Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
STAR Protoc ; 5(3): 103156, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38941183

ABSTRACT

A gene-rescue experiment under a mutant background is essential to clarify gene function and the resulting biological potential in vivo. Here, we present a protocol for determining the change in interferon response by microinjecting plasmids into one-cell-stage zebrafish embryos. We describe steps for comparing the resistance potential to virus infection in wild-type and knockout zebrafish larvae following plasmid microinjection. We then detail how to link the enhanced interferon immunity to the improved resistance in knockout zebrafish larvae by gene-rescue experiments. For complete details on the use and execution of this protocol, please refer to Qu et al.1.

2.
World J Gastrointest Oncol ; 16(5): 1947-1964, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764850

ABSTRACT

BACKGROUND: Gastric cancer (GC) has a high mortality rate worldwide. Despite significant progress in GC diagnosis and treatment, the prognosis for affected patients still remains unfavorable. AIM: To identify important candidate genes related to the development of GC and identify potential pathogenic mechanisms through comprehensive bioinformatics analysis. METHODS: The Gene Expression Omnibus database was used to obtain the GSE183136 dataset, which includes a total of 135 GC samples. The limma package in R software was employed to identify differentially expressed genes (DEGs). Thereafter, enrichment analyses of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed for the gene modules using the clusterProfile package in R software. The protein-protein interaction (PPI) networks of target genes were constructed using STRING and visualized by Cytoscape software. The common hub genes that emerged in the cohort of DEGs that was retrieved from the GEPIA database were then screened using a Venn Diagram. The expression levels of these overlapping genes in stomach adenocarcinoma samples and non-tumor samples and their association with prognosis in GC patients were also obtained from the GEPIA database and Kaplan-Meier curves. Moreover, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting were performed to determine the mRNA and protein levels of glutamic-pyruvic transaminase (GPT) in GC and normal immortalized cell lines. In addition, cell viability, cell cycle distribution, migration and invasion were evaluated by cell counting kit-8, flow cytometry and transwell assays. Furthermore, we also conducted a retrospective analysis on 70 GC patients diagnosed and surgically treated in Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University between January 2017 to December 2020. The tumor and adjacent normal samples were collected from the patients to determine the potential association between the expression level of GPT and the clinical as well as pathological features of GC patients. RESULTS: We selected 19214 genes from the GSE183136 dataset, among which there were 250 downregulated genes and 401 upregulated genes in the tumor samples of stage III-IV in comparison to those in tumor samples of stage I-II with a P-value < 0.05. In addition, GO and KEGG results revealed that the various upregulated DEGs were mainly enriched in plasma membrane and neuroactive ligand-receptor interaction, whereas the downregulated DEGs were primarily enriched in cytosol and pancreatic secretion, vascular smooth muscle contraction and biosynthesis of the different cofactors. Furthermore, PPI networks were constructed based on the various upregulated and downregulated genes, and there were a total 15 upregulated and 10 downregulated hub genes. After a comprehensive analysis, several hub genes, including runt-related transcription factor 2 (RUNX2), salmonella pathogenicity island 1 (SPI1), lysyl oxidase (LOX), fibrillin 1 (FBN1) and GPT, displayed prognostic values. Interestingly, it was observed that GPT was downregulated in GC cells and its upregulation could suppress the malignant phenotypes of GC cells. Furthermore, the expression level of GPT was found to be associated with age, lymph node metastasis, pathological staging and distant metastasis (P < 0.05). CONCLUSION: RUNX2, SPI1, LOX, FBN1 and GPT were identified key hub genes in GC by bioinformatics analysis. GPT was significantly associated with the prognosis of GC, and its upregulation can effectively inhibit the proliferative, migrative and invasive capabilities of GC cells.

