Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 337: 122566, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37717897

ABSTRACT

Surfactant-enhanced multiphase extraction is recognized as an effective method to remove petroleum related contaminants from soil. Owing to the high biodegradability and low biotoxicity, plant-derived surfactants are considered as promising alternatives to synthetic surfactants. In this study, two plant surfactants were respectively extracted from Sapindus mukorossi (PS-1) and Fructus Gleditsiae sinensis (PS-2). Component analysis and chemical structure characterization indicated that triterpenoid saponins were the main components of both plant surfactants. The removal efficiency of tetradecane by PS-1 and PS-2 was 75.6% and 62.2%, respectively, which was comparable with that by Tween-80. The results were validated by column leaching experiments. The abundant hydroxyl, aldehyde and epoxy groups in the plant surfactants made them readily self-assemble to form micelles via hydrogen bonding and van der Waals interactions, which promoted the solubilization of tetradecane in the liquid phase, particularly at appropriate ionic strength and temperature. Due to the reduced electrostatic attraction by the acidic and ionizable functional groups in the plant surfactants, their sorption capacities (0.15 and 0.24 g1-n Ln·kg-1 for PS-1 and PS-2, respectively) onto the soil were much lower than that of Tween-80, making them much easier to be extracted from contaminated soil. This study would deepen our understanding to improve the performances of plant surfactants in petroleum hydrocarbons-contaminated soil remediation.


Subject(s)
Petroleum , Soil Pollutants , Surface-Active Agents/chemistry , Polysorbates , Petroleum/analysis , Soil , Hydrocarbons , Soil Pollutants/analysis , Biodegradation, Environmental
2.
Proc Natl Acad Sci U S A ; 120(34): e2221228120, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37590415

ABSTRACT

Developing green heterogeneous catalysts with excellent Fenton-like activity is critical for water remediation technologies. However, current catalysts often rely on toxic transitional metals, and their catalytic performance is far from satisfactory as alternatives of homogeneous Fenton-like catalysts. In this study, a green catalyst based on Zn single-atom was prepared in an ammonium atmosphere using ZIF-8 as a precursor. Multiple characterization analyses provided evidence that abundant intrinsic defects due to the edge sites were created, leading to the formation of a thermally stable edge-hosted Zn-N4 single-atom catalyst (ZnN4-Edge). Density functional theory calculations revealed that the edge sites equipped the single-atom Zn with a super catalytic performance, which not only promoted decomposition of peroxide molecule (HSO5-) but also greatly lowered the activation barrier for •OH generation. Consequently, the as-prepared ZnN4-Edge exhibited extremely high Fenton-like performance in oxidation and mineralization of phenol as a representative organic contaminant in a wide range of pH, realizing its quick detoxification. The atom-utilization efficiency of the ZnN4-Edge was ~104 higher than an equivalent amount of the control sample without edge sites (ZnN4), and the turnover frequency was ~103 times of the typical benchmark of homogeneous catalyst (Co2+). This study opens up a revolutionary way to rationally design and optimize heterogeneous catalysts to homogeneous catalytic performance for Fenton-like application.

3.
Water Res ; 240: 120111, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37263118

ABSTRACT

Due to the increasing applications, silver nanoparticles (AgNPs) are inevitably released into the environments and are subjected to various transformations. Chloride ion (Cl-) is a common and abundant anion with a wide range of concentration in aquatic environments and exhibits a strong affinity for silver. The results indicate that AgNPs experienced multistep chlorination, which was dependent on the concentration of Cl- in a non-linear manner. The dissolution of AgNPs was accelerated at Cl/Ag ratio of 1 and the intensive etching effect of Cl- contributed to the significant morphology changes of AgNPs. The dissolved Ag+ quickly precipitated with Cl- to form an amorphous and passivating AgCl(s) layer on the surface of AgNPs, thus the dissolution rate of AgNPs decreased at higher Cl/Ag ratios (100 and 1000). As the Cl/Ag ratio further increased to 10,000, the overall transformation rate increased remarkably due to the complexation of Cl- with AgCl(s) to form soluble AgClx(x-1)- species, which was verified by the reaction of AgCl nanoparticles with Cl-. Besides, several environmental factors (electrolytes, surfactants and natural organic matter) affected AgNPs dissolution and the following chlorination. These results will expand the understanding of the environmental fate and potential risks of AgNPs in natural chloride-rich waters.


