Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Environ Pollut ; 359: 124610, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053805

ABSTRACT

Organic ultraviolet filters (OUVFs) are extensively incorporated into both cosmetic items and industrial products and have been commonly found in water ecosystems. This study aims to examine the environmental levels, sources, ecological and human health risks of 14 commonly used OUVFs both in coastal water and beach deposit samples collected from the nearshore regions of Hainan Island and the South China Sea. This is first study highlighting the contamination of OUVFs in Hainan Island and utilizing economic and tourism data to confirm the potential source of OUVF pollution in costal aquatic and coastal ecosystem. Along the coastal tourist regions of Hainan Island, the median concentrations in coastal waters and beach deposits of these OUVFs fall within the range from 1.2 to 53.2 ng/L and 0.2-17.0 ng/g dw, respectively. In coastal water and beach deposit, the concentration of BP-3 was the highest, with median concentrations of 53.2 ng/L and 17.0 ng/g dw, respectively. Regarding human health risks, the daily intake of all 14 OUVFs through swimming was found to be 40-48 ng/kg/day. Ecological risk assessment indicates that BP-3 presents a medium risk for marine microalgae with a concurrent low risk for corals. The correlation analysis underscores a substantial interrelation of OUVFs in both coastal waters and beach deposits with various economic indicators, including annual rainfall, overnight tourists, total hotel rooms (unit), room occupancy rate, and sewage treatment capacity.

2.
Asian J Pharm Sci ; 19(3): 100925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966285

ABSTRACT

Despite standard treatment for non-small cell lung cancer (NSCLC) being surgical resection, cancer recurrence and complications, such as induction of malignant pleural effusion (MPE) and significant postoperative pain, usually result in treatment failure. In this study, an alginate-based hybrid hydrogel (SOG) is developed that can be injected into the resection surface of the lungs during surgery. Briefly, endoplasmic reticulum-modified liposomes (MSLs) pre-loaded with the signal transducer and activator of transcription 3 (STAT3) small interfering RNA and lidocaine hydrochloride are encapsulated in SOG. Once applied, MSLs strongly downregulated STAT3 expression in the tumor microenvironment, resulting in the apoptosis of lung cancer cells and polarization of tumor-associated macrophages towards the M1-like phenotype. Meanwhile, the release of lidocaine hydrochloride (LID) was beneficial for pain relief and natural killer cell activation. Our data demonstrated MSL@LID@SOG not only efficiently inhibited tumor growth but also potently improved the quality of life, including reduced MPE volume and pain relief in orthotopic NSCLC mouse models, even with a single administration. MSL@LID@SOG shows potential for comprehensive clinical management upon tumor resection in NSCLC, and may alter the treatment paradigms for other cancers.

3.
J Craniofac Surg ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747617

ABSTRACT

OBJECTIVE: To investigate plastic surgery repair's effects and adverse reactions in the clinical therapy of asymmetric double eyelids. METHODS: All 126 sufferers who came to the hospital for asymmetric double eyelid plastic repair from January 2022 to October 2022 were selected as the research objects, and they were divided into a control group and an observation group using the random number method, with 63 cases in each group, in which sufferers in the control group underwent full incision blepharoplasty and sufferers in the observation group underwent small incision liposuction with submerged sutures. The general data, treatment results, treatment satisfaction, related surgical indicators, and frequency of adverse reactions of the 2 groups of sufferers with asymmetric double eyelid plastic repair were compared. RESULTS: It had no statistically obvious distinction between the control group and the observation group of sufferers in terms of general data such as sex, age, weight, and height (P>0.05); the total therapy efficiency of the sufferers in the observation group (95.24%) was greater than the control group (74.60%), with P value <0.05; the total treatment satisfaction of the patients in the observation group (96.83%) was significantly higher than that in the control group (76.19%), with P value <0.05; compared with the control group, patients in the observation group had shorter operative time and healing time and less intraoperative bleeding, with P value <0.05; the total frequency of adverse reactions of sufferers in the observation group (4.76%) was less than the control group (17.46%), with P value <0.05. CONCLUSION: Small incision liposuction with submerged sutures for plastic repair has significant efficacy, relatively high patient satisfaction, and low incidence of adverse reactions, in line with patient esthetic review, which has a broad clinical application prospect.

