Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Sci Total Environ ; 946: 174222, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945230

ABSTRACT

The presence of antibiotic resistance genes (ARGs), disinfectant resistance genes (DRGs), and pathogens in animal food processing environments (FAPE) poses a significant risk to human health. However, knowledge of the contamination and risk profiles of a typical commercial pig slaughterhouse with periodic disinfectant applications is limited. By creating the overall metagenomics-based behavior and risk profiles of ARGs, DRGs, and microbiomes in a nine-section pig slaughterhouse, an important FAPE in China. A total of 454 ARGs and 84 DRGs were detected in the slaughterhouse with resistance genes for aminoglycosides and quaternary ammonium compounds, respectively. The entire slaughtering chain is a hotspot for pathogens, including 83 human pathogenic bacteria (HPB), with 47 core HPB. In addition, 68 high-risk ARGs were significantly correlated with 55 HPB, 30 of which were recognized as potential bacteria co-resistant to antibiotics and disinfectants, confirm a three-fold risk of ARGs, DRGs, and pathogens prevailing throughout the chain. Pre-slaughter pig house (PSPH) was the major risk source for ARGs, DRGs, and HPB. Moreover, 75 Escherichia coli and 47 Proteus mirabilis isolates showed sensitivity to potassium monopersulfate and sodium hypochlorite, suggesting that slaughterhouses should use such related disinfectants. By using whole genome multi-locus sequence typing and single nucleotide polymorphism analyses, genetically closely related bacteria were identified across distinct slaughter sections, suggesting bacterial transmission across the slaughter chain. Overall, this study underscores the critical role of the PSPH section as a major source of HPB, ARGs, and DRGs contamination in commercial pig slaughterhouses. Moreover, it highlights the importance of addressing clonal transmission and cross-contamination of antibiotic- and disinfectant-resistant bacteria within and between slaughter sections. These issues are primarily attributed to the microbial load carried by animals before slaughter, carcass handling, and content exposure during visceral treatment. Our findings provide valuable insights for One Health-oriented slaughterhouse management practices.

2.
Sci Rep ; 14(1): 495, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177257

ABSTRACT

The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) excised from 3-month, 8-month, and 8-month denervated rats were subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.


Subject(s)
Hypertension , Animals , Rats , Biomechanical Phenomena , Kidney , Carotid Arteries , Collagen , Denervation/methods , Blood Pressure/physiology , Sympathectomy/methods , Treatment Outcome
3.
J Mech Behav Biomed Mater ; 148: 106187, 2023 12.
Article in English | MEDLINE | ID: mdl-37875040

ABSTRACT

Healthy arteries are continuously subjected to diverse mechanical stimuli and adapt in order to maintain a mechanical homeostasis which is characterized by a uniform distribution of wall stresses. However, aging may compromise the homeostatic microenvironment within arteries. Structural heterogeneity has been suggested as a potential microstructural mechanism that could lead to homogeneous stress distribution across the arterial wall. Our previous study on the unfolding and stretching of the elastic lamellae revealed the underlying microstructural mechanism for equalizing the circumferential stresses through wall; inner elastic layers are wavier and unfold more than the outer layers which helps to evenly distribute lamellar stretching (Yu et al., 2018). In this study, we investigated the effect of aging on lamellar deformation and its implications for tissue homeostasis. Common carotid arteries from aged mice were imaged under a multi-photon microscope while subjected to biaxial extension and inflation at five different pressures ranging from 0 up to 120 mmHg. Lamellar unfolding during pressurization was then determined from the reconstructed cross-sectional images of elastic lamellae. Tissue-level circumferential stretch was combined with the lamellar unfolding to calculate lamellar stretching. Our results revealed that the straightness gradient of aged elastic lamellae is similar to the young ones. However, during pressurization, the inner elastic lamella of the aged mice unfolded significantly more than the inner layer in young arteries. An important finding of our study is the uneven increase in inter-lamellar space which contributed to a nonuniform stretching of the elastic lamellae of aged mice arteries, elevated stress gradient, and a shifting of the load-bearing component to adventitia. Our results shed light into the complex microstructural mechanisms that take place in aging and adversely affect arterial mechanical behavior and homeostasis.


