ; 46(5): 1816-1826, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32901853

ABSTRACT

The aim of the present study was to identify natural compounds that bear significant anti­tumor activity. Thus, the effects of 63 small molecules that were isolated from traditional Chinese medicinal herbs on A549 human non­small cell lung cancer (NSCLC) and MCF­7 breast cancer cells were examined. It was found that ursolic acid (UA), a natural pentacyclic triterpenoid, exerted significant inhibitory effect on these cells. Further experiments revealed that UA inhibited the proliferation of various lung cancer cells, including the NSCLC cells, H460, H1975, A549, H1299 and H520, the human small cell lung cancer (SCLC) cells, H82 and H446, and murine Lewis lung carcinoma (LLC) cells. UA induced the apoptosis and autophagy of NSCLC cells. The inhibition of the mammalian target of rapamycin (mTOR) signaling pathway, but not the activation of the extracellular signal­regulated kinase 1/2 (ERK1/2) signaling pathway contributed to the UA­induced autophagy of NSCLC cells. Moreover, the inhibition of autophagy by chloroquine (CQ) or siRNA for autophagy­related gene 5 (ATG5) enhanced the UA­induced inhibition of cell proliferation and promotion of apoptosis, indicating that UA­induced autophagy is a pro­survival mechanism in NSCLC cells. On the whole, these findings suggest that combination treatment with autophagy inhibitors may be a novel strategy with which enhance the antitumor activity of UA in lung cancer.


Subject(s)
Autophagy/drug effects , Lung Neoplasms/drug therapy , Triterpenes/pharmacology , A549 Cells , Animals , Apoptosis/drug effects , Autophagy-Related Protein 5/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Chloroquine/pharmacology , Humans , Lung Neoplasms/metabolism , MCF-7 Cells , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects , Ursolic Acid
14.
J Sep Sci ; 43(12): 2436-2446, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32227667

ABSTRACT

Four types of middle-pressure chromatogram isolated gels are evaluated for adsorption or desorption characteristics of ginsenosides from Panax ginseng. Among them, SP207SS and SP2MGS were selected for dynamic investigations based on their static adsorption or desorption capacity of total ginsenoside. Their adsorption kinetics was better explained by pseudosecond-order model and isotherms were preferably fitted to Langmuir model. Dynamic breakthrough experiments indicated an optimum sample loading speed of 4 bed volume/h for either SP207SS or SP2MGS. Desorption speed was determined to be 2 bed volume/h according to desorption amount of total ginsenoside in their effluents. Eight ginsenosides were identified and quantified by high performance liquid chromatography-triple quadropole-mass spectrometry in total ginsenoside extract and different fractions during stepwise dynamic elution. For SP207SS, 27.62% of loaded ginsenosides was detected in 40% ethanol fraction, while 59.12% of them were found in 60% ethanol fraction. As on SP2MGS, the number went to 53.71 and 44.43%, respectively. Recovery rate of ginsenosides were calculated to 78.65% for SP207SS and 89.53% for SP2MGS, respectively. Intriguingly, content of Rg1 and Re in 40% ethanol fraction from SP207SS became 20.1 and 18.6 times higher than that in total ginsenoside extract by one-step elution, which could be leveraged for the facile enrichment of these two ginsenosides from natural sources.


Subject(s)
Ginsenosides/analysis , Panax/chemistry , Adsorption , Chromatography, High Pressure Liquid , Gels/chemistry , Gels/isolation & purification , Pressure
15.
Front Neurol ; 11: 184, 2020.
Article in English | MEDLINE | ID: mdl-32265825

ABSTRACT

Atrial fibrillation (AF) increases the risk of ischemic stroke and systemic arterial embolism. However, the risk factors or predictors of stroke in AF patients have not been clarified. Therefore, it is necessary to find effective diagnostic and therapeutic targets. Two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differently expressed genes (DEGs) were identified between samples of atrial fibrillation without stroke and atrial fibrillation with stroke. Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) by Gene Set Enrichment Analysis (GSEA), construction and analysis of protein-protein interaction (PPI) network and significant module, and the receiver operator characteristic (ROC) curve analysis were performed. A total of 524 DEGs were common to both datasets. Analysis of KEGG pathways indicated that the top canonical pathways associated with DEGs were ubiquitin-mediated proteolysis, endocytosis, spliceosome, and so on. Ten hub genes (SMURF2, CDC42, UBE3A, RBBP6, CDC5L, NEDD4L, UBE2D2, UBE2B, UBE2I, and MAPK1) were identified from the PPI network and were significantly associated with a diagnosis of atrial fibrillation and stroke (AFST). In summary, a total of 524 DEGs and 10 hub genes were identified between samples of atrial fibrillation without stroke and atrial fibrillation with stroke. These genes may serve as the target of early diagnosis or treatment of AF complicated by stroke.

