Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson Imaging ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38544434

ABSTRACT

BACKGROUND: The fasting-postprandial state remains an underrecognized confounding factor for quantifying cerebral blood flow (CBF) in the cognitive assessment and differential diagnosis of Alzheimer's disease (AD). PURPOSE: To investigate the effects of fasting-postprandial state on arterial spin labeling (ASL)-based CBF in AD patients. STUDY TYPE: Prospective. SUBJECTS: Ninety-two subjects (mean age = 62.5 ± 6.4 years; females 29.3%), including 30 with AD, 32 with mild cognitive impairment (MCI), and 30 healthy controls (HCs). Differential diagnostic models were developed with a 4:1 training to testing set ratio. FIELD STRENGTH/SEQUENCE: 3-T, T1-weighted imaging using gradient echo and pseudocontinuous ASL imaging using turbo spin echo. ASSESSMENT: Two ASL scans were acquired to quantify fasting state and postprandial state regional CBFs based on an automated anatomical labeling atlas. Two-way ANOVA was used to assess the effects of fasting/postprandial state and disease state (AD, MCI, and HC) on regional CBF. Pearson's correlation analysis was conducted between regional CBF and cognitive scores (Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]). The diagnostic performances of the fasting state, postprandial state, and mixed state (random mixing of the fasting and postprandial state CBF) in differential diagnosis of AD were conducted using support vector machine and logistic regression models. STATISTICAL TESTS: Two-way ANOVA, Pearson's correlation, and area under the curve (AUC) of diagnostic model were performed. P values <0.05 indicated statistical significance. RESULTS: Fasting-state CBF was correlated with cognitive scores in more brain regions (17 vs. 4 [MMSE] and 15 vs. 9 [MoCA]) and had higher absolute correlation coefficients than postprandial-state CBF. In the differential diagnosis of AD patients from MCI patients and HCs, fasting-state CBF outperformed mixed-state CBF, which itself outperformed postprandial-state CBF. DATA CONCLUSION: Compared with postprandial CBF, fasting-state CBF performed better in terms of cognitive score correlations and in differentiating AD patients from MCI patients and HCs. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.

2.
Adv Sci (Weinh) ; 11(11): e2307154, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38161213

ABSTRACT

Nanozyme catalytic therapy for cancer treatments has become one of the heated topics, and the therapeutic efficacy is highly correlated with their catalytic efficiency. In this work, three copper-doped CeO2 supports with various structures as well as crystal facets are developed to realize dual enzyme-mimic catalytic activities, that is superoxide dismutase (SOD) to reduce superoxide radicals to H2 O2 and peroxidase (POD) to transform H2 O2 to ∙OH. The wire-shaped CeO2 /Cu-W has the richest surface oxygen vacancies, and a low level of oxygen vacancy (Vo) formation energy, which allows for the elimination of intracellular reactive oxygen spieces (ROS) and continuous transformation to ∙OH with cascade reaction. Moreover, the wire-shaped CeO2 /Cu-W displays the highest toxic ∙OH production capacity in an acidic intracellular environment, inducing breast cancer cell death and pro-apoptotic autophagy. Therefore, wire-shaped CeO2 /Cu nanoparticles as an artificial enzyme system can have great potential in the intervention of intracellular ROS in cancer cells, achieving efficacious nanocatalytic therapy.


Subject(s)
Cerium , Copper , Neoplasms , Humans , Reactive Oxygen Species/metabolism , Oxygen
3.
Adv Mater ; 35(48): e2303107, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37730433

ABSTRACT

Ammonia (NH3 ), known as one of the fundamental raw materials for manufacturing commodities such as chemical fertilizers, dyes, ammunitions, pharmaceuticals, and textiles, exhibits a high hydrogen storage capacity of ≈17.75%. Electrochemical nitrate reduction (NO3 RR) to valuable ammonia at ambient conditions is a promising strategy to facilitate the artificial nitrogen cycle. Herein, copper-doped cobalt selenide nanosheets with selenium vacancies are reported as a robust and highly efficient electrocatalyst for the reduction of nitrate to ammonia, exhibiting a maximum Faradaic efficiency of ≈93.5% and an ammonia yield rate of 2360 µg h-1 cm-2 at -0.60 V versus reversible hydrogen electrode. The in situ spectroscopical and theoretical study demonstrates that the incorporation of Cu dopants and Se vacancies into cobalt selenide efficiently enhances the electron transfer from Cu to Co atoms via the bridging Se atoms, forming the electron-deficient structure at Cu sites to accelerate NO3 - dissociation and stabilize the *NO2 intermediates, eventually achieving selective catalysis in the entire NO3 RR process to produce ammonia efficiently.