Subject(s)
Carotid Arteries , Carotid Artery, Common , Animals , Mice , Aging , Pressure , Stress, Mechanical
4.
Alzheimers Res Ther ; 15(1): 185, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891618

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia. Cerebrovascular integrity is critical for proper metabolism and perfusion of the brain, as cerebrovascular remodeling may render the brain more susceptible to pulse pressure and may be associated with poorer cognitive performance and greater risk of cerebrovascular events. The objective of this study is to provide understanding of cerebrovascular remodeling with AD progression. Anterior cerebral arteries (ACAs) from a total of 19 brain donor participants from controls and pathologically diagnosed AD groups (early-Braak stages I-II; intermediate-Braak stages III-IV; and advanced-Braak stages V-VI) were included in this study. Mechanical testing, histology, advanced optical imaging, and mass spectrometry were performed to study the progressive structural and functional changes of ACAs with AD progression. Biaxial extension-inflation tests showed that ACAs became progressively less compliant, and the longitudinal stress in the intermediate and advanced AD groups was significantly higher than that from the control group. With pathological AD development, the inner and outer diameters of the ACAs remained almost unchanged; however, histology study revealed progressive smooth muscle cell atrophy and loss of elastic fibers which led to compromised structural integrity of the arterial wall. Multiphoton imaging demonstrated elastin degradation at the media-adventitia interface, which led to the formation of an empty band of 21.0 ± 15.4 µm and 32.8 ± 9.24 µm in width for the intermediate and advanced AD groups, respectively. Furthermore, quantitative birefringence microscopy showed disorganized adventitial collagen with AD development. Mass spectrometry analysis provided further evidence of altered collagen content and other extracellular matrix (ECM) molecule and smooth muscle cell changes that were consistent with the mechanical and structural alterations. Collectively, our study provides understanding of the mechanical and structural cerebrovascular deterioration in cerebral arteries with AD, which may be related to neurodegenration and pathology in the brain.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Aged , Alzheimer Disease/pathology , Anterior Cerebral Artery/metabolism , Anterior Cerebral Artery/pathology , Neurodegenerative Diseases/metabolism , Brain/metabolism , Collagen/metabolism
5.
Res Sq ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693508

ABSTRACT

Alzheimer disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia. Cerebrovascular integrity is critical for proper metabolism and perfusion of the brain, as cerebrovascular remodeling may render the brain more susceptible to pulse pressure and may be associated with poorer cognitive performance and greater risk of cerebrovascular events. The objective of this study is to provide understanding of cerebrovascular remodeling with AD progression. A total of 28 brain donor participants with human anterior cerebral artery (ACA) from controls and pathologically diagnosed AD groups (early - Braak stages I-II; intermediate - Braak stages III-IV; and advanced - Braak stages V-VI) were included in this study. Mechanical testing, histology, advanced optical imaging, and mass spectrometry were performed to study the progressive structural and functional changes of ACAs with AD progression. Biaxial extension-inflation tests showed that ACAs became progressively less compliant, and the longitudinal stress in the intermediate& advanced AD groups was significantly higher than that from the control group. With pathological AD development, the inner and outer diameter of ACA remained almost unchanged; however, histology study revealed progressive smooth muscle cell atrophy and loss of elastic fibers which led to compromised structural integrity of the arterial wall. Multiphoton imaging demonstrated elastin degradation at the media-adventitia interface, which led to the formation of an empty band of 21.0 ± 15.4 µm and 32.8 ± 9.24 µm in width for the intermediate& advanced AD groups, respectively. Furthermore, quantitative birefringence microscopy showed disorganized adventitial collagen with AD development. Mass spectrometry analysis provided further evidence of altered collagen content and other extracellular matrix (ECM) molecule and smooth muscle cell changes that were consistent with the mechanical and structural alterations. Collectively, our study provides understanding of the mechanical and structural cerebrovascular deterioration in cerebral arteries with AD, which may be related to neurodegenration and pathology in the brain.

