Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Food Chem ; 460(Pt 2): 140610, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39068796

ABSTRACT

Tropomyosin (TM) is the main allergen of Macrobrachium nipponense. Recombinant allergens have great prospects in the detection, diagnosis, and treatment of food allergens. The purpose of this study was to compare the differences in structure and allergenicity between natural TM and recombinant TM. Recombinant TM of M. nipponense with a molecular weight of 38 kDa was successfully expressed in the Escherichia coli system. The amino acid sequence as well as secondary structure between natural and recombinant TM were similar, which were verified by mass and CD spectrometry, respectively. Studies showed that both natural TM and recombinant TM had strong allergenicity, and recombinant TM was more allergenic, which could be used as a substitute for natural TM in the diagnosis and treatment of shrimp allergy. This study provided stable and reliable allergen components for the detection of crustacean allergens and the diagnosis and treatment of food allergies caused by crustacean allergens.

2.
Cell Biochem Biophys ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987441

ABSTRACT

The potential therapeutic benefits of human dental pulp stem cells (HDPSCs) in dental regenerative medicine have been demonstrated. However, little is known about the molecular mechanisms regulating the biological characteristics of HDPSCs. The experiment aims to explore whether VEGF activates signaling pathways such as FAK, PI3K, Akt, and p38 in HDPSCs, and to investigate the molecular mechanisms by which VEGF influences proliferation and migration of HDPSCs. Normal and inflamed human dental pulp (HDP) samples were collected, and the levels of VEGF in HDP were assessed. HDPSCs were cultured and purified. HDPSCs were stimulated with lipopolysaccharide (LPS) at gradient concentrations, and real-time quantitative polymerase chain reaction (qPCR) was used to assess changes in VEGF mRNA. Gradient concentrations of VEGF were used to stimulate HDPSCs, and cell migration ability was evaluated through scratch assays and Transwell chamber experiments. Phosphorylation levels of FAK, AKT, and P38 were assessed using Western blotting. Inhibitors of VEGFR2, FAK, AKT, P38, and VEGF were separately applied to HDPSCs, and cell migration ability and phosphorylation levels of FAK, AKT, and P38 were determined. The results indicated significant differences in VEGF levels between normal and inflamed HDP tissues, with levels in the inflamed state reaching 435% of normal levels (normal: 87.91 ng/mL, inflamed: 382.76 ng/mL, P < 0.05). LPS stimulation of HDPSCs showed a significant increase in VEGF mRNA expression with increasing LPS concentrations (LPS concentrations of 0.01, 0.1, 1, and 10 µg/mL resulted in VEGF mRNA expressions of 181.2%, 274.2%, 345.8%, and 460.9%, respectively, P < 0.05). VEGF treatment significantly enhanced the migration ability of HDPSCs in Transwell chamber experiments, with migration rates increasing with VEGF concentrations (VEGF concentrations of 0, 1, 10, 20, 50, and 100 ng/mL resulted in migration rates of 8.41%, 9.34%, 21.33%, 28.41%, 42.87%, and 63.15%, respectively, P < 0.05). Inhibitors of VEGFR2, FAK, AKT, P38, and combined VEGF stimulation demonstrated significant migration inhibition, with migration rates decreasing to 8.31%, 12.64%, 13.43%, 18.32%, and 74.17%, respectively. The migration rate with combined VEGF stimulation showed a significant difference (P < 0.05). The analysis of phosphorylation levels revealed that VEGF stimulation significantly activated phosphorylation of FAK, AKT, and P38, with phosphorylation levels increasing with VEGF concentrations (P < 0.05). The VEGF/VEGFR2 signaling axis regulated the migration ability of HDPSCs through the FAK/PI3K/AKT and P38MAPK pathways. This finding highlighted not only the crucial role of VEGF in injury repair of HDPSCs but also provided important clues for a comprehensive understanding of the potential applications of this signaling axis in dental regenerative medicine.