4.
Aesthetic Plast Surg ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700543

ABSTRACT

BACKGROUND: Outcomes of immediate breast reconstructions can be influenced by postoperative radiotherapy. However, there is no clarity on the use of prepectoral or subpectoral breast reconstruction in the setting of postmastectomy radiation therapy (PMRT). We reviewed evidence on the complication rates of prepectoral and subpectoral breast reconstruction in women undergoing PMRT. METHODS: PubMed, Web of Science, and Embase databases were scanned for studies comparing complication rates of prepectoral and subpectoral breast reconstruction with PMRT. All complications were pooled in a random-effect meta-analysis to obtain odds ratio (OR). RESULTS: Eight observational studies were included. Meta-analysis showed no difference in the risk of infections (OR: 1.22 95% CI 0.79, 1.88 I2=0%), implant loss (OR: 0.86 95% CI 0.50, 1.50 I2=14%), seroma (OR: 1.01 95% CI 0.43, 2.34 I2=50%), hematoma (OR: 0.44 95% CI 0.12, 1.71 I2=0%), wound dehiscence (OR: 0.95 95% CI 0.42, 2.17 I2=0%), and skin necrosis (OR: 0.61 95% CI 0.21, 1.75 I2=36%), contracture (OR: 0.46 95% CI 0.15, 1.48 I2=54%) and the need for revision surgeries (OR: 0.85 95% CI 0.45, 1.60 I2=15%) between the prepectoral and subpectoral groups. CONCLUSIONS: Data from observational studies indicates that in appropriately selected patients there may not be any difference in the risk of early complications with prepectoral or subpectoral breast reconstruction with PMRT. Current evidence is limited by the small number of studies, short follow-up and selection bias. There is a need for randomized controlled trials comparing the two approaches to obtain robust evidence on long-term outcomes. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .

5.
J Inflamm Res ; 17: 2499-2511, 2024.
Article in English | MEDLINE | ID: mdl-38699596

ABSTRACT

Background: Tuberculosis (TB) is one of the most infectious diseases caused by Mycobacterium tuberculosis (M. tb), and the diagnosis of active tuberculosis (TB) and latent TB infection (LTBI) remains challenging. Methods: Gene expression files were downloaded from the GEO database to identify the differentially expressed genes (DEGs). The ssGSEA algorithm was applied to assess the immunological characteristics of patients with LTBI and TB. Weighted gene co-expression network analysis, protein-protein interaction network, and the cytoHubba plug-in of Cytoscape were used to identify the real hub genes. Finally, a diagnostic model was constructed using real hub genes and validated using a validation set. Results: Macrophages and natural killer cells were identified as important immune cells strongly associated with TB. In total, 726 mRNAs were identified as DEGs. MX1, STAT1, IFIH1, DDX58, and IRF7 were identified as real hub immune-related genes. The diagnostic model generated by the five real hub genes could distinguish active TB from healthy controls or patients with LTBI. Conclusion: Our study may provide implications for the diagnosis and drug development of M. tb infections.

6.
Cell Death Dis ; 15(1): 87, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38272883

ABSTRACT

Cancer cells alter their metabolism and epigenetics to support cancer progression. However, very few modulators connecting metabolism and epigenetics have been uncovered. Here, we reveal that serine hydroxymethyltransferase-2 (SHMT2) generates S-adenosylmethionine (SAM) to epigenetically repress phosphatase and tensin homolog (PTEN), leading to papillary thyroid cancer (PTC) metastasis depending on activation of AKT signaling. SHMT2 is elevated in PTC, and is associated with poor prognosis. Overexpressed SHMT2 promotes PTC metastasis both in vitro and in vivo. Proteomic enrichment analysis shows that AKT signaling is activated, and is positively associated with SHMT2 in PTC specimens. Blocking AKT activation eliminates the effects of SHMT2 on promoting PTC metastasis. Furthermore, SHMT2 expression is negatively associated with PTEN, a negative AKT regulator, in PTC specimens. Mechanistically, SHMT2 catalyzes serine metabolism and produces activated one-carbon units that can generate SAM for the methylation of CpG islands in PTEN promoter for PTEN suppression and following AKT activation. Importantly, interference with PTEN expression affects SHMT2 function by promoting AKT signaling activation and PTC metastasis. Collectively, our research demonstrates that SHMT2 connects metabolic reprogramming and epigenetics, contributing to the poor progression of PTC.