3.
iScience ; 27(4): 109497, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38550983

ABSTRACT

The development of CRISPR-Cas9 technology introduces an efficient tool for precise engineering of fish genomes. With a short reproduction cycle, zebrafish infection mode can be referenced as antiviral breeding researches in aquaculture fish. Previously we identified a crucian carp-specific gene ftrca1 as an inhibitor of interferon response in vitro. Here, we demonstrate that genome editing of zebrafish ftr42, a homolog of ftrca1, generates a zebrafish mutant (ftr42lof/lof) with an improved resistance to SVCV infection. Zebrafish ftr42 acts as a virus-induced E3 ligase and downregulates IFN antiviral response by facilitating TBK1 protein degradation and also IRF7 mRNA decay. Genome editing results in loss of function of zebrafish ftr42, which enables zebrafish to have enhanced interferon response, thus improving zebrafish survival against virus infection. Our results suggest that fine-tuning fish IFN innate immunity through genome editing of negative regulators can genetically improve viral resistance in fish.

4.
J Virol ; 98(2): e0180123, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38193691

ABSTRACT

In mammals, NLRX1 is a unique member of the nucleotide-binding domain and leucine-rich repeat (NLR) family showing an ability to negatively regulate IFN antiviral immunity. Intron-containing genes, including NLRX1, have more than one transcript due to alternative splicing; however, little is known about the function of its splicing variants. Here, we identified a transcript variant of NLRX1 in zebrafish (Danio rerio), termed NLRX1-tv4, as a negative regulator of fish IFN response. Zebrafish NLRX1-tv4 was slightly induced by viral infection, with an expression pattern similar to the full-length NLRX1. Despite the lack of an N-terminal domain that exists in the full-length NLRX1, overexpression of NLRX1-tv4 still impaired fish IFN antiviral response and promoted viral replication in fish cells, similar to the full-length NLRX1. Mechanistically, NLRX1-tv4 targeted STING for proteasome-dependent protein degradation by recruiting an E3 ubiquitin ligase RNF5 to drive the K48-linked ubiquitination, eventually downregulating the IFN antiviral response. Mapping of NLRX1-tv4 domains showed that its N-terminal and C-terminal regions exhibited a similar potential to inhibit STING-mediated IFN antiviral response. Our findings reveal that like the full-length NLRX1, zebrafish NLRX-tv4 functions as an inhibitor to shape fish IFN antiviral response.IMPORTANCEIn this study, we demonstrate that a transcript variant of zebrafish NLRX1, termed NLRX1-tv4, downregulates fish IFN response and promotes virus replication by targeting STING for protein degradation and impairing the interaction of STING and TBK1 and that its N- and C-terminus exhibit a similar inhibitory potential. Our results are helpful in clarifying the current contradictory understanding of structure and function of vertebrate NLRX1s.


Subject(s)
Membrane Proteins , Mitochondrial Proteins , Zebrafish Proteins , Animals , Immunity, Innate , Protein Domains , Protein Isoforms/genetics , Ubiquitin-Protein Ligases , Ubiquitination , Zebrafish/immunology , Zebrafish/metabolism , Mitochondrial Proteins/metabolism , Zebrafish Proteins/metabolism , Membrane Proteins/metabolism , Interferons/metabolism
5.
Int J Biol Macromol ; 259(Pt 1): 129137, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171438

ABSTRACT

Large quantities of organic dyes are discharged into the environment, causing serious damage to the ecosystem. Therefore, it is urgent to develop inexpensive adsorbents to remove organic dyes. A novel cellulose-based aerogel (MPPA) with 3D porous structure was prepared by using cassava residue (cellulose) as basic construction blocks, doping ferroferric oxide (Fe3O4) for magnetic separation, and applying polyethyleneimine (PEI) as functional material for highly efficient and selective capture of Congo red (CR). MPPA exhibited porous network structure, numerous active capture sites, nontoxicity, high hydrophilicity, and excellent thermal stability. MPPA showed superior adsorption property for CR, with an equilibrium adsorption capacity of 2018.14 mg/g, and still had an adsorption property of 1189.31 mg/g after five recycling procedures. In addition, MPPA has excellent selectivity for CR in four binary dye systems. The adsorption behavior of MPPA on CR was further explored using a multilayer adsorption model, EDR-IDR hybrid model and AOAS model. Electrostatic potential and independent gradient models were used to further verify the possible interaction between MPPA and CR molecules. In conclusion, MPPA is a promising adsorbent in the field of treating anionic dyes.