3.
Invest Ophthalmol Vis Sci ; 65(8): 4, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953845

ABSTRACT

Purpose: The purpose of this study was to investigate the role and mechanism of microtubule-associated protein light chain-3 (LC3)-associated phagocytosis (LAP) in the immune response to Aspergillus fumigatus (A. fumigatus) keratitis. Methods: The formation of single-membrane phagosomes was visualized in the corneas of healthy or A. fumigatus-infected humans and C57BL/6 mice using transmission electron microscopy (TEM). Rubicon siRNA (si-Rubicon) was used to block Rubicon expression. RAW 264.7 cells or mice corneas were infected with A. fumigatus with or without pretreatment of si-Rubicon and scrambled siRNA. RAW 264.7 cells were pretreated with Dectin-1 antibody or Dectin-1 overexpressed plasmid and then stimulated with A. fumigatus. Flow cytometry was used to label macrophages in normal and infected corneas of mice. In mice with A. fumigatus keratitis, the severity of the disease was assessed using clinical scores. We used lentiviral technology to transfer GV348-Ubi-GFP-LC3-II-SV40-Puro Lentivirus into the mouse cornea. The GFP-LC3 fusion protein was visualized in corneal slices using a fluorescence microscope. We detected the mRNA and protein expressions of the inflammatory factors IL-6, IL-1ß, and IL-10 using real-time PCR (RT-PCR) and ELISA. We detected the expression of LAP-related proteins Rubicon, ATG-7, Beclin-1, and LC3-II using Western blot or immunofluorescence. Results: Accumulation of single-membrane phagosomes within macrophages was observed in the corneas of patients and mice with A. fumigatus keratitis using TEM. Flow cytometry (FCM) analysis results show that the number of macrophages in the cornea of mice significantly increases after infection with A. fumigatus. LAP-related proteins were significantly elevated in the corneas of mice and RAW 264.7 cells after infection with A. fumigatus. The si-Rubicon treatment elevated the clinical score of mice. In A. fumigatus keratitis mice, the si-Rubicon treated group showed significantly higher expression of IL-6 and IL-1ß and lower expression of IL-10 and LC3-II compared to the control group. In RAW 264.7 cells, treatment with the Dectin-1 overexpressed plasmid upregulated the expression of LAP-related proteins, a process that was significantly inhibited by the Dectin-1 antibody. Conclusions: LAP participates in the anti-inflammatory immune process of fungal keratitis (FK) and exerts an anti-inflammatory effect. LAP is regulated through the Dectin-1 signaling pathway in A. fumigatus keratitis.


Subject(s)
Aspergillosis , Aspergillus fumigatus , Eye Infections, Fungal , Keratitis , Mice, Inbred C57BL , Microtubule-Associated Proteins , Phagocytosis , Animals , Female , Humans , Mice , Aspergillosis/microbiology , Aspergillosis/metabolism , Aspergillosis/immunology , Cornea/metabolism , Cornea/microbiology , Cornea/pathology , Disease Models, Animal , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/metabolism , Flow Cytometry , Keratitis/microbiology , Keratitis/metabolism , Macrophages/metabolism , Macrophages/immunology , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics
4.
Int J Biol Macromol ; 276(Pt 2): 133961, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029820

ABSTRACT

The yield and quality of pepper are considerably influenced by the cold conditions. Herein, we performed morphological, physiological and transcriptomic analyses by using two pepper seedlings, '2379' (cold-resistant) and '2380' (cold-sensitive). Briefly, 60 samples from each cultivar were analyzed at four distinct time points (0, 6, 24 and 48 h) at 5 °C in darkness. The physiological indices and activities of enzymes exhibited marked differences between the two cultivars. Transcriptomic analysis indicated that, compared to the control group, 11,415 DEGs were identified in '2379' and '2380' at 24 h. In the early stage, the number of DEGs in '2379' was 5.68 times higher than that in '2380', potentially explaining the observed differences in tolerance to colds. Processes such as protein targeting to membranes, jasmonic acid (JA)-mediated signalling, cold response and abscisic acid-activated signalling were involved. Subsequently, we identified a hub gene, CaAOS, that is involved in JA biosynthesis, positively influences cold tolerance and is a target of CaMYC2. Variations in the GC-motif of the CaAOS's promoter may influence the expression levels of CaAOS under cold treatment. The result of this study may lead to the development of more effective strategies for enhancing cold tolerance, potentially benefitting pepper breeding in cold regions.

5.
Int Immunopharmacol ; 135: 112333, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38805907

ABSTRACT

Macrophages are one of the important immune cells, which play important roles in innate and adaptive immune. However, the roles of macrophages in food allergy are not thoroughly understood. To investigate the roles of macrophages during food allergy, we focused on the relationship between macrophage polarization and allergic responses induced by tropomyosin (TM) in the present study. Arg 1 and CD206 expressions in the TM group were significantly higher than those of the PBS group, while iNOS and TNF-α expressions were no obvious difference, moreover, the morphology of macrophages stimulated by TM was similar to that of M2 macrophages. These results indicated macrophages were mainly polarized toward M2 phenotypes in vitro. The antibodies, mMCP-1, histamine and cytokines, revealed that macrophages could participate in food allergy, and macrophage polarization was associated with changes in allergic-related factors. The cytokine levels of M2 phenotypes were significantly higher than those of M1 phenotypes in peripheral blood. The mRNA expressions and protein levels of Arg1 and iNOS in the jejunum and peritoneal cells indicated that M2 phenotypes were the major macrophage in these tissues compared with M1 phenotypes. Hence, macrophage polarization plays an important role in food allergy.