Subject(s)
Metal Nanoparticles , Silver , Halogenation , Chlorides , Halogens
4.
J Hazard Mater ; 453: 131389, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37043854

ABSTRACT

Comprehending the interactions between graphene oxide (GO) and enzymes is critical for understanding the toxicities of GO. In this study, the inherent interactions of GO with α-amylase as a typical enzyme, and the impacts of GO on the conformation and biological activities of α-amylase were systematically investigated. The results reveal that GO formed ground-state complex with α-amylase primarily via hydrogen bonding and van der Waals interactions, thus quenching the intrinsic fluorescence of the protein statically. Particularly, the strong interactions altered the microenvironment of tyrosine and tryptophan residues, caused rearrangement of polypeptide structure, and reduced the contents of α-helices and ß-sheets, thus changing the conformational structure of α-amylase. According to molecular docking results, GO binds with the amino acid residues (i.e., His299, Asp300, and His305) of α-amylase mainly through hydrogen bonding, which is in accordance with in vitro incubation experiments. As a consequence, the ability of α-amylase to catalyze starch hydrolysis into glucose was depressed by GO, suggesting that GO might cause dysfunction of α-amylase. This study discloses the intrinsic binding mechanisms of GO with α-amylase and provides novel insights into the adverse effects of GO as it enters organisms.


Subject(s)
Graphite , alpha-Amylases , alpha-Amylases/metabolism , Molecular Docking Simulation , Molecular Conformation , Graphite/chemistry
5.
Sci Total Environ ; 849: 157800, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35934036

ABSTRACT

Considering the large volumes of treated water and incomplete elimination of pollutants, wastewater treatment plants (WWTPs) remain a considerable source of microplastics (MPs). Chlorine, the most frequently used disinfectant in WWTPs, has a strong oxidizing impact on MPs. However, little is documented, to date, about the impact of chlorination on the transformation of MPs and the subsequent environmental behaviors of the chlorinated MPs when released into the aquatic environment. This study explored the response of the physicochemical properties of specific thermoplastics, namely polyurethane (TPU) MPs and polystyrene (PS) MPs, to chlorination and their emerging pollutant [tetracycline (TC)] adsorption behavior in aqueous solution. The results indicated that the O/C ratio of the MP surface did not significantly change, and that there were increases in the O-containing functional groups of the TPU and PS MPs, after chlorination. The surface area of the chlorinated TPU MPs increased by 45 %, and that of the chlorinated PS increased by 21 %, compared with the pristine ones, which contributed to the TC adsorption. The adsorption isotherm fitting parameters suggested that the chlorinated TPU fitted the multilayer adsorption, and the chlorinated PS was inclined to the monolayer adsorption. The relative abundance of the O-containing functional groups, on the TPU surface, led to the release of CHCl3 molecules, and the clear surface irregularities and fissures occurred after chlorine treatment. No fissures were found on the surface of the chlorinated PS MPs. The hydrophobicity and electrostatic adsorption were proved to be the major impacts on the TC adsorption of the chlorinated MPs, and the subsequently formed hydrogen bonds led to the stronger adsorption capacity of the chlorinated TPU than the chlorinated PS MPs.


Subject(s)
Disinfectants , Environmental Pollutants , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Chlorine , Halogenation , Microplastics , Plastics , Polystyrenes , Polyurethanes , Tetracycline , Water , Water Pollutants, Chemical/analysis
6.
Water Res ; 218: 118452, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35447420

ABSTRACT

Silver nanoparticles (AgNPs) are nowadays widely utilized in various fields due to their unique antimicrobial properties. Extracellular polymeric substances (EPS) excreted by microorganisms might affect the transformations and antibacterial efficacy of AgNPs. In the present study, the effects of EPS released by Escherichia coli (E. coli) on the dissolution and sulfidation of AgNPs as well as the associated growth inhibition to E. coli were systematically investigated. The formation of EPS-corona caused the reduced exposure of (111) facets of AgNPs due to the preferential binding with aromatic protein components in EPS. The EPS inhibited AgNPs dissolution, while facilitated reductive transformation of the released Ag+ to Ag0 under simulated sunlight. Additionally, EPS enhanced the colloidal stability and reduced electrostatic repulsive of AgNPs, which favored the access of sulfide and significantly promoted the sulfidation of AgNPs under simulated sunlight, further reducing the available dissolved Ag+ ions. Consequently, the EPS relieved the antibacterial activity of AgNPs to E. coli. These findings highlight the importance of microbial EPS in the transformations and bactericidal effect of AgNPs, which provide clues for the development of AgNPs-based antibacterial strategies.