Subject(s)
Congo Red , Water Pollutants, Chemical , Congo Red/chemistry , Cellulose/chemistry , Adsorption , Ecosystem , Coloring Agents/chemistry
6.
Front Pediatr ; 11: 1258846, 2023.
Article in English | MEDLINE | ID: mdl-38078326

ABSTRACT

Background: This study aimed to compare the efficacy of budesonide inhalation suspension administered via a vibrating mesh nebulizer vs. a jet nebulizer in the treatment of premature infants with bronchopulmonary dysplasia (BPD) undergoing high-frequency oscillatory ventilation (HFOV). Methods: Between July 2020 and July 2022, we retrospectively analyzed the medical records of 36 preterm infants diagnosed with BPD who underwent HFOV. Based on the nebulizer type used, infants were categorized into the vibrating mesh nebulizer group (VMN group) or the jet nebulizer group (JN group). Post-nebulization outcomes, such as the duration of mechanical ventilation, length of stay in the neonatal intensive care unit (NICU), ventilator-associated parameters, and arterial blood gas metrics, were compared between the two groups. Treatment-associated complications were also documented. Results: No significant differences were noted between the VMN and JN groups in terms of mechanical ventilation duration (p = 0.519), NICU length of stay (p = 0.112), ventilator-associated parameters, or complications (p = 0.700). However, after 2 weeks of treatment, the oxygenation index (p = 0.012) and arterial partial pressure of carbon dioxide (p = 0.006) were more favorable in the VMN group compared to the JN group. Conclusion: Among premature infants with BPD on HFOV, for administration of budesonide inhalation suspension resulted in an improved oxygenation index and reduced arterial partial pressure of carbon dioxide when compared to a jet nebulizer, indicating superior therapeutic efficacy.

7.
Eur J Gastroenterol Hepatol ; 35(12): 1370-1374, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37851333

ABSTRACT

OBJECTIVE: To investigate rectal sensitivity and associated factors in patients with different subtypes of functional defecation disorder (FDD). METHODS: We segregated individuals diagnosed with FDD into two groups based on their defecation patterns: those with dyssynergic defecation and those with inadequate defecatory propulsion. We gathered general information through questionnaires and assessed rectal sensitivity using anorectal manometry. The rectal sensitivity performances of the two groups were compared; the factors related to rectal sensitivity were analyzed to determine the factors associated with rectal sensitivity, and the effect of biofeedback therapy on rectal sensitivity was clarified. RESULTS: Rectal sensitivity in different subtypes of FDD decreased, and the difference between the two groups was not statistically significant ( P  > 0.05). There were no statistically significant differences in the first constant sensation volume, defecatory desire volume, and maximum tolerable volume between the different subtypes of FDD ( P  > 0.05). Multi-factor binary logistic regression analysis showed that age, constipation symptom score, and diabetes were all independent risk factors for decreased rectal sensitivity ( P  < 0.05). There were no statistically significant differences between the prior- and post-biofeedback therapy in the first constant sensation volume, defecatory desire volume, and maximum tolerable volume ( P  > 0.05). CONCLUSION: Rectal sensitivity in different subtypes of FDD decreased. Age, constipation symptom score, and diabetes were independent risk factors for decreased rectal sensitivity. Short-term biofeedback therapy did not improve rectal hyposensitivity in patients with FDD.


Subject(s)
Defecation , Diabetes Mellitus , Humans , Anal Canal , Manometry/adverse effects , Rectum , Constipation/diagnosis , Constipation/therapy
8.
Nutrition ; 116: 112169, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37562187