Subject(s)
Arginase , Food Hypersensitivity , Macrophages , Mice, Inbred BALB C , Palaemonidae , Tropomyosin , Animals , Tropomyosin/immunology , Food Hypersensitivity/immunology , Mice , Macrophages/immunology , Arginase/metabolism , Palaemonidae/immunology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Cytokines/metabolism , Disease Models, Animal , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Mannose-Binding Lectins/metabolism , Female , Mannose Receptor , Jejunum/immunology , Jejunum/pathology , Cells, Cultured , Histamine/metabolism , Macrophage Activation
6.
J Colloid Interface Sci ; 668: 437-447, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38688182

ABSTRACT

Antibiotics are refractory degradable organic pollutants that present a significant hazard to water environments. In this work, a ternary composite (KB/BMO-GO) comprising of graphene oxide (GO), Bi2MoO6 (BMO), and a cross-linked benzene polymer (KB) was synthesized and applied to promote the synergistic adsorption-photocatalytic degradation of the refractory pollutant, oxytetracycline (OTC). The inclusion of GO and KB in the composite enhanced the OTC adsorption performance of the catalysts, and the construction of Z-scheme heterojunction promoted the photogenerated charge separation efficiency and broadened the range of light absorption, thereby enhancing the photocatalytic performance. Moreover, we compared the performance of catalysts loaded with different mass ratios of KB (x% KB/BMO-GO). Among them, the 15 % KB/BMO-GO catalyst sample had the best OTC degradation performance. Specifically, 15 % KB/BMO-GO could adsorb 69.7 % of OTC in 30 min, reaching an OTC degradation rate of 93.3 % under visible light irradiation. h+ and 1O2 are the main active substances in the photocatalytic process. In addition, the catalysts are acid-alkali and salt-resistant, as well as good reusability. This study provides a valuable reference for the preparation of highly efficient photocatalysts for synergistic adsorption-photodegradation processes.

7.
J Ocul Pharmacol Ther ; 40(1): 89-99, 2024.
Article in English | MEDLINE | ID: mdl-38346287

ABSTRACT

Purpose: To characterize the efficiency of glabridin alone and in combination with clinical antifungals in Aspergillus fumigatus keratitis. Methods: The broth microdilution method was performed to investigate whether glabridin exerted an antifungal role on planktonic cells and immature and mature biofilm. Antifungal mechanism was evaluated by Sorbitol and Ergosterol Assays. The synergistic effect of glabridin and antifungals was assessed through the checkerboard microdilution method and time-killing test. Regarding anti-inflammatory role, inflammatory substances induced by A. fumigatus were assessed by real-time quantitative polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay. Drug toxicity was assessed by Draize test in vivo. Macrophage phenotypes were examined by flow cytometry. Results: Regarding antifungal activity, glabridin destroyed fungal cell wall and membrane on planktonic cells and suppressed immature and mature biofilm formation. After combining with natamycin or amphotericin B, glabridin possessed a potent synergistic effect against A. fumigatus. Regarding anti-inflammatory aspects, Dectin-1, toll­like receptor (TLR)-2 and TLR-4 expression of human corneal epithelial cells were significantly elevated after A. fumigatus challenge and reduced by glabridin. The elevated expression of interleukin-1ß and tumor necrosis factor-alpha induced by A. fumigatus or corresponding agonists were reversed by glabridin, equivalent to the effect of corresponding inhibitors. Glabridin could also contribute to anti-inflammation by downregulating inflammatory mediator expression to suppress macrophage infiltration. Conclusions: Glabridin contributed to fungal clearance by destroying fungal cell wall and membrane, and disrupting biofilm. Combining glabridin with clinical antifungals was superior in reducing A. fumigatus growth. Glabridin exerted an anti-inflammatory effect by downregulating proinflammatory substance expression and inhibiting macrophage infiltration, which provide a potential agent and treatment strategies for fungal keratitis.