6.
Res Sq ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37720022

ABSTRACT

The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) were excised from 3-, 8- and 8-month-old denervated rats, and subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.

7.
Ann Biomed Eng ; 51(10): 2204-2215, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37284997

ABSTRACT

Ligamentum nuchae is a highly elastic tissue commonly used to study the structure and mechanics of elastin. This study combines imaging, mechanical testing, and constitutive modeling to examine the structural organization of elastic and collagen fibers and their contributions to the nonlinear stress-strain behavior of the tissue. Rectangular samples of bovine ligamentum nuchae cut in both longitudinal and transverse directions were tested in uniaxial tension. Purified elastin samples were also obtained and tested. It was observed that the stress-stretch response of purified elastin tissue follows a similar curve as the intact tissue initially, but the intact tissue shows a significant stiffening behavior for stretches above 1.29 with collagen engagement. Multiphoton and histology images confirm the elastin-dominated bulk of ligamentum nuchae interspersed with small bundles of collagen fibrils and sporadic collagen-rich regions with cellular components and ground substance. A transversely isotropic constitutive model that considers the longitudinal organization of elastic and collagen fibers was developed to describe the mechanical behavior of both intact and purified elastin tissue under uniaxial tension. These findings shed light on the unique structural and mechanical roles of elastic and collagen fibers in tissue mechanics and may aid in future use of ligamentum nuchae in tissue grafting.


Subject(s)
Collagen , Elastin , Animals , Cattle , Biomechanical Phenomena , Collagen/chemistry , Extracellular Matrix , Ligaments, Articular , Stress, Mechanical
8.
J R Soc Interface ; 20(201): 20220837, 2023 04.
Article in English | MEDLINE | ID: mdl-37042193

ABSTRACT

Understanding how the homeostatic stress state can be reached in arterial tissues can provide new insights into vascular physiology. Even though the function of maintaining homeostasis is often linked to the concentric layers of medial elastic lamellae, how the lamellae are capable of evenly distributing the stress transmurally remains to be understood. The recent microstructural study by Yu et al. (2018 J. R. Soc. Interface 15, 20180492) revealed that, circumferentially, lamellar layers closer to the lumen are wavier than the ones further away from it and, thus, experience more unfolding when subjected to blood pressure. Motivated by this peculiar finding, the current study, for the first time, proposes a novel approach to model elastic lamellae and such structural heterogeneity using the extensible worm-like chain model. When implemented into the material description of the conventional two-layer artery model, in which adventitial collagen is modelled using the inextensible worm-like chain model, it is demonstrated that structural heterogeneity in elastic lamellae plays an important role in dictating transmural stress distribution and, therefore, the homeostasis of the arterial wall.


Subject(s)
Arteries , Collagen , Arteries/physiology , Blood Pressure/physiology , Elasticity
9.
Gastroenterology ; 164(7): 1137-1151.e15, 2023 06.
Article in English | MEDLINE | ID: mdl-36871599