ABSTRACT

OBJECTIVES: Body composition is an integral part of the nutritional assessment during infancy as it is closely related to future health. The three-dimensional photonic body surface scanning (3-DPS) method is a promising new technique for measuring body composition in children because of its advantages of easy operation, low cost, and no exposure to radiation. Using 3-DPS, this study aimed to illustrate the growth trajectories of body composition indicators during infancy according to sex and age. METHODS: This was a multicenter cross-sectional study. The body compositions of 9644 singleton term infants from four centers in Shandong Province, China, were assessed using 3-DPS. The data of 8769 healthy infants (52.0% boys), whose z scores of weight-for-length, length-for-age, and weight-for-age, according to World Health Organization standards, were in the range of -2 to 2, -3 to 3, and -3 to 3, respectively, were sampled to construct percentile curves of fat mass (FM), fat-free mass (FFM), FM percentage (FM%), FM index (FMI), and FFM index (FFMI) with the generalized additive model for location, scale, and shape method. RESULTS: Percentile charts for FM, FFM, FM%, FMI, and FFMI were developed based on age and sex. FM and FFM presented consistent trajectories with that of weight, with the fastest growth occurring at 1 to 3 mo of age. FM%, FMI, and FFMI increased with age, peaked at 6 mo, and gradually declined, which was consistent with the body mass index trend. All indicators, except for FFMI, were always significantly higher in boys than in girls ages 1 to 12 mo, indicating that sex differences in body composition existed mainly in FM rather than in lean body mass. CONCLUSIONS: The body composition of healthy singleton term infants during infancy varies with age; boys may have more FM accumulation than girls.


Subject(s)
Body Composition , Nutrition Assessment , Child , Humans , Male , Infant , Female , Cross-Sectional Studies , Body Mass Index , China , Adipose Tissue
9.
World J Gastrointest Oncol ; 15(3): 504-522, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-37009316

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common digestive system cancers with high mortality rates worldwide. The main ingredients in Mu Ji Fang Granules (MJF) are alkaloids, flavonoids, and polysaccharides. MJF has been used in the clinical treatment of hepatitis, cirrhosis and HCC for more than 30 years. Few previous studies have focused on the mechanism of MJF on tumor immu-nology in the treatment of HCC. AIM: To explore the mechanism of action of MJF on tumor immunology in the treatment of HCC. METHODS: The absorbable ingredients of MJF were identified using Molecule Network related to High Performance Liquid Chromatography-Electron Spray Ionization-Time of Flight- Mass Spectrometry, and hub potential anti-HCC targets were screened using network pharmacology and pathway enrichment analysis. Forty male mice were randomly divided into the Blank, Model, and MJF groups (1.8, 5.4, and 10.8 g/kg/d) following 7 d of oral administration. Average body weight gain, spleen and thymus indices were calculated, tumor tissues were stained with hematoxylin and eosin, and Interferon gamma (IFN-γ), Tumor necrosis factor α (TNF-α), Interleukin-2, aspartate aminotransferase, alanine aminotransferase, alpha-fetoprotein (AFP), Fas, and FasL were measured by Enzyme-linked Immunosorbent Assay. Relevant mRNA expression of Bax and Bcl2 was evaluated by Real Time Quantitative PCR (RT-qPCR) and protein expression of Transforming growth factor ß1 (TGF-ß1) and Mothers against decapentaplegic homolog (SMAD) 4 was assessed by Western blotting. The HepG2 cell line was treated with 10 mg/mL, 20 mg/mL, 30 mg/mL, 40 mg/mL of MJF, and another 3 groups were treated with TGF-ß1 inhibitor (LY364947) and different doses of MJF. Relevant mRNA expression of TNF-α, IFN-γ, Bax and Bcl2 was evaluated by RT-qPCR and protein expression of TGF-ß1, SMAD2, p-SMAD2, SMAD4, and SMAD7 was assessed by Western blotting. RESULTS: It was shown that MJF improved body weight gain and tumor inhibition rate in H22 tumor-bearing mice, protected immune organs and liver function, reduced the HCC indicator AFP, affected immunity and apoptosis, and up-regulated the TGF-ß1/SMAD signaling pathway, by increasing the relative expression of TGF-ß1, SMAD2, p-SMAD2 and SMAD4 and decreasing SMAD7, reducing immune factors TNF-α and IFN-γ, decreasing apoptosis cytokines Fas, FasL and Bcl2/Bax, and inhibiting the effect of LY364947 in HepG2 cells. CONCLUSION: MJF inhibits HCC by activating the TGF-ß1/SMAD signaling pathway, and affecting immune and apoptotic cytokines, which may be due to MJF adjusting immune escape and apoptosis.