16.
EBioMedicine ; 53: 102689, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32114396

ABSTRACT

BACKGROUND: How the oncoprotein epidermal growth factor receptor (EGFR) evades proteolytic degradation and accumulates in non-small cell lung cancer (NSCLC) remains unclear, and ubiquitin pathway genes (UPGs) that are critical to NSCLC needs to be systematically identified. METHODS: A total of 696 UPGs (including E1, E2, E3, and deubiquitinases) were silenced by small interfering RNA (siRNA) library in NSCLC cells, the candidates were verified, and their significance was evaluated in patients with NSCLC. The effects of a candidate gene on EGFR were investigated in vitro and in vivo. FINDINGS: We report 31 candidates that are required for cell proliferation, with the E2 ubiquitin conjugase CDC34 as the most significant one. CDC34 is elevated in tumor tissues in 76 of 114 (66.7%) NSCLCs and inversely associated with prognosis, is higher in smoker patients than nonsmoker patients, and is induced by tobacco carcinogens in normal human lung epithelial cells. Forced expression of CDC34 promotes, whereas knockdown of CDC34 inhibits, NSCLC cell proliferation in vitro and in vivo. CDC34 competes with c-Cbl to bind Y1045 to inhibit polyubiquitination and degradation of EGFR. In EGFR-L858R and EGFR-T790M/Del (exon 19)-driven lung tumor growth in mouse models, knockdown of CDC34 significantly inhibits tumor formation. INTERPRETATION: These results demonstrate that an E2 enzyme is capable of competing with E3 ligase to stabilize substrates, and CDC34 represents an attractive therapeutic target for NSCLCs. FUNDING: National Key Research and Development Program of China, National Natural Science Foundation of China, and the CAMS Innovation Fund for Medical Sciences.


Subject(s)
Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , ErbB Receptors/metabolism , Lung Neoplasms/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Animals , Carcinogenesis/drug effects , Carcinogens/toxicity , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , HEK293 Cells , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, SCID , Tobacco Smoke Pollution/adverse effects , Transcriptome , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
17.
Curr Med Sci ; 39(6): 972-977, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31845229

ABSTRACT

The purpose of this study was to investigate the presence of endolymphatic hydrops (EH) in both affected and unaffected ears of patients with pantonal unilateral idiopathic sudden sensorineural hearing loss (ISSNHL) using three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging (3D-FLAIR MRI) and further evaluate the significance of EH in this disorder. Twenty-seven ISSHL patients were enrolled in this study. 3D-FLAIR MRI was performed 24 h after intratympanic injection of gadolinium-diethylenetriaminepentaacetic acid (Gd-DPTA). The incidences of EH in the affected ears and contralateral unaffected ears were compared and the correlations of EH with vertigo or prognosis were analyzed using the Chi-square test. The results showed that the incidence of EH was 68.0% (17/25) in the affected ears and 34.8% (8/23) in the unaffected ears. There was a statistically significant difference between affected ears and unaffected ears in regard to the incidence of EH (P<0.05). There were no significant correlations of EH with vertigo (P=1.000) or with prognosis (P=0.359) in the affected ears. In conclusion, there is EH in the inner ear of patients with pantonal ISSNHL; EH is not related to vertigo, a concomitant symptom of ISSNHL, and the prognosis of this condition. The presence of EH may be a secondary reaction following the impairment of the inner ears with pantonal ISSNHL.


Subject(s)
Endolymphatic Hydrops/epidemiology , Hearing Loss, Sudden/diagnostic imaging , Hearing Loss, Unilateral/diagnostic imaging , Vertigo/epidemiology , Adult , Combined Modality Therapy , Endolymphatic Hydrops/diagnostic imaging , Endolymphatic Hydrops/therapy , Female , Gadolinium DTPA/administration & dosage , Hearing Loss, Sudden/therapy , Hearing Loss, Unilateral/therapy , Humans , Incidence , Injection, Intratympanic , Magnetic Resonance Imaging , Male , Middle Aged , Prognosis , Treatment Outcome
18.
Planta ; 250(2): 535-548, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31111205