Subject(s)
Proto-Oncogene Proteins c-akt , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Thyroid Neoplasms/metabolism , Proteomics , Epigenesis, Genetic , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
7.
Mar Environ Res ; 195: 106381, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286076

ABSTRACT

Microplastics (MPs) have become a popular research topic due to their potential ramifications on aquatic organisms. To evaluate the ecotoxicological impacts of chronic exposure to different microplastics on marine medaka larvae, we exposed medaka larvae to 200 µg/L of polyethylene (PE-200) and polylactic acid (PLA-200) microplastics for 60 days, respectively. The results indicated that both exposures had no significant effect on fish length/weight and did not result in fish mortality. Notably, the structure of intestinal microbiota was not disrupted either. However, microscopy observations of intestinal tissue suggested that exposure to MPs resulted in inflammation of the intestinal tract of fish and significant atrophy and shedding of small intestinal villus. Linear discriminant analysis Effect Size (LEfSe) showed that intestinal enrichment of Streptomyces occurred in marine medaka larvae in both MPs treatments, while the PE-200 treatment exhibited a significant enrichment. In addition, the PICRUSt2 prediction indicated significant upregulation of the Novobiocin biosynthesis function in gut microbiota in the PE-200 treatment. Overall, multi-level assessment is necessary to determine the risk of exposure of aquatic organisms to MPs.


Subject(s)
Microbiota , Oryzias , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Plastics , Oryzias/physiology , Larva , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Aquatic Organisms
8.
Sci Total Environ ; 914: 169695, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38160829

ABSTRACT

The rapid development of marine aquaculture has led to the increased use and release of antibiotics into the marine environment, consequently contributing to the emergence of antibiotic resistance. Information on antibiotic resistance in nearshore marine aquaculture areas remains limited, and research on the microbial composition and potential hosts of antibiotic resistance genes (ARGs) in marine aquaculture areas is scarce. This study used SmartChip real-time fluorescent quantitative PCR and qPCR to quantitatively analyze 44 ARGs and 10 mobile genetic elements (MGEs) genes in 12 sampling points in the nearshore aquaculture area of Wenchang. High-throughput sequencing of 16S rRNA was used to study microbial diversity in the study area, to clarify the correlation between ARGs, MGEs, and microbial diversity, and to determine the possible sources and potential hosts of ARGs. The results showed that a total of 37 ARGs and 8 MGEs were detected in the study area. The detection rate of 9 ARGs (aac(6')-Ib(aka aacA4)-02, catA1, cmlA, cfr, sul1, sul2, sulA/folP-01, tetC, tetX) was 100 %. The absolute abundance of ARGs in the 12 sampling points ranged from 2.75 × 107 to 3.79 × 1010 copies·L-1, and the absolute abundance of MGEs was 1.30 × 105 to 2.54 × 107 copies·L-1, which was relatively high compared to other research areas. ARGs and MGEs were significantly correlated, indicating that MGEs play an important role as a mediator in the spread of ARGs. At the phylum level, Proteobacteria and Cyanobacteria were the dominant bacteria in the study area, with HIMB11 and unidentifiedChloroplast being the dominant levels, respectively. Network analysis of ARGs and microorganisms (genus level) revealed that Cognatishimia, Thalassobius, Aestuariicoccus, Thalassotalea, and Vibrio were significantly correlated with multiple ARGs and were the main potential hosts of ARGs in the nearshore waters of Wenchang.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Anti-Bacterial Agents/analysis , RNA, Ribosomal, 16S/genetics , Drug Resistance, Microbial/genetics , China , Aquaculture
9.
Nat Commun ; 14(1): 7527, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980429