10.
Int J Biol Macromol ; 240: 124384, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37054851

ABSTRACT

Membrane-associated RING-CH-type finger (MARCH) proteins have been reported to regulate type I IFN production during host antiviral innate immunity. The present study reported the zebrafish MARCH family member, MARCH7, as a negative regulator in virus-triggered type I IFN induction via targeting TANK-binding kinase 1 (TBK1) for degradation. As an IFN-stimulated gene (ISG), we discovered that MARCH7 was significantly induced by spring viremia of carp virus (SVCV) or poly(I:C) stimulation. Ectopic expression of MARCH7 reduced the activity of IFN promoter and dampened the cellular antiviral responses triggered by SVCV and grass carp reovirus (GCRV), which concomitantly accelerated the viral replication. Accordingly, the knockdown of MARCH7 by siRNA transfection significantly promoted the transcription of ISG genes and inhibited SVCV replication. Mechanistically, we found that MARCH7 interacted with TBK1 and degraded it via K48-linked ubiquitination. Further characterization of truncated mutants of MARCH7 and TBK1 confirmed that the C-terminal RING of MARCH7 is essential in the MARCH7-mediated degradation of TBK1 and the negative regulation of IFN antiviral response. This study reveals a molecular mechanism by which zebrafish MARCH7 negatively regulates the IFN response by targeting TBK1 for protein degradation, providing new insights into the essential role of MARCH7 in antiviral innate immunity.


Subject(s)
Carps , Rhabdoviridae , Animals , Zebrafish , Rhabdoviridae/physiology , Immunity, Innate/genetics , Antiviral Agents
11.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902023

ABSTRACT

In humans, four small HERCs (HERC3-6) exhibit differential degrees of antiviral activity toward HIV-1. Recently we revealed a novel member HERC7 of small HERCs exclusively in non-mammalian vertebrates and varied copies of herc7 genes in distinct fish species, raising a question of what is the exact role for a certain fish herc7 gene. Here, a total of four herc7 genes (named HERC7a-d sequentially) are identified in the zebrafish genome. They are transcriptionally induced by a viral infection, and detailed promoter analyses indicate that zebrafish herc7c is a typical interferon (IFN)-stimulated gene. Overexpression of zebrafish HERC7c promotes SVCV (spring viremia of carp virus) replication in fish cells and concomitantly downregulates cellular IFN response. Mechanistically, zebrafish HERC7c targets STING, MAVS, and IRF7 for protein degradation, thus impairing cellular IFN response. Whereas the recently-identified crucian carp HERC7 has an E3 ligase activity for the conjugation of both ubiquitin and ISG15, zebrafish HERC7c only displays the potential to transfer ubiquitin. Considering the necessity for timely regulation of IFN expression during viral infection, these results together suggest that zebrafish HERC7c is a negative regulator of fish IFN antiviral response.


Subject(s)
Fish Diseases , Rhabdoviridae Infections , Animals , Humans , Zebrafish/genetics , Interferons/metabolism , Zebrafish Proteins/metabolism , Antiviral Agents , Ubiquitins
12.
Dev Comp Immunol ; 142: 104656, 2023 05.
Article in English | MEDLINE | ID: mdl-36746265

ABSTRACT

In mammals, right open reading frame kinases (RIOKs) are initially reported to participate in cancer cell proliferation, apoptosis, migration and invasion, and recently they have been related to host immune response. Little is known about the homologs of RIOKs in fish. In the current study, we cloned three homologous genes of RIOK family in yellow catfish (Pelteobagrus fulvidraco), termed Pfriok1, Pfriok2 and Pfriok3. Pfriok1, Pfriok2 and Pfriok3 were constitutively expressed at relatively high levels in yellow catfish tissues, and their mRNA levels were not changed under viral infection. Individual overexpression of PfRIOK1, PfRIOK2 and PfRIOK3 attenuated fish interferon (IFN) response, thereby promoting viral replication in fish cells. Mechanistically, yellow catfish RIOK proteins downregulated fish IFN response through attenuating TBK1 protein levels in cytoplasm. Our findings suggest that yellow catfish RIOK1, RIOK2 and RIOK3 are involved in downregulating fish IFN antiviral response.