ABSTRACT

BACKGROUND & AIMS: Fibrosis and tissue stiffening are hallmarks of inflammatory bowel disease (IBD). We have hypothesized that the increased stiffness directly contributes to the dysregulation of the epithelial cell homeostasis in IBD. Here, we aim to determine the impact of tissue stiffening on the fate and function of the intestinal stem cells (ISCs). METHODS: We developed a long-term culture system consisting of 2.5-dimensional intestinal organoids grown on a hydrogel matrix with tunable stiffness. Single-cell RNA sequencing provided stiffness-regulated transcriptional signatures of the ISCs and their differentiated progeny. YAP-knockout and YAP-overexpression mice were used to manipulate YAP expression. In addition, we analyzed colon samples from murine colitis models and human IBD samples to assess the impact of stiffness on ISCs in vivo. RESULTS: We demonstrated that increasing the stiffness potently reduced the population of LGR5+ ISCs and KI-67+-proliferating cells. Conversely, cells expressing the stem cell marker, olfactomedin-4, became dominant in the crypt-like compartments and pervaded the villus-like regions. Concomitantly, stiffening prompted the ISCs to preferentially differentiate toward goblet cells. Mechanistically, stiffening increased the expression of cytosolic YAP, driving the extension of olfactomedin-4+ cells into the villus-like regions, while it induced the nuclear translocation of YAP, leading to preferential differentiation of ISCs toward goblet cells. Furthermore, analysis of colon samples from murine colitis models and patients with IBD demonstrated cellular and molecular remodeling reminiscent of those observed in vitro. CONCLUSIONS: Collectively, our findings highlight that matrix stiffness potently regulates the stemness of ISCs and their differentiation trajectory, supporting the hypothesis that fibrosis-induced gut stiffening plays a direct role in epithelial remodeling in IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Mice , Animals , Goblet Cells , Stem Cells/physiology , Intestinal Mucosa/metabolism , Cell Differentiation/genetics , Inflammatory Bowel Diseases/metabolism , Colitis/metabolism
10.
J Mech Behav Biomed Mater ; 140: 105705, 2023 04.
Article in English | MEDLINE | ID: mdl-36758423

ABSTRACT

Collagen crosslinking, an important contributor to the stiffness of soft tissues, was found to increase with aging in the aortic wall. Here we investigated the mechanical properties of human descending thoracic aorta with aging and the role of collagen crosslinking through a combined experimental and modeling approach. A total of 32 samples from 17 donors were collected and divided into three age groups: <40, 40-60 and > 60 years. Planar biaxial tensile tests were performed to characterize the anisotropic mechanical behavior of the aortic samples. A recently developed constitutive model incorporating collagen crosslinking into the two-fiber family model (Holzapfel and Ogden, 2020) was modified to accommodate biaxial deformation of the aorta, in which the extension and rotation kinematics of bonded fibers and crosslinks were decoupled. The mechanical testing results show that the aorta stiffens with aging with a more drastic change in the longitudinal direction, which results in altered aortic anisotropy. Our results demonstrate a good fitting capability of the constitutive model considering crosslinking for the biaxial aortic mechanics of all age groups. Furthermore, constitutive modeling results suggest an increased contribution of crosslinking and strain energy density to the biaxial stress-stretch behaviors with aging and point to excessive crosslinking as a prominent contributor to aortic stiffening.


Subject(s)
Aorta, Thoracic , Biomechanical Phenomena , Collagen , Models, Biological , Aging , Aorta, Thoracic/anatomy & histology , Aorta, Thoracic/physiology , Collagen/metabolism , Humans , Adult , Middle Aged , Tensile Strength , Aged , Aged, 80 and over , Stress, Mechanical , Male , Female
11.
Front Plant Sci ; 13: 961586, 2022.
Article in English | MEDLINE | ID: mdl-35937314