ABSTRACT

MAIN CONCLUSION: ACOS5, OsACOS12 and PpACOS6 are all capable of fatty acyl-CoA synthetase activity but exhibit different substrate preferences. The transcriptional regulation of ACOS for sporopollenin synthesis appears to have been conserved in Physcomitrella, rice and Arabidopsis during evolution. Sporopollenin is the major constituent of spore and pollen exines. In Arabidopsis, acyl-CoA synthetase 5 (ACOS5) is an essential enzyme for sporopollenin synthesis, and its orthologues are PpACOS6 from the moss Physcomitrella and OsACOS12 from monocot rice. However, knowledge regarding the evolutionary conservation and divergence of the ACOS gene in sporopollenin synthesis remains limited. In this study, we analysed the function and regulation of PpACOS6 and OsACOS12. A complementation test showed that OsACOS12 driven by the ACOS5 promoter could partially restore the male fertility of the acos5 mutant in Arabidopsis, while PpACOS6 did not rescue the acos5 phenotype. ACOS5, PpACOS6 and OsACOS12 all complemented the acyl-CoA synthetase-deficient yeast strain (YB525) phenotype, although they exhibited different substrate preferences. To understand the conservation of sporopollenin synthesis regulation, we constructed two constructs with ACOS5 driven by the OsACOS12 or PpACOS6 promoter. Both constructs could restore the fertility of acos5 plants. The MYB transcription factor MS188 from Arabidopsis directly regulates ACOS5. We found that MS188 could also bind the promoters of OsACOS12 and PpACOS6 and activate the genes driven by the promoters, suggesting that the transcriptional regulation of these genes was similar to that of ACOS5. These results show that the ACOS gene promoter region from Physcomitrella, rice and Arabidopsis has been functionally conserved during evolution, while the chain lengths of fatty acid-derived monomers of sporopollenin vary in different plant species.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Bryopsida/enzymology , Coenzyme A Ligases/metabolism , Oryza/enzymology , Plant Proteins/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Biopolymers/biosynthesis , Bryopsida/genetics , Bryopsida/growth & development , Bryopsida/ultrastructure , Carotenoids/biosynthesis , Coenzyme A Ligases/genetics , Genes, Reporter , Mutation , Oryza/genetics , Oryza/growth & development , Oryza/ultrastructure , Phylogeny , Plant Infertility , Plant Proteins/genetics , Pollen/enzymology , Pollen/genetics , Pollen/growth & development , Pollen/ultrastructure , Sequence Alignment , Substrate Specificity , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Plant Sci ; 277: 145-154, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30466580

ABSTRACT

The sporopollenin precursors, as a general constituent of sexine, are synthesized in the tapetum and deposited on the pollen surface after transportation and processing. The polyketide synthase condenses the acyl-CoA into a hydroxyalkyl α-pyrone, which is predicted to be a component of the sporopollenin precursors. In this study, we found that the rice POLYKETIDE SYNTHASE 1 (OsPKS1) was the orthologue of Arabidopsis POLYKETIDE SYNTHASE A/LESS ADHESIVE POLLEN 6 (PKSA/LAP6) through sequence alignment. The OsPKS1 knockout mutants obtained by Crispr-Cas9-mediated editing exhibited a complete male sterile phenotype. Cytological observations revealed that abnormal bacula deposition and ubisch body structures for sexine formation led to pollen rupture in ospks1. The expression analysis showed that the OsPKS1 was highly expressed in tapetal cells and anther locules from stage 9 to stage 11 during anther development in rice. Subcellular localization demonstrated that the OsPKS1 protein was preferentially localized to the ER. The genomic sequence of OsPKS1 driven by the PKSA/LAP6 promoter restored the sexine pattern of Arabidopsis pksa/lap6. These results indicated that OsPKS1 is required for sexine layer formation in rice and functionally conserved in the sporopollenin synthesis pathway.


Subject(s)
Arabidopsis/metabolism , Oryza/metabolism , Arabidopsis/physiology , Gene Expression Regulation, Plant , Oryza/physiology , Plant Proteins/metabolism
20.
Cancer Lett ; 434: 132-143, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30031117

ABSTRACT

To systematically unveil transcription factors (TFs) that are critical to lung carcinogenesis, here we conducted a genome-wide lethality screening in non-small cell lung cancer (NSCLC) cells and reported that among the 1530 TFs tested, 21 genes were required for NSCLC cell proliferation and were negatively or positively associated with overall survival (OS) of patients with NSCLC. These included 11 potential tumor suppressing genes (AFF3, AhR, AR, CBFA2T3, CHD4, KANK2, NR3C2, PTEN, PRDM16, RB1, and STK11) and 10 potential oncogenic TFs (BARX1, DLX6, ELF3, EN1, ETV1, FOXE1, HOXB7, IRX4, IRX5, and SALL1). The expression levels of IRX5 were positively associated with OS of smoker and inversely associated with OS of non-smoker patients with lung adenocarcinoma. We showed that tobacco carcinogen benzo(a)pyrene (BaP) induced upregulation of IRX5 in lung epithelial cells, and Cyclin D1 was a downstream target of IRX5. Furthermore, silencing of IRX5 by lentivirus mediated transfection of short hairpin RNA significantly inhibited tumor growth in nude mice. These results indicate that tobacco smoke can modulate TFs to facilitate lung carcinogenesis, and inhibition of IRX5 may have therapeutic potentials in NSCLCs.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study/methods , Lung Neoplasms/genetics , Transcription Factors/genetics , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/therapy , Cell Line , Cell Line, Tumor , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/therapy , Mice, Inbred NOD , Mice, SCID , RNA Interference , RNAi Therapeutics/methods , Transcription Factors/metabolism , Tumor Burden/genetics , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...