Subject(s)
Catfishes , Animals , Catfishes/genetics , Interferons , Antiviral Agents , Fish Proteins/genetics , Mammals
13.
Insect Sci ; 30(4): 1046-1062, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36382805

ABSTRACT

Wing polymorphism is an evolutionary trait that is widely present in various insects and provides a model system for studying the evolutionary significance of insect dispersal. The brown planthopper (BPH, Nilaparvata lugens) can alter its wing morphs under biotic and abiotic stress. However, whether differential signaling pathways are induced by the 2 types of stress remain largely unknown. Here, we screened a number of candidate genes through weighted gene co-expression network analysis (WGCNA) and found that ornithine decarboxylase (NlODC), a key enzyme in the synthesis of polyamines, was associated with wing differentiation in BPH and mainly responded to abiotic stress stimuli. We analyzed the Kyoto Encyclopedia of Genes and Genomes enrichment pathways of differentially expressed genes under the 2 stresses by transcriptomic comparison, and found that biotic stress mainly influenced insulin-related signaling pathways while abiotic stress mainly influenced hormone-related pathways. Moreover, we found that insulin receptor 1 (NlInR1) may regulate wing differentiation of BPH by responding to both biotic and abiotic stress, but NlInR2 only responded to biotic stress. Similarly, the juvenile hormone epoxide hydrolase associated with juvenile hormone degradation and NlODC may regulate wing differentiation mainly through abiotic stress. A model based on the genes and stresses to modulate the wing dimorphism of BPH was proposed. These findings present a comprehensive molecular mechanism for wing polymorphism in BPH induced by biotic and abiotic stress.


Subject(s)
Hemiptera , Animals , Hemiptera/genetics , Hemiptera/metabolism , Insecta , Sex Characteristics , Signal Transduction
14.
J Immunol ; 209(7): 1335-1347, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36165180

ABSTRACT

Tripartite motif (TRIM) family proteins have come forth as important modulators of innate signaling dependent on of E3 ligase activity. Recently, several human TRIM proteins have been identified as unorthodox RNA-binding proteins by RNA interactome analyses; however, their targets and functions remain largely unknown. FTRCA1 is a crucian carp (Carassius auratus)-specific finTRIM (fish novel TRIM) member and negatively regulates the IFN antiviral response by targeting two retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) pathway molecules, that is, TANK-binding kinase 1 (TBK1) and IFN regulatory factor 7 (IRF7). In this study, we identify FTRCA1 as an RNA-binding E3 ligase and characterize the contribution of its RNA-binding activity and E3 ligase activity to fish IFN response. Besides targeting TBK1 and IRF7, FTRCA1 downregulates fish IFN response also by targeting stimulator of IFN response cGAMP interactor 1 (STING1). E3 ligase activity is required for full inhibition on the TBK1- and IRF7-mediated IFN response, but partial inhibition on the STING1-mediated IFN response. However, FTRCA1 has a general binding potential to mRNAs in vitro, it selectively binds STING1 and IRF7 mRNAs in vivo to attenuate mRNA levels, and it directly interacts with TBK1 protein to target protein degradation for downregulating the IFN response. Our results present an interesting example of a fish species-specific finTRIM protein that has acquired RNA-binding activity and E3 ligase activity to fine-tune fish IFN response.


Subject(s)
Factor VII , RNA , Animals , Antiviral Agents , Fish Proteins/genetics , Humans , Immunity, Innate , RNA, Messenger , Tretinoin , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
15.
Front Immunol ; 13: 985792, 2022.
Article in English | MEDLINE | ID: mdl-36059486