ABSTRACT

Fusarium wilt is one of the most destructive and less controllable diseases in melon, which is usually caused by fusarium oxysporum. In this study, transcriptome sequencing and Yeast Two-Hybrid (Y2H) methods were used for quantification of differentially expressed genes (DEGs) involved in fusarium oxysporum (f. sp. melonis race 1) stress-induced mechanisms in contrasted melon varieties (M4-45 "susceptible" and MR-1 "resistant"). The interaction factors of Fom-2 resistance genes were also explored in response to the plant-pathogen infection mechanism. Transcriptomic analysis exhibited total 1,904 new genes; however, candidate DEGs analysis revealed a total of 144 specific genes (50 upregulated and 94 downregulated) for M4-45 variety and 104 specific genes (71 upregulated and 33 downregulated) for MR-1 variety, respectively. The analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway depicted some candidate DEGs, including Phenylalanine metabolism, phenylpropane biosynthesis, plants-pathogen interaction, and signal transduction of plant hormones, which were mainly involved in disease resistance metabolic pathways. The weighted gene co-expression network analysis (WGCNA) analysis revealed a strong correlation module and exhibited the disease resistance-related genes encoding course proteins, transcription factors, protein kinase, benzene propane biosynthesis path, plants-pathogen interaction pathway, and glutathione S-transferase. Meanwhile, the resistance-related specific genes expression was relatively abundant in MR-1 compared to the M4-45, and cell wall-associated receptor kinases (MELO3C008452 and MELO3C008453), heat shock protein (Cucumis_melo_newGene_172), defensin-like protein (Cucumis_melo_newGene_5490), and disease resistance response protein (MELO3C016325), activator response protein (MELO3C021623), leucine-rich repeat receptor protein kinase (MELO3C024412), lactyl glutathione ligase (Cucumis_melo_newGene_36), and unknown protein (MELO3C007588) were persisted by exhibiting the upregulated expressions. At the transcription level, the interaction factors between the candidate genes in response to the fusarium oxysporum induced stress, and Y2H screening signified the main contribution of MYB transcription factors (MELO3C009678 and MELO3C014597), BZIP (MELO3C011839 and MELO3C019349), unknown proteins, and key enzymes in the ubiquitination process (4XM334FK014). The candidate genes were further verified in exogenously treated melon plants with f. oxysporum (Fom-2, Race 1), Abscisic acid (ABA), Methyl Jasmonite (MeJA), and Salicylic acid (SA), using the fluorescence quantitative polymerase chain reaction (qRT-PCR) analysis. The overall expression results indicated that the SA signal pathway is involved in effective regulation of the Fom-2 gene activity.

12.
J Mech Behav Biomed Mater ; 134: 105396, 2022 10.
Article in English | MEDLINE | ID: mdl-35963022

ABSTRACT

Inter-fiber crosslinks within the extracellular matrix (ECM) play important roles in determining the mechanical properties of the fibrous network. Discrete fiber network (DFN) models have been used to study fibrous biological material, however the contribution of inter-fiber crosslinks to the mechanics of the ECM network is not well understood. In this study, a DFN model of arterial elastin network was developed based on measured structural features to study the contribution of inter-fiber crosslinking properties and density to the mechanics and fiber kinematics of the network. The DFN was generated by randomly placing line segments into a given domain following a fiber orientation distribution function obtained from multiphoton microscopy until a desired fiber areal fraction was reached. Intersections between the line segments were treated as crosslinks. The generated DFN model was then incorporated into an ABAQUS finite element model to simulate the network under equi- and nonequi-biaxial deformation. The inter-fiber crosslinks were modeled using connector elements with either zero (pin joint) or infinite (weld joint) rotational stiffness. Furthermore, inter-fiber crosslinking density was systematically reduced and its effect on both network- and fiber-level mechanics was studied. The DFN model showed good fitting and predicting capabilities of the stress-strain behavior of the elastin network. While the pin and weld joints do not seem to have noticeable effect on the network stress-strain behavior, the crosslinking properties can affect the local fiber mechanics and kinematics. Overall, our study suggests that inter-fiber crosslinking properties are important to the multiscale mechanics and fiber kinematics of the ECM network.


Subject(s)
Collagen , Elastin , Biomechanical Phenomena , Collagen/chemistry , Elastin/chemistry , Extracellular Matrix/chemistry , Finite Element Analysis , Stress, Mechanical
13.
Front Bioeng Biotechnol ; 10: 842754, 2022.
Article in English | MEDLINE | ID: mdl-35433650

ABSTRACT

Aging and disease alter the composition and elastic properties of the aortic wall resulting in shape changes in blood pressure waveform (BPW). Here, we propose a new index, harmonic distortion (HD), to characterize BPW and its relationship with other in vitro and in vivo measures. Using a Fourier transform of the BPW, HD is calculated as the ratio of energy above the fundamental frequency to that at the fundamental frequency. Male mice fed either a normal diet (ND) or a high fat, high sucrose (HFHS) diet for 2-10 months were used to study BPWs in diet-induced metabolic syndrome. BPWs were recorded for 20 s hourly for 24 h, using radiotelemetry. Pulse wave velocity (PWV), an in vivo measure of arterial stiffness, was measured in the abdominal aorta via ultrasound sonography. Common carotid arteries were excised from a subset of mice to determine the tangent modulus using biaxial tension-inflation test. Over a 24-h period, both HD and systolic blood pressure (SBP) show a large variability, however HD linearly decreases with increasing SBP. HD is also linearly related to tangent modulus and PWV with slopes significantly different between the two diet groups. Overall, our study suggests that HD is sensitive to changes in blood pressure and arterial stiffness and has a potential to be used as a noninvasive measure of arterial stiffness in aging and disease.