ABSTRACT

Mitochondria dysfunction contributes to acute liver injuries, and mitochondrial regulators, such as PGC-1α and MCJ, affect liver regeneration. Therefore, identification of mitochondrial modulators may pave the way for developing therapeutic strategies. Here, ZHX2 is identified as a mitochondrial regulator during acute liver injury. ZHX2 both transcriptionally inhibits expression of several mitochondrial electron transport chain genes and decreases PGC-1α stability, leading to reduction of mitochondrial mass and OXPHOS. Loss of Zhx2 promotes liver recovery by increasing mitochondrial OXPHOS in mice with partial hepatectomy or CCl4-induced liver injury, and inhibition of PGC-1α or electron transport chain abolishes these effects. Notably, ZHX2 expression is higher in liver tissues from patients with drug-induced liver injury and is negatively correlated with mitochondrial mass marker TOM20. Delivery of shRNA targeting Zhx2 effectively protects mice from CCl4-induced liver injury. Together, our data clarify ZHX2 as a negative regulator of mitochondrial OXPHOS and a potential target for developing strategies for improving liver recovery after acute injuries.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Oxidative Phosphorylation , Humans , Mice , Animals , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Mitochondria/metabolism , Hepatectomy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Transcription Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
10.
Cell Death Differ ; 30(9): 2104-2119, 2023 09.
Article in English | MEDLINE | ID: mdl-37582865

ABSTRACT

Macrophages are usually educated to tumor-associated macrophages (TAMs) in cancer with pro-tumor functions by tumor microenvironment (TME) and TAM reprogramming has been proposed as a potential tumor immunotherapy strategy. We recently demonstrated the critical role of Zinc-fingers and homeoboxes 2 (Zhx2) in macrophages' metabolic programming. However, whether Zhx2 is responsible for macrophage polarization and TAMs reprogramming is largely unknown. Here, we show that Zhx2 controls macrophage polarization under the inflammatory stimulus and TME. Myeloid-specific deletion of Zhx2 suppresses LPS-induced proinflammatory polarization but promotes IL-4 and TME-induced anti-inflammatory and pro-tumoral phenotypes in murine liver tumor models. Factors in TME, especially lactate, markedly decrease the expression of Zhx2 in TAMs, leading to the switch of TAMs to pro-tumor phenotype and consequent cancer progression. Notably, reduced ZHX2 expression in TAM correlates with poor survival of HCC patients. Mechanistic studies reveal that Zhx2 associates with NF-κB p65 and binds to the Irf1 promoter, leading to transcriptional activation of Irf1 in macrophages. Zhx2 functions in maintaining macrophage polarization by regulating Irf1 transcription, which may be a potential target for macrophage-based cancer immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation , Liver Neoplasms/pathology , Macrophages/metabolism , Transcription Factors/metabolism , Tumor Microenvironment
11.
Sci Total Environ ; 902: 166308, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37595922

ABSTRACT

Benzophenone-3 (BP-3) is a UV filter that is ubiquitously present in the environment due to its photostability and degradation resistance and has wide applications in personal care products. BP-3 will eventually be discharged into the ocean. Studies shows BP-3 interferes with endocrine system of aquatic organisms, especially fish. However, the toxicity and mechanisms of subacute exposure of the coral reef fish to BP-3 remain elusive. Here, we exposed the one-month-old clown anemonefish to BP-3 at 1 and 10 µg/L for 14 and 28 days, respectively. After chronic exposure, the effects of BP-3 on the growth of clown anemonefish were investigated in terms of growth-related hormones, immune enzyme activity, digestive enzyme activity, transcriptional profiling of feeding- and obesity-related genes and digital RNA sequencing. The body weight in the BP-3 groups were abnormally increased (1 µg/L group in 14 days treatment and all groups in 28 days treatment), altered insulin content (28 days exposure), immune-related and digestive-related enzymatic activities. At the molecular level, BP-3 interferes with the expression of feeding- and obesity-related genes. Digital RNA sequencing analysis showed that BP-3 interferes with Kyoto encyclopedia of genes and genomes (KEGG) pathways related to growth, social behavior (learning behavior), Mitogen-Activated Protein Kinase (MAPK) signaling pathway, PI3K-Akt signaling pathway, and insulin secretion. Notably, in the insulin secretion, BP-3 induced Ca2+ up-regulation that may damage ß cells. Growth abnormalities and social behavior (learning behavior) KEGG pathway disturbances may have potential impacts on populations of clown anemonefish. Our results reveal the toxicological effects of subacute exposure to BP-3, and provides insight into the effects and mechanisms of BP-3 on clown anemonefish growth.