ABSTRACT

Retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) are viral RNA sensors that regulate host interferon (IFN)-mediated antiviral signaling. LGP2 (laboratory genetics and physiology 2) lacks the N-terminal caspase activation and recruitment domains (CARDs) responsible for signaling transduction in the other two RLR proteins, RIG-I and melanoma differentiation associated gene-5 (MDA5). How LGP2 regulates IFN signaling is controversial, and inconsistent results have often been obtained in overexpression assays when performed in fish cells and mammalian cells. Here we report that the differential sensitivity of fish cells and mammalian cells to poly(I:C) transfection conceals the function conservation of zebrafish and human LGP2. In fish cells, overexpression of zebrafish or human LGP2 initially activates IFN signaling in a dose-dependent manner, followed by inhibition at a critical threshold of LGP2 expression. A similar trend exists for LGP2-dependent IFN induction in response to stimulation by low and high concentrations of poly(I:C). In contrast, overexpression of zebrafish or human LGP2 alone in mammalian cells does not activate IFN signaling, but co-stimulation with very low or very high concentrations of poly(I:C) shows LGP2-dependent enhancement or inhibition of IFN signaling, respectively. Titration assays show that LGP2 promotes MDA5 signaling in mammalian cells mainly under low concentration of poly(I:C) and inhibits RIG-I/MDA5 signaling mainly under high concentration of poly(I:C). Our results suggest that fish and human LGP2s switch regulatory roles from a positive one to a negative one in increasing concentrations of poly(I:C)-triggered IFN response.


Subject(s)
Poly I-C , RNA Helicases , Zebrafish , Animals , Antiviral Agents/metabolism , Humans , Interferon-Induced Helicase, IFIH1/genetics , Interferons , Mammals/metabolism , Poly I-C/pharmacology , RNA Helicases/genetics , RNA Helicases/metabolism , Zebrafish/genetics , Zebrafish/metabolism
16.
iScience ; 25(8): 104821, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35982787

ABSTRACT

In mammals, LGP2 is the enigmatic RLR family member, being initially believed as an inhibitor of RLR-triggered IFN response but subsequently as an activator of MDA5 signaling and an inhibitor of RIG-I signaling. The contradiction happens to fish LGP2. Here, we generate a lgp2 loss-of-function (lgp2 lof/lof ) zebrafish mutant, which is highly susceptible to SVCV infection, displaying an initially decreased activation of IFN response and a following increased one. Mechanistically, zebrafish LGP2 functions as the essential activator of IFN response dependent on MDA5 at the early stage of viral infection but as a negative regulator by impairing mRNA levels of tbk1 and ikki at the late stage of viral infection. The function switch of LGP2 is related to cellular IFN production during viral infection. Our data demonstrate that zebrafish LGP2 is a key homeostatic regulator of IFN response and thus essential for zebrafish survival against SVCV infection.

17.
Dev Comp Immunol ; 135: 104485, 2022 10.
Article in English | MEDLINE | ID: mdl-35764162

ABSTRACT

Recent studies have related the membrane-associated RING-CH-type finger (MARCH) family proteins to host innate immune response. Zebrafish (Danio rerio) MARCH8 is reported to target SVCV glycoprotein for degradation; however, little is known about whether fish MARCH8 is involved in innate interferon (IFN) response. In this study, zebrafish march8 was significantly induced by SVCV infection. Overexpression of MARCH8 diminished fish IFN-mediated antiviral response, thus promoting the replication of SVCV and GCRV in fish cells. Mechanistically, MARCH8 interacts with and degrades MITA and TBK1 proteins to inhibit IFN response. Moreover, MARCH8 has an E3 ligase activity and enhances MITA and TBK1 polyubiquitination. Our findings reveal a mechanism whereby zebrafish MARCH8 downregulates fish IFN response and facilitates viral replication by targeting MITA and TBK1 for protein degradation.


Subject(s)
Interferons , Zebrafish , Animals , Antiviral Agents , Immunity, Innate , Interferons/metabolism , Proteolysis , Virus Replication
18.
Front Immunol ; 13: 861262, 2022.
Article in English | MEDLINE | ID: mdl-35464458