Subject(s)
Metal Nanoparticles , Silver , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Defense Mechanisms , Escherichia coli/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Metal Nanoparticles/chemistry , Silver/chemistry
7.
Water Res ; 216: 118371, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35381431

ABSTRACT

Graphene oxide (GO) are subjected to photoaging in aquatic environment, and inevitably enter biota and then interact with proteins. Here, the interactions of pristine and photoaged GO with two typical proteins (bovine serum albumin (BSA) and lysozyme) were systematically investigated. Due to long term photoirradiation (1-3 day), the lateral size of GO decreased greatly, and the oxygen-containing groups decreased as well while the graphitic carbon contents increased. Compared to pristine GO, the photoaged GO displayed stronger binding affinities with both proteins, which was mainly attributed to the increased binding sites as a result of smaller lateral size and increased hydrophobicity. The photoaging effect was more obvious for the negatively charged BSA, because hydrogen bonding and van der Waals force were mainly involved in the enthalpy-driven interactions between them. While, the strong electrostatic attraction between the positively charged lysozyme and GO diminished the photoaging effect. Analyses of synchronous, three-dimensional fluorescence spectra and fibrillation experiments intensified that the photoaged GO induced more serious changes in conformational structure of BSA and exhibited stronger inhibition on fibrillation of BSA compared to pristine GO. This study provided novel insights into the increased ecological risks of GO as a result of photoaging.


Subject(s)
Graphite , Skin Aging , Graphite/chemistry , Muramidase , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Thermodynamics
8.
J Hazard Mater ; 429: 128247, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35065312

ABSTRACT

Silver nanoparticles (AgNPs) are usually capped with stabilizing agents to protect their activities and improve stability. Polyvinylpyrrolidone (PVP) is one of the most used capping agents of AgNPs, and may affect the transport of AgNPs in porous media. The transport and retention of AgNPs capped with PVPs of different molecular weights (PVP10-AgNP, PVP40-AgNP and PVP360-AgNP) in uncoated, and humic acid (HA)-, kaolinite (KL)- and ferrihydrite (FH)-coated sand porous media were investigated. Among the three AgNPs, PVP360-AgNP exhibited the highest mobility and eluted from all types of porous media. This is because PVPs of higher molecular weight provided stronger steric effect and electrostatic repulsive forces among PVP-AgNPs, inducing stronger blocking and shadow effects. The transport of the PVP-AgNPs increased in the HA-Sand columns, while decreased in the KL- and FH-Sand columns, especially for PVP10-AgNP and PVP40-AgNP. The simulation results using one-site kinetic model indicated that HA-Sand reduced the maximum retention capacity (Smax), while KL- and FH-Sand increased the Smax as well as the first-order attachment rate coefficients (katt), particularly at high ionic strength. The results shed light on the interplay of the capping agents of AgNPs and the surface heterogeneity on the transport of AgNPs in porous media.

9.
Chemosphere ; 283: 131159, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34144287

ABSTRACT

Silver nanoparticles (AgNPs) are among the most applied nanomaterials and have great potential to be present in the environment. Dissolved black carbon (DBC) is ubiquitous in soil as a result of large-scale application of biomass-derived black carbon as soil amendments, while its impacts on the transport of AgNPs remain unclear. In this study, two DBCs with different functional groups were prepared at 300 and 500 °C (DBC300 and DBC500), and their impacts on the transport of uncoated AgNPs (Bare-AgNP) and polyvinylpyrrolidone-coated AgNPs (PVP-AgNP) in saturated quartz sand were investigated. The transport of PVP-AgNP was much higher than Bare-AgNP under the same conditions because of the increased steric hindrance provided by PVP surface coating. The transport of two kinds of AgNPs was both enhanced by the DBCs under all the experimental conditions. DBC500 displayed a stronger enhancement effect than DBC300 on PVP-AgNP transport, but DBC300 facilitated the migration of Bare-AgNP more significantly than DBC500. The higher aromaticity and stronger hydrophobicity of DBC500 drove it to be adsorbed on the surface of PVP-AgNP, thus providing stronger steric hindrance and promotion effect on PVP-AgNP transport. However, DBC300 contained surface sulfhydryl groups, which bound with the Bare-AgNP tightly, therefore it greatly promoted Bare-AgNP transport via enhanced steric hindrance. (X)DLVO calculations indicated DBCs generally increased the energy barrier between the AgNPs and sand grains. The results shed light on the vital roles of both the properties of AgNPs and DBCs on the fate and environmental behaviors of silver nanomaterials in complex environments.