Subject(s)
Perciformes , Phosphatidylinositol 3-Kinases , Animals , Phosphatidylinositol 3-Kinases/metabolism , Perciformes/physiology , Fishes , Obesity
12.
ACS Omega ; 8(26): 23477-23483, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37426286

ABSTRACT

DNA-encoded libraries (DELs) are a powerful platform in drug discovery. Peptides have unique properties that make them attractive pharmaceutical candidates. N-methylation of the peptide backbone can confer beneficial properties such as increased proteolytic stability and membrane permeability. Herein, we evaluate different DEL reaction systems and report a DNA-compatible protocol for forming N-methylated amide bonds. The DNA-compatible, bis(trichloromethyl)carbonate-mediated amide coupling is efficient for the formation of N-methyl peptide bonds, which promises to increase the opportunity to identify passively cell-permeable macrocyclic peptide hits by DNA-encoded technology.

13.
iScience ; 26(6): 106871, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37275527

ABSTRACT

Emerging evidence shows that pancreatic ß-cell function and quality are key determinants in the progression of type 2 diabetes (T2D). The transcription factor zinc finger homeobox 2 (Zhx2) is involved in proliferation and development of multiple cells. However, the exact role of Zhx2 in ß-cells and T2D remains completely unknown. Here, we report that Zhx2 orchestrates ß-cell mass and function by regulating paired box protein pax-6 (Pax6). We found that ß-cell-specific knockout Zhx2 (Zhx2BKO) mice showed a decrease in ß-cell proliferation and glucose homeostasis. Under prediabetic and diabetic conditions, we discovered glucose intolerance in both Zhx2BKO-HFD mice and Zhx2BKO-db/db mice, with reduced ß-cell mass and insulin secretion. Mechanistically, we demonstrated that Zhx2 targeted the Pax6 promoter region (-1740∼-1563; -862∼-559; -251∼+75), enhanced promoter activity. Overall, Zhx2 maintains ß-cell function by transcriptionally regulating Pax6, which provides a therapeutic target for diabetes intervention.

14.
World J Clin Cases ; 11(14): 3248-3255, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37274036

ABSTRACT

BACKGROUND: Tuberculous uveitis caused by tuberculosis infection factors is common, but tuberculous uveitis caused by Mycobacterium tuberculosis found in the intraocular fluid is rare. This report describes the use of intraocular fluid in the diagnosis of tuberculous uveitis in a patient and reviews the relevant literature. CASE SUMMARY: A 24-year-old woman who was 31-wk pregnant visited Hebei Chest Hospital due to intermittent chest pain, fever, and decreased vision for 3 mo. The hydrothorax test suggested "tuberculous pleurisy", and yellow effusion was extracted from the chest tube twice resulting in a total volume of approximately 800 mL. The patient chose to continue the pregnancy without treatment, and was hospitalized again due to high fever. Following 2 mo of anti-tuberculosis treatment, a healthy boy was delivered by cesarean section. Tuberculous uveitis was diagnosed using tuberculosis Xpert, and intraocular infection was detected by second-generation gene sequencing. Following systemic treatment, the patient gradually improved, and the corrected visual acuity of the left eye gradually increased from 0.08 to 1.0. CONCLUSION: The etiology of uveitis is complex, and it is necessary to assess the patient's general condition and apply molecular biology methods to determine the pathogenesis and guide precise treatment, to improve clinicians' awareness and standardize treatment of the disease.