ABSTRACT

Interferon regulatory factors (IRFs) constitute a family of transcription factors that synchronize interferon (IFN) antiviral response through translocating to nucleus and binding to the promoters of IFN and IFN-stimulated genes (ISGs). Fish contain 11 IRF members; however, whether or how fish IRF family genes function in IFN response remains limited. Herein, we determine the regulatory roles of 11 zebrafish IRF family members in IFN response relevant to their subcellular localization and promoter binding. Zebrafish IRF family members display three patterns of constitutive localization, only in nucleus (IRF1/2/9/11), only in cytoplasm (IRF3/5/7), and largely in nucleus with small amounts in cytoplasm (IRF4b/6/8/10). DNA pull-down assays confirm that all zebrafish IRF proteins are capable to bind fish IFN promoters, albeit to various degrees, thus regulating IFN gene transcription as activators (IRF1/3/5/6/7/8/9/11) or repressors (IRF2/4b/10). Further characterization of distinct IFN gene activation reveals that IRF1/3/5/6/7/8/9/11 efficiently stimulate zebrafish IFNφ1 expression, and IRF1/7/11 are responsible for zebrafish IFNφ3 expression. Two conserved basic residues within the helix α3 of DNA binding domains (DBDs) contribute to constitutive or inducible nuclear import for all zebrafish IRF family members and DNA binding for most members, thereby enabling them to function as transcription factors. Our results reveal a conserved and general mechanism that specifies zebrafish IRF family proteins to nuclear import and DNA binding, thereby regulating fish IFN response.


Subject(s)
Interferons , Zebrafish , Animals , Cell Nucleus/metabolism , Interferon Regulatory Factors/metabolism , Interferons/genetics , Interferons/metabolism , Promoter Regions, Genetic , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
19.
J Immunol ; 208(5): 1189-1203, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35101889

ABSTRACT

The small HERC family currently comprises four members (HERC3-6) involved in the regulation of various physiological activities. Little is known about the role of HERCs in IFN response. In this study, we identify a novel fish HERC member, named crucian carp HERC7, as a negative regulator of fish IFN response. Genome-wide search of homologs and comprehensive phylogenetic analyses reveal that the small HERC family, apart from HERC3-6 that have been well-characterized in mammals, contains a novel HERC7 subfamily exclusively in nonmammalian vertebrates. Lineage-specific and even species-specific expansion of HERC7 subfamily in fish indicates that crucian carp HERC7 might be species-specific. In virally infected fish cells, HERC7 is induced by IFN and selectively targets three retinoic acid-inducible gene-I-like receptor signaling factors for degradation to attenuate IFN response by two distinct strategies. Mechanistically, HERC7 delivers mediator of IFN regulatory factor 3 activator and mitochondrial antiviral signaling protein for proteasome-dependent degradation at the protein level and facilitates IFN regulatory factor 7 transcript decay at the mRNA level, thus abrogating cellular IFN induction to promote virus replication. Whereas HERC7 is a putative E3 ligase, the E3 ligase activity is not required for its negative regulatory function. These results demonstrate that the ongoing expansion of the small HERC family generates a novel HERC7 to fine-tune fish IFN antiviral response.


Subject(s)
Interferon Regulatory Factor-7/metabolism , Interferons/immunology , Reoviridae/immunology , Rhabdoviridae/immunology , Ubiquitin-Protein Ligases/metabolism , Animals , Carps , Cell Line , Fish Proteins/genetics , HEK293 Cells , Humans , Interferon Regulatory Factor-7/genetics , Membrane Proteins/metabolism , RNA Stability/genetics , RNA, Messenger/genetics , Signal Transduction/immunology , Trans-Activators/genetics
20.
STAR Protoc ; 3(4): 101844, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36595883

ABSTRACT

Here, we present a protocol to characterize zebrafish LGP2 as a dual regulator of interferon (IFN) response. We detail in vivo assays using time-lapse comparison of IFN response between wild-type and lgp2 knockout zebrafish following spring viraemia of carp virus (SVCV) infection. We also describe in vitro assays including titration of infection duration in SVCV-infected fish cells to determine changes in IFN response. This protocol is effective to illuminate a regulatory switch of LGP2 in fish cells toward virus infection. For complete details on the use and execution of this protocol, please refer to Gong et al. (2022).1.


Subject(s)
Rhabdoviridae , Virus Diseases , Animals , Zebrafish/genetics , Rhabdoviridae/physiology , Interferons/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...