14.
Front Bioeng Biotechnol ; 10: 862996, 2022.
Article in English | MEDLINE | ID: mdl-35392404

ABSTRACT

Metabolic syndrome increases the risk of cardiovascular diseases. Arteries gradually stiffen with aging; however, it can be worsened by the presence of conditions associated with metabolic syndrome. In this study, we investigated the combined effects of diet-induced metabolic syndrome and aging on the biomechanical properties of mouse common carotid arteries (CCA). Male mice at 2 months of age were fed a normal or a high fat and high sucrose (HFHS) diet for 2 (young group), 8 (adult group) and 18-20 (old group) months. CCAs were excised and subjected to in vitro biaxial inflation-extension tests and the Cauchy stress-stretch relationships were determined in both the circumferential and longitudinal directions. The elastic energy storage of CCAs was obtained using a four-fiber family constitutive model, while the material stiffness in the circumferential and longitudinal directions was computed. Our study showed that aging is a dominant factor affecting arterial remodeling in the adult and old mice, to a similar extent, with stiffening manifested with a significantly reduced capability of energy storage by ∼50% (p < 0.05) and decreases in material stiffness and stress (p < 0.05), regardless of diet. On the other hand, high fat high sucrose diet resulted in an accelerated arterial remodeling in the young group at pre-diabetic stage by affecting the circumferential material stiffness and stress (p < 0.05), which was eventually overshadowed by aging progression. These findings have important implications on the effects of metabolic syndrome on elastic arteries in the younger populations.

15.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5922-5929, 2021 Nov.
Article in Chinese | MEDLINE | ID: mdl-34951183

ABSTRACT

This study intended to explore the effect and mechanism of total flavonoids of Drynariae Rhizoma in improving scopola-mine-induced learning and memory impairments in model mice. Ninety four-month-old Kunming(KM) mice were randomly divided into six groups. The ones in the model group and blank group were treated with intragastric administration of normal saline, while those in the medication groups separately received the total flavonoids of Drynariae Rhizoma, Kangnaoshuai Capsules, donepezil, as well as total flavonoids of Rhizoma Drynariae plus estrogen receptor(ER) blocker by gavage. The mouse model of learning and memory impairments was established via intraperitoneal injection of scopolamine. Following the measurement of mouse learning and memory abilities in Morris water maze test, the hippocampal ERß expression was detected by immunohistochemistry, and the expression levels of ERß and phosphorylated p38(p-p38) in the hippocampus and B-cell lymphoma 2(Bcl-2), Bcl-2-associated death promoter(Bad), and cysteinyl aspartate-specific protease-3(caspase-3) in the apoptotic system were assayed by Western blot. The contents of malondia-ldehyde(MDA), superoxide dismutase(SOD), and nitric oxide(NO) in the hippocampus were then determined using corresponding kits. Compared with the control group, the model group exhibited significantly prolonged incubation period, reduced frequency of cros-sing the platform, shortened residence time in the target quadrant, lowered ERß, Bcl-2 and SOD activity in the hippocampus, and increased p-p38/p38, Bad, caspase-3, MDA, and NO. Compared with the model group, the total flavonoids of Rhizoma Drynariae increased the expression of ERß and SOD in the hippocampus, down-regulated the expression of neuronal pro-apoptotic proteins, up-re-gulated the expression of anti-apoptotic proteins, and reduced p-p38/p38, MDA, and NO. The effects of total flavonoids of Drynariae Rhizoma on the above indexes were reversed by ER blocker. It has been proved that the total flavonoids of Drynariae Rhizoma obviously alleviate scopolamine-induced learning and memory impairments in mice, which may be achieved by regulating the neuronal apoptotic system and oxidative stress via the ER-p38 mitogen-activated protein kinase(ER-p38 MAPK) signaling pathway.