15.
Cogn Neurodyn ; 17(3): 661-669, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37265653

ABSTRACT

The assessment of motor function is critical to the rehabilitation of stroke patients. However, commonly used evaluation methods are based on behavior scoring, which lacks neurological indicators that directly reflect the motor function of the brain. The objective of this study was to investigate whether resting-state EEG indicators could improve stroke rehabilitation evaluation. We recruited 68 participants and recorded their resting-state EEG data. According to Brunnstrom stage, the participants were divided into three groups: severe, moderate, and mild. Ten quantitative electroencephalographic (QEEG) and five non-linear parameters of resting-state EEG were calculated for further analysis. Statistical tests were performed, and the genetic algorithm-support vector machine was used to select the best feature combination for classification. We found the QEEG parameters show significant differences in Delta, Alpha1, Alpha2, DAR, and DTABR (P < 0.05) among the three groups. Regarding nonlinear parameters, ApEn, SampEn, Lz, and C0 showed significant differences (P < 0.05). The optimal feature classification combination accuracy rate reached 85.3%. Our research shows that resting-state EEG indicators could be used for stroke rehabilitation evaluation.

16.
Toxics ; 11(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37235236

ABSTRACT

With the rapid global demand for mariculture products in recent years, the use of antibiotics has increased intensively in the mariculture area. Current research on antibiotic residues in mariculture environments is limited, and less information is available on the presence of antibiotics in tropical waters, limiting a comprehensive understanding of their environmental presence and risk. Therefore, this study investigated the environmental occurrence and distribution of 50 antibiotics in the near-shore aquaculture waters of Fengjia Bay. A total of 21 antibiotics were detected in 12 sampling sites, including 11 quinolones, 5 sulfonamides, 4 tetracyclines, and 1 chloramphenicol; the quinolones pyrimethamine (PIP), delafloxacin (DAN), flurofloxacin (FLE), ciprofloxacin (CIP), norfloxacin (NOR), pefloxacin (PEF), enrofloxacin (ENO), and minocycline (MNO) of the tetracycline class were detected in all sampling points. The total antibiotic residue concentrations in the study area ranged from 153.6 to 1550.8 ng/L, the tetracycline antibiotics were detected in the range of 10 to 1344.7 ng/L, and the chloramphenicol antibiotics were detected in the range of 0 to 106.9 ng/L. The detected concentrations of quinolones ranged from 81.3 to 136.1 ng/L, and the residual concentrations of sulfonamide antibiotics ranged from 0 to 313.7 ng/L. The correlation analysis with environmental factors revealed that pH, temperature, conductivity, salinity, NH3--N, and total phosphorus had a strong correlation with antibiotics. Based on PCA analysis, the main sources of antibiotic pollution in the area were determined to be the discharge of farming wastewater and domestic sewage. The ecological risk assessment indicated that the residual antibiotics in the water environment of the near-shore waters of Fengjiawan had certain risks to the ecosystem. Among them, CIP, NOR, sulfamethoxazole (TMP), ofloxacin (OFL), enrofloxacin (ENO), sulfamethoxazole (SMX), and FLE showed medium to high risk. Therefore, it is recommended to regulate the use of these antibiotics and the discharge and treatment of culturing wastewater, and measures should be taken to reduce the environmental pollution caused by antibiotics and to monitor the long-term ecological risk of antibiotics in the region. Overall, our results provide an important reference for understanding the distribution and ecological risk of antibiotics in Fengjiawan.

17.
J Org Chem ; 88(11): 6704-6715, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37155326

ABSTRACT

A variety of 4,5-dihydrofuro[2,3-b]azocin-6-one derivatives were expediently assembled through Au(I)-catalyzed cyclization and 2-(tert-butyl)-1,1,3,3-tetramethylguanidine (BTMG)-mediated [4+4] annulation reactions of enyne-amides and ynones. The reactions exhibit high efficiency with excellent regio- and diastereoselectivity. A broad spectrum of substrates was utilized. The products with an eight-membered ring might be useful in biological chemistry and medicinal science. Furthermore, the products could be facilely converted into various derivatives.