Subject(s)
Aspergillosis , Eye Infections, Fungal , Isoflavones , Keratitis , Phenols , Humans , Animals , Mice , Aspergillus fumigatus/physiology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Keratitis/drug therapy , Keratitis/microbiology , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL
8.
Nucleic Acids Res ; 52(D1): D1614-D1628, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953341

ABSTRACT

Plants are unique with tremendous chemical diversity and metabolic complexity, which is highlighted by estimates that green plants collectively produce metabolites numbering in the millions. Plant metabolites play crucial roles in all aspects of plant biology, like growth, development, stress responses, etc. However, the lack of a reference metabolome for plants, and paucity of high-quality standard compound spectral libraries and related analytical tools, have hindered the discovery and functional study of phytochemicals in plants. Here, by leveraging an advanced LC-MS platform, we generated untargeted mass spectral data from >150 plant species collected across the five major phyla. Using a self-developed computation protocol, we constructed reference metabolome for 153 plant species. A 'Reference Metabolome Database for Plants' (RefMetaPlant) was built to encompass the reference metabolome, integrated standard compound mass spectral libraries for annotation, and related query and analytical tools like 'LC-MS/MS Query', 'RefMetaBlast' and 'CompoundLibBlast' for searches and profiling of plant metabolome and metabolite identification. Analogous to a reference genome in genomic research, RefMetaPlant provides a powerful platform to support plant genome-scale metabolite analysis to promote knowledge/data sharing and collaboration in the field of metabolomics. RefMetaPlant is freely available at https://www.biosino.org/RefMetaDB/.


Subject(s)
Databases, Factual , Metabolome , Chromatography, Liquid , Metabolome/genetics , Metabolomics/methods , Plants/metabolism , Tandem Mass Spectrometry
9.
Aquat Toxicol ; 265: 106760, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977013

ABSTRACT

The incorrect use of antibiotics and pesticides poses significant risks of biological toxicity. Their simultaneous exposure could jeopardize fish health and hinder sustainable aquaculture. Here, we subjected grass carp to waterborne cypermethrin (0.65 µg/L) or/and sulfamethoxazole (0.30 µg/L) treatments for a duration of 6 weeks. We closely monitored the effects on intestinal function, the intestinal microbiome, and the liver metabolome. The results revealed that exposure to waterborne cypermethrin or/and sulfamethoxazole compromised intestinal barrier function and decreased the expression of intestinal tight junction proteins. Additionally, heightened levels of pro-inflammatory cytokines in the intestines and reduced antioxidant levels indicated systemic inflammation and oxidative stress, with more severe effects observed in the combined exposure group. 16S rRNA sequencing of intestinal tissues suggested Firmicutes play a key role in the intestinal microbiota. GC/MS metabolomics of the liver showed more differential metabolites (56) in the co-exposure group compared to cypermethrin (45) or sulfamethoxazole (32) alone, indicating greater toxicological effects with combined exposure. Our analyses also suggest that ATP-binding cassette transporters could serve as a novel endpoint for assessing the risk of pesticide and antibiotic mixtures in grass carp. In summary, this study underscores the potential ecological risks posed by antibiotics and pesticides to aquatic environments and products. It emphasizes the importance of the gut-liver axis as a comprehensive pathway for assessing the toxicity in fish exposed to environmental contaminants.


Subject(s)
Carps , Gastrointestinal Microbiome , Pesticides , Water Pollutants, Chemical , Animals , Sulfamethoxazole/toxicity , RNA, Ribosomal, 16S , Water Pollutants, Chemical/toxicity , Liver , Anti-Bacterial Agents/toxicity , Pesticides/pharmacology
10.
Cytokine ; 171: 156356, 2023 11.
Article in English | MEDLINE | ID: mdl-37677994