Subject(s)
Polypodiaceae , Animals , Flavonoids , Hippocampus , Maze Learning , Mice , Receptors, Estrogen , Scopolamine/toxicity , Signal Transduction , p38 Mitogen-Activated Protein Kinases/genetics
16.
Biomech Model Mechanobiol ; 20(1): 93-106, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32705413

ABSTRACT

The artery relies on interlamellar structural components, mainly elastin and collagen fibers, for maintaining its integrity and resisting dissection propagation. In this study, the contribution of arterial elastin and collagen fibers to interlamellar bonding was studied through mechanical testing, multiphoton imaging and finite element modeling. Steady-state peeling experiments were performed on porcine aortic media and the purified elastin network in the circumferential (Circ) and longitudinal (Long) directions. The peeling force and energy release rate associated with mode-I failure are much higher for aortic media than for the elastin network. Also, longitudinal peeling exhibits a higher energy release rate and strength than circumferential peeling for both the aortic media and elastin. Multiphoton imaging shows the recruitment of both elastin and collagen fibers within the interlamellar space and points to in-plane anisotropy of fiber distributions as a potential mechanism for the direction-dependent phenomena of peeling tests. Three-dimensional finite element models based on cohesive zone model (CZM) of fracture were created to simulate the peeling tests with the interlamellar energy release rate and separation distance at damage initiation obtained directly from peeling test. Our experimental results show that the separation distance at damage initiation is 80 µm for aortic media and 40 µm for elastin. The damage initiation stress was estimated from the model for aortic media (Circ: 60 kPa; Long: 95 kPa) and elastin (Circ: 9 kPa; Long: 14 kPa). The interlamellar separation distance at complete failure was estimated to be 3 - 4 mm for both media and elastin. Furthermore, elastin and collagen fibers both play an important role in bonding of the arterial wall, while collagen has a higher contribution than elastin to interlamellar stiffness, strength and toughness. These results on microstructural interlamellar failure shed light on the pathological development and progression of aortic dissection.


Subject(s)
Arteries/physiology , Elastin/chemistry , Elastin/metabolism , Fibrillar Collagens/chemistry , Fibrillar Collagens/metabolism , Animals , Anisotropy , Aorta/physiology , Biomechanical Phenomena , Computer Simulation , Elasticity , Finite Element Analysis , Microscopy, Fluorescence, Multiphoton , Swine
17.
Sci Adv ; 6(21): eaaz1173, 2020 05.
Article in English | MEDLINE | ID: mdl-32494736

ABSTRACT

Aortic dissection is a devastating cardiovascular disease known for its rapid propagation and high morbidity and mortality. The mechanisms underlying the propagation of aortic dissection are not well understood. Our study reports the discovery of avalanche-like failure of the aorta during dissection propagation that results from the local buildup of strain energy followed by a cascade failure of inhomogeneously distributed interlamellar collagen fibers. An innovative computational model was developed that successfully describes the failure mechanics of dissection propagation. Our study provides the first quantitative agreement between experiment and model prediction of the dissection propagation within the complex extracellular matrix (ECM). Our results may lead to the possibility of predicting such catastrophic events based on microscopic features of the ECM.