Subject(s)
Metal Nanoparticles , Silver , Porosity , Povidone , Silver/analysis , Soil
10.
Water Res ; 200: 117213, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34015575

ABSTRACT

Wide application leads to release of graphene oxide (GO) in aquatic environment, where it is subjected to photoaging and changes in physicochemical properties. As important component of natural organic matters, proteins may greatly affect the aggregation behaviors of photoaged GO. The effects of a typical model protein (bovine serum albumin, BSA) on the colloidal stability of photoaged GO were firstly investigated. Photoaging reduced the lateral size and oxygen-containing groups of GO, while the graphene domains and hydrophobicity increased as a function of irradiation time (0-24 h). Consequently, the photoaged GO became less stable than the pristine one in electrolyte solutions. Adsorption of BSA on the surface of the photoaged GO decreased as well, leading to thinner BSA coating on the photoaged GO. In the solutions with low concentrations of electrolytes, the aggregation rate constants (k) of all the photoaged GO firstly increased to the maximum agglomeration rate constants (kfast, regime I), maintained at kfast (regime Ⅱ) and then decreased to zero (regime Ⅲ) as the BSA concentration increased. In both regime I and III, the photoaged GO were less stable at the same BSA concentrations, and the impacts of BSA on the colloidal stability of the photoaged GO were less than the pristine one, which was attributed to the weaker interactions between the photoaged GO and BSA. This study provided new insights into the colloidal stability and fate of GO nanomaterials, which are subjected to extensive light irradiation, in wastewater and protein-rich aquatic environment.


Subject(s)
Graphite , Nanostructures , Water , Oxides , Serum Albumin, Bovine
11.
J Hazard Mater ; 402: 123459, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32683157

ABSTRACT

Perfluorooctanoic acid (PFOA) is highly stable due to the strong CF bond and extremely difficult to be removed by conventional photocatalysts. In this study, Bi doped BiOI1-xFx solid solutions with hollow microsphere structure were prepared through a facile one-step hydrothermal method. Compared with pure BiOI and BiOF, the band gap of the Bi/BiOI1-xFx solid solutions was significantly reduced, thus promoting the visible light absorbance. The cavity structure of the BiOI1-xFx solid solutions enhanced the surface areas and active sites for reaction. The local electromagnetic field dominated by surface plasmon resonance (SPR) effect of Bi metal on the surface favored the separation of the photoinduced charge pairs. As a consequence, Bi/BiOI0.8F0.2 (x = 0.20, the doping amount of fluorine was 20 %) composite displayed the best photocatalytic performance for decomposing PFOA, and 40 mg/L PFOA could be removed within 2 h illumination. The degradation rate constant (k = 0.0375 min-1) of PFOA by Bi/BiOI0.8F0.2 was about tenfold of that by pure BiOI and BiOF. Superoxide radical (·O2-) predominated in the degradation of PFOA by Bi/BiOI0.8F0.2, and the possible degradation pathway of PFOA by Bi/BiOI0.8F0.2 was proposed. This work provides a highly efficient catalyst for the practical application in removal of highly persistent PFOA.