ABSTRACT

PURPOSE: To investigate the antifungal and anti-inflammatory effects of quercetin in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Draize eye test was performed in mice to evaluate the toxicity of quercetin, and the antifungal effects on A. fumigatus were assessed via scanning electron microscopy (SEM), propidium iodide uptake, and adherence assay. In fungal keratitis (FK) mouse models, immunostaining was performed for investigating toll-like receptor 4 (TLR-4) expression and macrophage infiltration. Real-time PCR, ELISA, and Western blot were used to evaluate the expression of pro-inflammatory factors IL-1ß, TNF-α, and IL-6 in infected RAW264.7 cells. Cells were also treated with TLR-4 siRNA or agonist CRX-527 to investigate mechanisms underlying the anti-inflammatory activity of quercetin. RESULTS: Quercetin at 32 µM was non-toxic to corneal epithelial and significantly inhibited A. fumigatus growth and adhesion, and also altered the structure and reduced the number of mycelia. Quercetin significantly reduced macrophage infiltration in the mouse cornea, and attenuated the expression of TLR-4 in the corneal epithelium and stroma of mice with keratitis caused by A. fumigatus. In RAW264.7 cells infected by A. fumigatus, quercetin downregulated TLR-4 along with pro-inflammatory factors IL-1ß, TNF-α, and IL-6. RAW cells with TLR-4 knockdown had reduced expression of factors after A. fumigatus infection, which was decreased even further with quercetin treatment. In contrast, cells with CRX-527 had elevated inflammatory factors compared to control, which was significantly attenuated in the presence of quercetin. CONCLUSION: Quercetin plays a protective role in mouse A. fumigatus keratitis by inhibiting fungal load, disrupting hyphae structure, macrophage infiltration, and suppressing inflammation response in macrophages via TLR-4 mediated signaling pathway.


Subject(s)
Aspergillus fumigatus , Keratitis , Mice , Animals , Toll-Like Receptor 4 , Quercetin/pharmacology , Antifungal Agents/therapeutic use , Interleukin-6 , Tumor Necrosis Factor-alpha/therapeutic use , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL
11.
Environ Sci Pollut Res Int ; 30(44): 99885-99899, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37620703

ABSTRACT

Under the increasingly severe environmental constraints, improving environmental total factor productivity (ETFP) is the fundamental way for the sustainable development of heavily polluting enterprises. Based on 3463 panel data of A-share listed companies in China from 2011 to 2019, this paper employs Porter's hypothesis (PH) framework to explore the impact of environmental tax (EN_T) on enterprise innovation and environmental total factor productivity for the heavily polluting manufacturing industry using the propensity score matching (PSM) method. The empirical results show the following. (i) Environmental taxes positively affect enterprise innovation (EI) and environmental total factor productivity (ETFP). (ii) Mechanism analysis verifies a partial mediating effect for EI between EN_T and ETFP. (iii) Regional heterogeneity analysis illustrates the differences in the impact of environmental taxes on innovation quality. (iv) Individual heterogeneity analysis shows that the "strong Porter hypothesis" is only valid for large-scale enterprises. The results are of great importance for both government and enterprises to improve the EN_T system and optimize the allocation of resources in realistic practice.


Subject(s)
Climate , Government , China , Manufacturing Industry , Taxes , Environmental Policy
12.
Heliyon ; 9(4): e14943, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025789

ABSTRACT

To locate the specific susceptibility genes of a high incidence of schizoaffective disease (SAD) with autonomic dominant inheritance, we recruited a family group from Henan Province with a high incidence of SAD, including 19 individuals sampled from five generations. We used a genome-wide high-density SNP chip to perform genotype detection. The LINKAGE package and MENDEL programs were used for. The two-point and multipoint analyses were calculated by Merlin and SimWalk2 software to obtain the nonparametric linkage (NPL) value, corresponding P value, and parameter linkage limit of detection (LOD) value. Genome-wide linkage analysis yielded a significant linkage signal located on the short arm of chromosome 19. In the dominant genetic model, the LOD of the multipoint parametric analysis was 2.5, and the nonparametric analysis was 19.4 (P < 0.00001). Further haploid genotype analysis localized the candidate region in the 19p13.3-13.2 region, beginning at rs178414 and ending at rs11668751 with a physical length of approximately 4.9 Mb. We believe that the genes responsible for SAD are in this region.

13.
Int Immunopharmacol ; 118: 109849, 2023 May.
Article in English | MEDLINE | ID: mdl-36933490

ABSTRACT

PURPOSE: To screen and identify the mechanism of honokiol on anti-fungi and anti-inflammation in fungal keratitis (FK) through bioinformatic analysis and biological experiments. METHODS: Transcriptome profile demonstrated differential expression genes (DEGs) of Aspergillus fumigatus keratitis between PBS-treated and honokiol-treated groups via bioinformatics analyses. Inflammatory substances were quantified by qRT-PCR, Western blot and ELISA, and macrophage polarization was examined by flow cytometry. Periodic acid Schiff staining and morphological interference assay were used to detect hyphal distribution in vivo and fungal germination in vitro, respectively. Electron microscopy was to illustrate hyphal microstructure. RESULTS: Illumina sequencing demonstrated that compared with the honokiol group, 1175 up-regulated and 383 down-regulated genes were induced in C57BL/6 mice Aspergillus fumigatus keratitis with PBS treatment. Through GO analysis, some differential expression proteins (DEPs) played major roles in biological processes, especially fungal defense and immune activation. KEGG analysis provided fungus-related signaling pathways. PPI analysis demonstrated that DEPs from multiple pathways form a close-knit network, providing a broader context for FK treatment. In biological experiments, Dectin-2, NLRP3 and IL-1ß were upregulated by Aspergillus fumigatus to evaluate immune response. Honokiol could reverse the trend, comparable to Dectin-2 siRNA interference. Meanwhile, honokiol could also play an anti-inflammatory role via promoting M2 phenotype polarization. Moreover, honokiol reduced hyphal distribution in the stroma, delayed germination, and destroyed the hyphal cell membrane in-vitro. CONCLUSIONS: Honokiol possesses anti-fungal and anti-inflammatory effects in Aspergillus fumigatus keratitis and may develop a potential and safe therapeutic modality for FK.