18.
J Biomech Eng ; 141(8)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-30917195

ABSTRACT

Arterial stiffening is a hallmark of aging, but how aging affects the arterial response to pressure is still not completely understood, especially with regard to specific matrix metalloproteinases (MMPs). Here, we performed biaxial inflation-extension tests on C57BL/6 mice to study the effects of age and MMP12, a major arterial elastase, on arterial biomechanics. Aging from 2 to 24 months leads to both circumferential and axial stiffening with stretch, and these changes are associated with an increased wall thickness, a decreased inner radius-wall thickness ratio, and a decreased in vivo axial stretch. Analysis of in vivo stretch and stress-stretch curves with arteries from age- and sex-matched wild-type (WT) and MMP12-null arteries demonstrates that MMP12 deletion attenuates age-dependent arterial stiffening, mostly in the axial direction. MMP12 deletion also prevents the aging-associated decrease in the in vivo stretch and, in general, leads to an axial mechanics phenotype characteristic of much younger mice. Circumferential arterial mechanics were much less affected by deletion of MMP12. We conclude that the induction of MMP12 during aging preferentially promotes axial arterial stiffening.

19.
J Mech Behav Biomed Mater ; 92: 1-10, 2019 04.
Article in English | MEDLINE | ID: mdl-30654215

ABSTRACT

Extracellular matrix (ECM) plays critical roles in establishing tissue structure-function relationships and controlling cell fate. However, the mechanisms by which ECM mechanics influence cell and tissue behavior remain to be elucidated since the events associated with this process span length scales from the tissue to molecular level. Entirely new methods are needed in order to better understand the multiscale mechanics of ECM. In this study, a multiscale experimental approach was established by integrating Optical Magnetic Twisting Cytometry (OMTC) with a biaxial tensile tester to study the microscopic (local) ECM mechanical properties under controlled tissue-level (global) loading. Adventitial layer of porcine thoracic artery was used as a collagen-based ECM. Multiphoton microscopy imaging was performed to capture the changes in ECM fiber structure during biaxial deformation. As visualized from multiphoton microscopy images, biaxial stretch induces gradual fiber straightening and the fiber families become evident at higher stretch levels. The OMTC measurements show that the local apparent storage and loss modulus increases with the global biaxial stretch, however there exists a complex interplay among local ECM mechanical properties, ECM structural heterogeneity, and fiber distribution and engagement. The phase lag does not change significantly with global biaxial stretch. Our results also show a much faster increase in global tissue tangent modulus compared to the local apparent complex modulus with biaxial stretch, indicating the scale dependency of ECM mechanics.


Subject(s)
Extracellular Matrix/metabolism , Mechanical Phenomena , Animals , Biomechanical Phenomena , Materials Testing/instrumentation , Stress, Mechanical , Swine , Tensile Strength
20.
J Biomech ; 82: 211-219, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30415914

ABSTRACT

The contribution of glycosaminoglycans (GAGs) to the biological and mechanical functions of biological tissue has emerged as an important area of research. GAGs provide structural basis for the organization and assembly of extracellular matrix (ECM). The mechanics of tissue with low GAG content can be indirectly affected by the interaction of GAGs with collagen fibers, which have long been known to be one of the primary contributors to soft tissue mechanics. Our earlier study showed that enzymatic GAG depletion results in straighter collagen fibers that are recruited at lower levels of stretch, and a corresponding shift in earlier arterial stiffening (Mattson et al., 2016). In this study, the effect of GAGs on collagen fiber recruitment was studied through a structure-based constitutive model. The model incorporates structural information, such as fiber orientation distribution, content, and recruitment of medial elastin, medial collagen, and adventitial collagen fibers. The model was first used to study planar biaxial tensile stress-stretch behavior of porcine descending thoracic aorta. Changes in elastin and collagen fiber orientation distribution, and collagen fiber recruitment were then incorporated into the model in order to predict the stress-stretch behavior of GAG depleted tissue. Our study shows that incorporating early collagen fiber recruitment into the model predicts the stress-stretch response of GAG depleted tissue reasonably well (rms = 0.141); considering further changes of fiber orientation distribution does not improve the predicting capability (rms = 0.149). Our study suggests an important role of GAGs in arterial mechanics that should be considered in developing constitutive models.


Subject(s)
Collagen/metabolism , Glycosaminoglycans/metabolism , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/physiology , Biomechanical Phenomena , Elastin/metabolism , Extracellular Matrix/metabolism , Models, Molecular , Stress, Mechanical , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...