12.
Environ Sci Technol ; 54(9): 5560-5568, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32259435

ABSTRACT

With increasing utilization of silver nanomaterials, growing concerns are raised on their deleterious effects to the environment. Once discharged in an aquatic environment, the interactions between silver nanowires (AgNWs) and proteins may significantly affect the environmental behaviors, fate, and toxicities of AgNWs. In the present study, three representative model proteins, including ovalbumin (OVA), bovine serum albumin (BSA), and lysozyme (LYZ), were applied to investigate the impacts of the interactions between proteins and AgNWs on the transformations (oxidative dissolution and sulfidation) of AgNWs in an aquatic environment. Fluorescence spectroscopy and isothermal titration calorimetry analyses indicated that there was very weak interaction between OVA or BSA and AgNWs, but there was a strong interaction between the positively charged LYZ and the negatively charged AgNWs. The presence of LYZ not only reversed the surface charge of AgNWs but also resulted in the breakup of the nanowire structure and increased the reactive surface area. The positively charged surface of AgNWs in the presence of LYZ favored the access of sulfide ions. As a consequence, the kinetics of oxidative dissolution and sulfidation of AgNWs were not affected by OVA and BSA but were significantly facilitated by LYZ. The results shed light on the important roles of electrostatic interactions between AgNWs and proteins, which may have important implications for evaluating the fate and effects of silver nanomaterials in complicated environments.


Subject(s)
Nanowires , Silver , Kinetics , Solubility
13.
Ecotoxicol Environ Saf ; 194: 110454, 2020 May.
Article in English | MEDLINE | ID: mdl-32171962

ABSTRACT

The wide application of silver nanoparticles (AgNPs) has inevitably led to their release into the natural aquatic environment. Natural organic matter (NOM) is ubiquitous and would influence the fate and effects of these nanoparticles in such aquatic environments. Here we demonstrate that NOM plays an important role in the bioaccumulation kinetics and tissue distribution of AgNPs in zebrafish. In the presence of humic acid and fulvic acid, the uptake rates of AgNPs decreased while the depuration rates of AgNPs increased. As a result, the bioconcentration factor (BCF) of AgNPs in the entire body of the zebrafish was reduced. AgNPs were mainly taken up by the zebrafish via oral ingestion and were greatly accumulated in the liver, intestine and gill. In the intestine, NOM effectively inhibited the AgNPs from penetrating the cell membranes into internal tissues and also suppressed the disintegration and dissolution of AgNPs in gastrointestinal fluid, thereby decreasing the absorption of Ag by zebrafish. This research underlines the significance of incorporating the effects of NOM into predictive models for accurately assessing the toxicity and ecological risks of nanoparticles in natural aquatic environments.


Subject(s)
Metal Nanoparticles/analysis , Silver/metabolism , Water Pollutants, Chemical/metabolism , Zebrafish/metabolism , Animals , Benzopyrans , Bioaccumulation , Humic Substances/analysis , Kinetics , Tissue Distribution
14.
Ecotoxicol Environ Saf ; 185: 109739, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31586847

ABSTRACT

Silver nanowires (AgNWs) are widely produced in many electronic and optical products, and could be inevitably discharged into the aquatic environments. Sulfidation is one of the most important transformation processes of AgNWs, and could significantly affect their fate and interactions with other pollutants in aquatic environment. In the present study, the sulfidation products of AgNWs with different atomic ratio of Ag and S were prepared under environmentally relevant conditions. The crystal structure, elemental composition, morphology and size of the sulfidation products were comprehensively characterized by powder X-ray diffraction, UV-vis spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscope. The products were heterostructured nanowires and the Ag2S/Ag molar ratio increased with extension of the reaction time. The produced Ag2S-Ag nanowires displayed a good photocatalytic activity and facilitated the degradation of the copresent organic pollutant bisphenol A (BPA) under simulated sunlight irradiation. As sulfidation time increased, more Ag2S was generated and the Ag2S-Ag composites displayed high promotion effect on BPA degradation. This effect could be ascribed to the favorable synergistic effects between Ag2S and AgNWs, such as high electron-hole separation efficiency and low charge transfer resistance. The chemical scavenger experiments demonstrated that superoxide anion radicals and photogenerated holes in the sulfidation products of AgNWs could be the main reactive species for photocatalytic degradation.