Subject(s)
Aspergillosis , Eye Infections, Fungal , Keratitis , Animals , Mice , Aspergillus fumigatus , Down-Regulation , Mice, Inbred C57BL , Inflammation/drug therapy , Eye Infections, Fungal/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
14.
Chem Commun (Camb) ; 59(22): 3301-3304, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36846958

ABSTRACT

Herein, we report a simple and highly efficient approach for simultaneous in situ synthesis of Cu nanoparticles on Mg-Al-LDH (in situ reduced CuMgAl-LDH) from Cu-Mg-Al ternary LDH and catalytic transfer hydrogenation of furfural (FAL) to furfuryl alcohol (FOL) using isopropanol (2-PrOH) as a reducing agent and hydrogen source. The in situ reduced CuMgAl-LDH, especially Cu1.5Mg1.5Al1-LDH as a precursor, offered excellent performance for the catalytic transfer hydrogenation of FAL to FOL (achieving almost full conversion with 98.2% selectivity of FOL). Strikingly, the in situ reduced catalyst was robust and stable with a wide scope in the transfer hydrogenation of various biomass-derived carbonyl compounds.

15.
Plant Sci ; 327: 111563, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36509245

ABSTRACT

Celery (Apium graveolens L.) is one of the most popular leafy vegetables worldwide. The main edible parts of celery are the leaf blade and especially the petiole, which typically has a white, green and red color. To date, there are very few reports about the inheritance and gene cloning of celery petiole color. In this study, bulked segregant analysis-sequencing (BSA-Seq) and fine mapping were conducted to delimit the white petiole (wp1) loci into a 668.5-kb region on Chr04. In this region, AgWp1 is a homolog of a DAG protein in Antirrhinum majus and a MORF9 protein in Arabidopsis, and both proteins are involved in chloroplast development. Sequencing alignment shows that there is a 27-bp insertion in the 3'-utr region in AgWp1 in the white petiole. Gene expression analysis indicated that the expression level of AgWp1 in the green petiole was much higher than that in the white petiole. Further cosegregation revealed that the 27-bp insertion was completely cosegregated with the petiole color in 45 observed celery varieties. Therefore, AgWp1 was considered to be the candidate gene controlling the white petiole in celery. Our results could not only improve the efficiency and accuracy of celery breeding but also help in understanding the mechanism of chlorophyll synthesis and chloroplast development in celery.


Subject(s)
Apium , Apium/genetics , Apium/metabolism , Vegetables/genetics , Plant Breeding , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Invest Ophthalmol Vis Sci ; 63(12): 12, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36350620

ABSTRACT

Purpose: The purpose of this study was to explore the antifungal and anti-inflammatory effects of gallic acid (GA) on Aspergillus fumigatus (A. fumigatus) keratitis. Methods: CCK-8 assay and Draize eye test were used to determine the non-cytotoxic concentration of GA in RAW264.7 cells and an A. fumigatus keratitis mouse model. The antifungal effects of GA were analyzed using minimal inhibitory concentration (MIC), biofilm formation test, fungal adherence assay, calcofluor white staining, and propidium iodide staining. The therapeutic effects of GA were estimated by slit lamp photographs, clinical score, hematoxylin and eosin (H&E) staining, and Periodic acid-Schiff staining in vivo. Immunofluorescence staining and myeloperoxidase assay were conducted to identify neutrophil infiltration and activity. RT-PCR, ELISA, and Western blot were performed to detect the expression of pro-inflammatory cytokines and Nrf2/HO-1. Results: In HCECs and A. fumigatus keratitis mouse model, GA at 100 µg/mL did not affect cell viability, thus this concentration was applied to subsequent experiments. In vitro, GA significantly inhibited A. fumigatus growth, biofilm formation, and adhesion. In vivo, 100 µg/mL GA alleviated the severity of fungal keratitis (FK) by repressing fungal load, reducing neutrophil infiltration, and lowering MPO activity. Besides, the expression of IL-1ß, TNF-α, LOX-1, and COX-2 was inhibited, whereas Nrf2 and HO-1 expression was enhanced at both mRNA and protein levels in the 100 µg/mL GA treated group in comparison to PBS control. Conclusions: GA ameliorates FK severity through inhibiting A. fumigatus load, reducing neutrophils infiltration, downregulating the expression of pro-inflammatory cytokines, and enhancing the Nrf2/HO-1 pathway, which provides new insight into A. fumigatus keratitis treatment.