4.
J Colloid Interface Sci ; 652(Pt A): 250-257, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37595442

ABSTRACT

The conversion of CO2 to CO is one of the crucial pathways in the carbon dioxide reduction reaction (CO2RR). Iron and nitrogen co-doped carbon matrix (FeN4) is a promising catalyst for converting CO2to CO with excellent activity and selectivity. However, the reactive mechanism of CO2RR on the FeN4 catalyst is not fully unveiled. For example, it is still evasive that the obtained C1 product is methanol and/or methane instead of CO in some cases. Herein, DFT calculation is conducted to unravel the effect from both solvent molecules and intermediates as axial groups on the selectivity of C1 products in CO2RR using FeN4 catalyts. Calculation results demonstrate that the FeN4(H), FeN4(OH), FeN4(COOH), and FeN4(CO) configurations are not only beneficial to the removal of CO, but also effectively suppress the hydrogen evolution reaction, whereas the FeN4, FeN4(CO2) and FeN4(H2O) configurations are inclined to produce CH3OH and/or CH4. The mechanism studied in this work provides an inspiration of optimizing the selectivity of C1 products in CO2RR from the perspective of regulating solvent molecules and intermediates as axial groups on FeN4.

5.
Adv Sci (Weinh) ; 9(30): e2201903, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36057998

ABSTRACT

Amorphization and crystalline grain boundary engineering are adopted separately in improving the catalytic kinetics for water electrolysis. Yet, the synergistic effect and advance in the cooperated form of crystalline/amorphous interfaces (CAI) have rarely been elucidated insightfully. Herein, a trimetallic FeCo(NiS2 )4 catalyst with numerous CAI (FeCo(NiS2 )4 -C/A) is presented, which shows highly efficient catalytic activity toward both hydrogen and oxygen evolution reactions (HER and OER). Density functional theory (DFT) studies reveal that CAI plays a significant role in accelerating water electrolysis kinetics, in which Co atoms on the CAI of FeCo(NiS2 )4 -C/A catalyst exhibit the optimal binding energy of 0.002 eV for H atoms in HER while it also has the lowest reaction barrier of 1.40 eV for the key step of OER. H2 O molecules are inclined to be absorbed on the interfacial Ni atoms based on DFT calculations. As a result, the heterostructural CAI-containing catalyst shows a low overpotential of 82 and 230 mV for HER and OER, respectively. As a bifunctional catalyst, it delivers a current density of 10 mA cm-2 at a low cell voltage of 1.51 V, which enables it a noble candidate as metal-based catalysts for water splitting. This work explores the role of CAI in accelerating the HER and OER kinetics for water electrolysis, which sheds light on the development of efficient, stable, and economical water electrolysis systems by facile interface-engineering implantations.


Subject(s)
Iron , Water , Water/chemistry , Kinetics , Electrolysis , Cobalt , Hydrogen/chemistry , Oxygen
6.
Nanoscale ; 14(30): 10873-10879, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35843210

ABSTRACT

The sluggish kinetics of the oxygen evolution reaction (OER) restrains the development of water splitting technologies and the efficiency of producing sustainable resources. To this end, the introduction of iron and molybdenum in catalytic systems has been employed as a crucial strategy for the enhancement of catalytic activity toward the oxygen evolution reaction (OER), but the relationship between catalyst components and catalytic performance is still evasive. In this study, by doping iron and molybdenum into cobalt hydroxide via a cation-exchange method, rich oxygen vacancies and active metal centers are introduced to the trimetallic oxyhydroxide, endowing the catalyst with a low overpotential of 223 mV at 10 mA cm-2, a low Tafel slope of 43.6 mV dec-1, and a long stable operation time (>50 h) in alkaline media, comparable to the current best OER catalyst. Moreover, it is demonstrated that the doping of iron favors the generation of oxygen vacancies. It is also found in this work that using a certain amount (5 mg) of iron dopant can alter the electronic structure of the catalyst by tuning the electronic density around the metal ions, thus optimizing the binding energy of intermediates. The present work unveils the doping effect of iron and molybdenum on the construction of trimetallic oxyhydroxide catalysts, and sheds light on the relationship between the catalyst components and catalytic performance of the OER.

7.
Nanotechnology ; 33(34)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35550566

ABSTRACT

Fe-based metal-organic frameworks (MOFs) are promising drug delivery materials due to their large surface area, high stability, and biocompatibility. However, their drug loading capacity is constrained by their small pore size, and a further improvement in their drug capacity is needed. In this work, we report an effective and green structural modification strategy to improve drug loading capacity for Fe-based MOFs. Our strategy is to grow MIL-100 (Fe) on carboxylate-terminated polystyrene (PS-COOH) via a sustainable route, which creates a large inner cavity as well as exposure to more functional groups that benefit drug loading capacity. We employ the scanning electron microscope and transmission electron microscope to confirm the hollow structure of MIL-100 (Fe). Up to 30% of drug loading capacity has been demonstrated in our study. We also conduct cell viability tests to investigate its therapeutic effects on breast cancer cells (MDA-MB-231). Confocal laser scanning microscopy imaging confirms cellular uptake and mitochondrial targeting function of doxorubicin-loaded H-M (DOX@H-M) nanoparticles. JC-1 staining of cancer cells reveals a significant change in the mitochondrial membrane potential, indicating the mitochondrial dysfunction and apoptosis of tumor cells. Our study paves the way for the facile synthesis of hollow structural MOFs and demonstrates the potential of applying Fe-based MOFs in breast cancer treatment.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Doxorubicin/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mitochondria
SELECTION OF CITATIONS
SEARCH DETAIL
...