Subject(s)
Benzhydryl Compounds/analysis , Nanowires/chemistry , Phenols/analysis , Silver/chemistry , Sulfides/chemistry , Sunlight , Water Pollutants, Chemical/analysis , Benzhydryl Compounds/radiation effects , Catalysis , Phenols/radiation effects , Water Pollutants, Chemical/radiation effects
15.
Sci Total Environ ; 697: 134158, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-32380620

ABSTRACT

Development from embryos to larvae is an important life stage and impairments in this stage could affect the development and growth of fish. In this study, the endocrine disruption and developmental toxicities of bisphenol A (BPA) (50 and 500 µg/L) in the presence of graphene oxide (GO) (0.1 and 1 mg/L) were investigated on zebrafish embryos from 6 to 168 h post fertilization (hpf). BPA alone displayed significant endocrine disruption effects (increase in the estradiol (E2)/testosterone (T) ratio, vitellogenin (VTG) and estrogen receptor α (erα) in larvae), promoted embryos hatching and caused larvae malformation. There was a significant correlation between VTG level and erα expression, suggesting that erα played a vital role in VTG synthesis. However, all these adverse effects were alleviated distinctly in the presence of GO. GO formed a coating layer on the embryos chorion membrane, depressing absorption of BPA by the embryos. As a consequence, bioaccumulation of BPA in zebrafish co-exposed to GO and BPA decreased by >50% compared with the BPA single exposure group. Adsorption of BPA on GO might also make a partial contribution to the reduced accumulation of BPA in the larvae. The results demonstrated that GO could relieve the estrogenic and developmental effects of BPA on zebrafish in the early development stage.


Subject(s)
Benzhydryl Compounds/toxicity , Embryo, Nonmammalian/drug effects , Endocrine Disruptors/toxicity , Graphite/chemistry , Phenols/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/embryology , Animals
16.
ACS Appl Mater Interfaces ; 11(1): 195-201, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30556997

ABSTRACT

Nanoceria with phosphatase-like behavior shows its great potential for many important biological applications through a catalytic dephosphorylation process. Herein, we synthesize a series of porous nanorods of ceria (PN-CeO2) with the controllable surface Ce3+ fractions modulated by thermal annealing, understanding the correlations between their surface properties and reactivity for the dephosphorylation of p-nitrophenyl phosphate ( p-NPP) and investigating their catalytic performance under various interferences. Our results suggest that PN-CeO2 with abundant surface defects deliver higher catalytic activity to break down p-NPP. Most importantly, PN-CeO2 exhibited a better adaptability over a wide pH range and preserved the catalytic activity over a wide temperature range from 20 to 80 °C, if compared with natural enzymes. Moreover, PN-CeO2 delivered the high catalytic stability against various interference ions. Their great prospects for practical applications were further demonstrated by dephosphorylation of DNA.


Subject(s)
4-Nitrophenylphosphatase/chemistry , Cerium/chemistry , Hot Temperature , Nanotubes/chemistry , Nitrophenols/chemistry , Organophosphorus Compounds/chemistry , Catalysis , Hydrogen-Ion Concentration , Porosity
17.
Environ Sci Technol ; 52(13): 7212-7219, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29894635

ABSTRACT

The impacts of a model globular protein (bovine serum albumin, BSA) on aggregation kinetics of graphene oxide (GO) in aquatic environment were investigated through time-resolved dynamic light scattering at pH 5.5. Aggregation kinetics of GO without BSA as a function of electrolyte concentrations (NaCl, MgCl2, and CaCl2) followed the traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, and the critical coagulation concentration (CCC) was 190, 5.41, and 1.61 mM, respectively. As BSA was present, it affected the GO stability in a concentration dependent manner. At fixed electrolyte concentrations below the CCC values, for example 120 mM NaCl, the attachment efficiency of GO increased from 0.08 to 1, then decreased gradually and finally reached up to zero as BSA concentration increased from 0 to 66.5 mg C/L. The low-concentration BSA depressed GO stability mainly due to electrostatic binding between the positively charged lysine groups of BSA and negatively charged groups of GO, as well as double layer compression effect. With the increase of BSA concentration, more and more BSA molecules were adsorbed on GO, leading to strong steric repulsion which finally predominated and stabilized the GO. These results provided significant information about the concentration dependent effects of natural organic matters on GO stability under environmentally relevant conditions.