Subject(s)
Aspergillosis , Eye Infections, Fungal , Keratitis , Mice , Animals , Aspergillus fumigatus , NF-E2-Related Factor 2/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Mice, Inbred C57BL , Keratitis/microbiology , Eye Infections, Fungal/microbiology , Cytokines/genetics , Disease Models, Animal
17.
BMC Oral Health ; 22(1): 478, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36352396

ABSTRACT

BACKGROUND: Studies have shown that excessive iron can lead to an increased incidence of cancer. The role of adipocyte enhancer-binding protein 1 (AEBP1) on ferroptosis is unknown. Thus, we explored the effect of AEBP1 silencing in regulation of ferroptosis in cisplatin-resistant oral cancer cells. METHODS: The functions of AEBP1 silencing and sulfasalazine (SSZ) treatment were determined on oral cancer cell lines and tumor xenograft mouse models. Then we evaluated the functions of AEBP1 on cell proliferation, migration, invasion, lipid reactive oxygen species (ROS), labile iron pool (LIP) and free iron, lipid peroxidation, and expression levels of ferroptosis-related genes. RESULTS: AEBP1 was highly expressed in oral cancer cells and tissues. AEBP1 silencing inhibited oral cancer cell proliferation, migration, and invasion after SSZ treatment. SSZ-induced ferroptosis is due to enhanced ROS level, free iron, and lipid peroxidation, which were distinctly increased by AEBP1 silencing. Meanwhile, AEBP1 silencing enhanced the effects of SSZ on levels of LIP and Fe2+, lipid peroxidation, as well as the expression levels of ferroptosis-related genes in the tumor xenograft mouse models. Importantly, AEBP1 silencing suppressed tumor growth in vivo. Furthermore, silencing of AEBP1 might activate the JNK/ P38 /ERK pathway. CONCLUSION: This research suggested that silencing of AEBP1 predisposes cisplatin-resistant oral cancer cells to ferroptosis via the JNK/p38 /ERK pathway.


Subject(s)
Ferroptosis , Mouth Neoplasms , Humans , Mice , Animals , Cisplatin/pharmacology , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Mouth Neoplasms/genetics , Sulfasalazine/pharmacology , Iron/metabolism , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , Repressor Proteins/metabolism
18.
World J Gastroenterol ; 28(29): 3753-3766, 2022 Aug 07.
Article in English | MEDLINE | ID: mdl-36157542

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal neoplasms worldwide and represents the vast majority of pancreatic cancer cases. Understanding the molecular pathogenesis and the underlying mechanisms involved in the initiation, maintenance, and progression of PDAC is an urgent need, which may lead to the development of novel therapeutic strategies against this deadly cancer. Here, we review the role of SET and MYND domain-containing protein 2 (SMYD2) in initiating and maintaining PDAC development through methylating multiple tumor suppressors and oncogenic proteins. Given the broad substrate specificity of SMYD2 and its involvement in diverse oncogenic signaling pathways in many other cancers, the mechanistic extrapolation of SMYD2 from these cancers to PDAC may allow for developing new hypotheses about the mechanisms driving PDAC tumor growth and metastasis, supporting a proposition that targeting SMYD2 could be a powerful strategy for the prevention and treatment of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Humans , MYND Domains , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms
19.
J Mater Chem B ; 10(38): 7847-7861, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36070420