18.
Redox Biol ; 63: 102732, 2023 07.
Article in English | MEDLINE | ID: mdl-37150151

ABSTRACT

Glutamine is critical for tumor progression, and restriction of its availability is emerging as a potential therapeutic strategy. The metabolic plasticity of tumor cells helps them adapting to glutamine restriction. However, the role of cholesterol metabolism in this process is relatively unexplored. Here, we reported that glutamine deprivation inhibited cholesterol synthesis in hepatocellular carcinoma (HCC). Reactivation of cholesterol synthesis enhanced glutamine-deprivation-induced cell death of HCC cells, which is partially duo to augmented NADPH depletion and lipid peroxidation. Mechanistically, glutamine deprivation induced lipophagy to transport cholesterol from lipid droplets (LDs) to endoplasmic reticulum (ER), leading to inhibit SREBF2 maturation and cholesterol synthesis, and maintain redox balance for survival. Glutamine deprivation decreased mTORC1 activity to induce lipophagy. Importantly, administration of U18666A, CQ, or shTSC2 viruses further augmented GPNA-induced inhibition of xenograft tumor growth. Clinical data supported that glutamine utilization positively correlated with cholesterol synthesis, which is associated with poor prognosis of HCC patients. Collectively, our study revealed that cholesterol synthesis inhibition is required for the survival of HCC under glutamine-restricted tumor microenvironment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Glutamine/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Cell Line, Tumor , Autophagy , Cholesterol , Tumor Microenvironment
20.
Environ Pollut ; 317: 120792, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36473638

ABSTRACT

Benzophenone-3 (BP-3) often used as a UV filter in various products and an endocrine disruptor. In this work, we exposed the clown anemonefish to 10 µg/L and 50 µg/L BP-3 for 7 and 14 days. Liver histological, biochemical analysis, and transcriptome sequencing were used to explore the mechanism of the lipid metabolism disorder in the liver of three-month-old clown anemonefish treated with BP-3. The histological and biochemical analysis showed that BP-3 induces morphological changes and lipid droplet accumulation, and the lipid content, lipase, and antioxidant enzyme activity were abnormal. After treatment with 10 µg/L and 50 µg/L BP-3 for 7 days, the transcriptome analysis further demonstrated that the KEGG analysis revealed that the differentially expressed genes (DEGs) were mainly associated with fat digestion and absorption, PPAR signaling pathway, circadian rhythm, and mineral absorption pathways; After 10 µg/L and 50 µg/L of BP-3 exposure for 14 days, the KEGG analysis were mainly associated with circadian rhythm, circadian rhythm-fly, protein processing in the endoplasmic reticulum, and beta-alanine metabolism pathways. Several key genes were involved in the process of liver lipid metabolism, including CD36, APoA-Ⅰ, FABP, LPL, ACS, and PEPCK. The qRT-PCR validation results showed that eight genes (CYP8B1, FABP1, LPL, MGAT, PEPCK, PER1, PSMB4, PSME2) were significantly down-regulated, and the other two genes (Fbxl3, RXR) were significantly up-regulated after 7 days of BP-3 exposure. Similarly, eleven genes (AMPK, ARNTL, Bmal1, CASP3, CYC, CYP2J, CYP2U1, GSK3A, PEPCK, RAC1, RORA) were significantly up-regulated, and the other four genes (NR1D1, PER1, PTGDS, HLF) were significantly down-regulated after 14 days of BP-3 exposure. In conclusion, our results elucidate the physiological and molecular responses to BP-3 exposure in the liver lipid metabolism of clown anemonefish, and these findings reveal that the regulation of lipid metabolism is disturbed when clown anemonefish is exposed to UV filters.


Subject(s)
Lipid Metabolism , Perciformes , Animals , Perciformes/metabolism , Liver/metabolism , Benzophenones
SELECTION OF CITATIONS
SEARCH DETAIL