Subject(s)
Graphite , Electrolytes , Kinetics , Oxides , Serum Albumin, Bovine
18.
Water Res ; 122: 78-85, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28595123

ABSTRACT

Large volume production and application of nano-TiO2 make it inevitably release to natural waters and its environmental behaviors would be affected by natural organic matters. In this study, the mechanisms of humic acid (HA) affecting the photocatalytic performance of nano-TiO2 were elucidated by using three HA fractions from the same source but with different polarities. Bulk HA was fractionated on a silica gel column to get three fractions with polarity increasing in the order of FA, FB and FC. FA was fulvic acid-like while FB and FC were humic acid-like. All the three fractions (at 0.1 mg/L) promoted the generation of hydroxyl radicals (OHs) by nano-TiO2, and thus in turn facilitated the photocatalytic degradation of bispheol A (BPA). FA and FC displayed a stronger promotion effect than FB and the bulk HA. Online in situ flow cell ATR-FTIR and XPS analyses indicated that HA fractions could form charge-transfer complex with nano-TiO2 surface through the phenolic hydroxyl and carboxylic groups, which favored the separation of photogenerated electron-hole pairs. Through step methylation experiments, it was verified that the phenolic hydroxyl and carboxylic groups of HA fractions played important roles in promoting the photocatalytic performance of nano-TiO2, and the effect of carboxylic group was more significant than the phenolic hydroxyl group.


Subject(s)
Humic Substances , Titanium , Adsorption , Environment , Nanoparticles , Photochemistry
19.
Environ Sci Technol ; 50(24): 13283-13290, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27993058

ABSTRACT

Silver nanowires (AgNWs) are being widely utilized in an increasing number of consumer products, which could release silver to aquatic environments during the use or washing process, and have received growing concerns on their potential risks to bio-organisms and humans. The present study demonstrated that AgNWs mainly experienced direct oxysulfidation by reacting with dissolved sulfide species (initial S2- concentration at 1.6 mg/L) to produce silver sulfide nanostructures under environmentally relevant conditions. Granular Ag2S nanoparticles were formed on the surface of the nanowires. The sulfidation rate constant (kAg) of AgNWs was compared with those of silver nanoparticles (AgNPs) at different particle sizes. It was found that the kAg positively correlated with the specific surface areas of the silver nanomaterials. Natural organic matter (NOM) suppressed the sulfidation of AgNWs to different extents depending on its concentration. Divalent cations (Mg2+ and Ca2+ ions) substantially accelerated the sulfidation rates of AgNWs compared to monovalent cations (Na+ and K+ ions). At the same ionic strengths, Ca2+ ions displayed the highest promoting effect among the four metallic ions.


Subject(s)
Nanowires/chemistry , Silver/chemistry , Cations , Metal Nanoparticles/chemistry , Osmolar Concentration
20.
Environ Pollut ; 216: 166-172, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27262130

ABSTRACT

Understanding the effects of nano-TiO2 particles on the environmental behaviors of organic pollutants in natural aquatic environments is of paramount importance considering that large amount of nano-TiO2 is being released in the environment. In this study, the effect of nano-TiO2 on the degradation of bisphenol A (BPA) in water was investigated under simulated solar light irradiation. The results indicated that nano-TiO2 at environmentally relevant concentration (1 mg/L) could significantly facilitate the abiotic degradation of BPA (also at low concentration) under mild solar light irradiation, with the pseudo first-order rate constant (kobs) for BPA degradation raised by 1-2 orders of magnitude. As reflected by the inhibition experiments, hydroxyl radicals (OHs) and superoxide radical species were the predominant active species responsible for BPA degradation. The reaction was affected by water pH, and the degradation rate was higher at acidic or alkaline conditions than that at neutral condition. Humic acid (HA) also affected the reaction rate, depending on its concentration. At lower concentration (the mass ratio of HA/nano-TiO2 was 0.1:1), HA improved the dispersion and stability of nano-TiO2 in aquatic environment. As a result, the yield of OHs by nano-TiO2 under sunlight irradiation increased and BPA degradation was facilitated. When the HA concentration increased, a coating of HA formed on the surface of nano-TiO2. Although nano-TiO2 became more stable, the light absorption by nano-TiO2 was significantly reduced due to the strong light absorption of the HA coated on the surface. As a consequence, the yield of OH decreased and BPA degradation was depressed. The results imply that nano-TiO2 at low concentration may distinctly mediate BPA degradation, and can contribute to the natural attenuation of some organic pollutants in aquatic environment with low level of HA. However, this process would be significantly reduced in the presence of high level of HA.


Subject(s)
Benzhydryl Compounds/chemistry , Metal Nanoparticles/chemistry , Phenols/chemistry , Sunlight , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Photolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...