ABSTRACT

Fungal keratitis (FK) is a refractory ophthalmic disease that can result in vision impairment and even blindness due to the severe fungal invasiveness and excessive inflammatory response. Therefore, antifungal treatment combined with local immunosuppressive therapy is regarded as the most effective strategy to improve the clinical outcome of FK. Oxidized polysaccharides with aldehyde groups possess obvious inhibitory activity towards microorganisms. Herein, we use chondroitin sulfate (CS), a recognized anti-inflammatory biopolysaccharide, to prepare oxidized chondroitin sulfate (OCS) via sodium periodate (NaIO4) oxidation for the treatment of FK. The chemical structure of OCS was characterized by FTIR, 1H NMR, and XPS, revealing that the O-dihydroxy in the D-glucuronic acid unit of CS was selectively broken by NaIO4, forming active aldehyde groups. The introduction of aldehydes not only retains the anti-inflammatory activity but also confers OCS with antifungal property. In vitro antifungal experiments showed that OCS inhibits the growth, represses the biofilm formation and alters the membrane integrity of A. fumigatus. The toxicity of OCS was evaluated by cytotoxicity tests (CCK-8) and the Draize eye test in vitro and in vivo. qRT-PCR confirmed that OCS had similar anti-inflammatory activity as CS. In mice with A. fumigatus keratitis, OCS versus CS or PBS showed an excellent therapeutic effect, characterized by a lower corneal inflammation score, less fungal load, reduced neutrophil recruitment, and the downregulated expression of pro-inflammatory factors. Our findings demonstrate that OCS improves the prognosis of A. fumigatus keratitis in mice by inhibiting the growth of fungi, reducing the recruitment of neutrophils and inhibiting the inflammatory response. It provides innovative ideas for the development and application of OCS in medicine and biomaterials fields.


Subject(s)
Aspergillosis , Eye Infections, Fungal , Keratitis , Aldehydes , Animals , Anti-Inflammatory Agents/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/metabolism , Aspergillus fumigatus , Biocompatible Materials/therapeutic use , Chondroitin Sulfates/pharmacology , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Glucuronic Acid/therapeutic use , Keratitis/drug therapy , Keratitis/metabolism , Mice , Mice, Inbred C57BL , Ophthalmic Solutions , Prognosis , Sincalide/therapeutic use
20.
Acta Biomater ; 150: 391-401, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35917909

ABSTRACT

Tumor microenvironment (TME)-oriented nanomedicine emerges as an efficient routine to greatly improve the efficiency of cancer treatment. The typical feature of hypoxia in TME remains as the main obstacle of many therapeutics like photodynamic therapy. Herein, a specific two-dimensional (2D) phototheranostics (GO-MnO2@tLyP-1/Ce6, denoted as GMtC) with the function of oxygen self-producing and tumor barrier-breaking was detailed by integrating the nanoenzyme MnO2 colloids, tumor homing-penetrating peptide tLyP-1 and photosensitizer chlorin e6 (Ce6) to tackle the hypoxic tumors. GMtC was capable to accumulate into the inner of murine mammary 4T1 tumor spheroids (and the depth could be as far as 90 µm) and to relieve the hypoxia state by catalytic decomposition of endogenous H2O2 to oxygen, which subsequently enhanced the yield of cytotoxic singlet oxygen under laser irradiation. In vivo dual-modal imaging of magnetic resonance and biofluorescence demonstrated the targeted accumulation and distribution of GMtC in tumor regions, thus facilitating the tumor hypoxia alleviation. Notably, GMtC achieved the highest photodynamic anticancer efficiency against 4T1 tumors without obvious systemic toxicity compared with the non-penetrating and no oxygen-generating counterparts. This study suggests the great promise of GMtC as an endogenous TME-responsive and exogenous laser-triggered theranostic platform against the solid hypoxic tumors. STATEMENT OF SIGNIFICANCE: The hostile tumor hypoxia not only induces the tumor angiogenesis, invasiveness and irreversible metastasis, but also inherently impairs the efficiency of many therapeutic modalities like photodynamic therapy (PDT). Though numerous hypoxia-alleviating strategies based on nanomedicine have been proposed, little attention is paid to the hypoxia-specific transportation barriers. This study develops a type of 2D phototheranostics GMtC against hypoxic solid tumors by integrating the function of tumor homing-penetrating and in situ oxygen-generating. GMtC displays outstanding performance in tumor deep penetration to hypoxia center and generating abundant oxygen in responsive to tumor microenvironment, thus exerting the highest efficiency of PDT against 4T1 mammary tumor. GMtC can be a potent theranostics to treat the solid hypoxic tumors.


Subject(s)
Breast Neoplasms , Nanoparticles , Photochemotherapy , Animals , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Humans , Hydrogen Peroxide , Hypoxia , Manganese Compounds/chemistry , Mice , Oxides/chemistry , Oxygen , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL