Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 349
Filter
1.
Plant Physiol ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172695

ABSTRACT

The carboxysome is a natural proteinaceous organelle for carbon fixation in cyanobacteria and chemoautotrophs. It comprises hundreds of protein homologs that self-assemble to form a polyhedral shell structure to sequester cargo enzymes, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrases. How these protein components assemble to construct a functional carboxysome is a central question in not only understanding carboxysome structure and function but also synthetic engineering of carboxysomes for biotechnological applications. Here, we determined the structure of the chaperone protein CcmS, which has recently been identified to be involved in ß-carboxysome assembly, and its interactions with ß-carboxysome proteins. The crystal structure at 1.99 Å resolution reveals CcmS from Nostoc sp. PCC 7120 forms a homodimer, and each CcmS monomer consists of five α-helices and four ß-sheets. Biochemical assays indicate that CcmS specifically interacts with the C-terminal extension of the carboxysome shell protein CcmK1, but not the shell protein homolog CcmK2 or the carboxysome scaffolding protein CcmM. Moreover, we solved the structure of a stable complex of CcmS and the C-terminus of CcmK1 at 1.67 Å resolution and unveiled how the CcmS dimer interacts with the C-terminus of CcmK1. These findings allowed us to propose a model to illustrate CcmS-mediated ß-carboxysome assembly by interacting with CcmK1 at the outer shell surface. Collectively, our study provides detailed insights into the accessory factors that drive and regulate carboxysome assembly, thereby improving our knowledge of carboxysome structure, function, and bioengineering.

2.
Sci Total Environ ; 948: 174723, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39002603

ABSTRACT

The deep marine sediments represent a major repository of organic matter whilst hosting a great number of uncultivated microbes. Microbial metabolism plays a key role in the recycling of organic matter in the deep marine sediments. D-amino acids (DAAs) and DAA-containing muropeptides, an important group of organic matter in the deep marine sediments, are primarily derived from bacterial peptidoglycan decomposition. Archaea are abundant in the deep ocean microbiome, yet their role in DAA metabolism remains poorly studied. Here, we report bioinformatic investigation and enzymatic characterization of deep marine sedimentary archaea involved in DAA metabolism. Our analyses suggest that a variety of archaea, particularly the Candidatus Bathyarchaeota and the Candidatus Lokiarchaeaota, can metabolize DAAs. DAAs are converted into L-amino acids via amino acid racemases (Ala racemase, Asp racemase and broad substrate specificity amino acid racemase), and converted into α-keto acid via d-serine ammonia-lyase, whereas DAA-containing di-/tri-muropeptides can be hydrolyzed by peptidases (dipeptidase and D-aminopeptidase). Overall, this study reveals the identity and activity of deep marine sedimentary archaea involved in DAA metabolism, shedding light on the mineralization and biogeochemical cycling of DAAs in the deep marine sediments.


Subject(s)
Amino Acids , Archaea , Geologic Sediments , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Archaea/metabolism , Amino Acids/metabolism
3.
J Hazard Mater ; 476: 135191, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39013318

ABSTRACT

Phthalate esters (PAEs) are emerging hazardous and toxic chemicals that are extensively used as plasticizers or additives. Diethyl phthalate (DEP) and dimethyl phthalate (DMP), two kinds of PAEs, have been listed as the priority pollutants by many countries. PAE hydrolases are the most effective enzymes in PAE degradation, among which family IV esterases are predominate. However, only a few PAE hydrolases have been characterized, and as far as we know, no crystal structure of any PAE hydrolases of the family IV esterases is available to date. HylD1 is a PAE hydrolase of the family IV esterases, which can degrade DMP and DEP. Here, the recombinant HylD1 was characterized. HylD1 maintained a dimer in solution, and functioned under a relatively wide pH range. The crystal structures of HylD1 and its complex with monoethyl phthalate were solved. Residues involved in substrate binding were identified. The catalytic mechanism of HylD1 mediated by the catalytic triad Ser140-Asp231-His261 was further proposed. The hylD1 gene is widely distributed in different environments, suggesting its important role in PAEs degradation. This study provides a better understanding of PAEs hydrolysis, and lays out favorable bases for the rational design of highly-efficient PAEs degradation enzymes for industrial applications in future.


Subject(s)
Phthalic Acids , Phthalic Acids/chemistry , Phthalic Acids/metabolism , Esters/chemistry , Hydrolysis , Crystallography, X-Ray , Catalysis , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics
4.
J Hazard Mater ; 476: 135137, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39024770

ABSTRACT

Arsenic is a toxic element widely distributed in the Earth's crust and ranked as a class I human carcinogen. Microbial metabolism makes significant contributions to arsenic detoxification, migration and transformation. Nowadays, research on arsenic is primarily in areas affected by arsenic pollution associated with human health activities. However, the biogeochemical traits of arsenic in the global marine ecosystem remain to be explicated. In this study, we revealed that seawater environments were primarily governed by the process of arsenate reduction to arsenite, while arsenite methylation was predominant in marine sediments which may serve as significant sources of arsenic emission into the atmosphere. Significant disparities existed in the distribution patterns of the arsenic cycle between surface and deep seawaters at middle and low latitudes, whereas these situations tend to be similar in the Arctic and Antarctic oceans. Significant variations were also observed in the taxonomic diversity and core microbial community of arsenic cycling across different marine environments. Specifically, γ-proteobacteria played a pivotal role in the arsenic cycle in the whole marine environment. Temperature, dissolved oxygen and phosphate were the crucial factors that related to these differentiations in seawater environments. Overall, our study contributes to a deeper understanding of the marine arsenic cycle.


Subject(s)
Arsenic , Bacteria , Geologic Sediments , Seawater , Water Pollutants, Chemical , Seawater/microbiology , Seawater/chemistry , Arsenic/metabolism , Arsenic/analysis , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Arsenates/metabolism , Microbiota
5.
Mar Drugs ; 22(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39057414

ABSTRACT

Marine bacterial proteases have rarely been used to produce bioactive peptides, although many have been reported. This study aims to evaluate the potential of the marine bacterial metalloprotease A69 from recombinant Bacillus subtilis in the preparation of peanut peptides (PPs) with antioxidant activity and angiotensin-converting enzyme (ACE)-inhibitory activity. Based on the optimization of the hydrolysis parameters of protease A69, a process for PPs preparation was set up in which the peanut protein was hydrolyzed by A69 at 3000 U g-1 and 60 °C, pH 7.0 for 4 h. The prepared PPs exhibited a high content of peptides with molecular weights lower than 1000 Da (>80%) and 3000 Da (>95%) and contained 17 kinds of amino acids. Moreover, the PPs displayed elevated scavenging of hydroxyl radical and 1,1-diphenyl-2-picryl-hydrazyl radical, with IC50 values of 1.50 mg mL-1 and 1.66 mg mL-1, respectively, indicating the good antioxidant activity of the PPs. The PPs also showed remarkable ACE-inhibitory activity, with an IC50 value of 0.71 mg mL-1. By liquid chromatography mass spectrometry analysis, the sequences of 19 ACE inhibitory peptides and 15 antioxidant peptides were identified from the PPs. These results indicate that the prepared PPs have a good nutritional value, as well as good antioxidant and antihypertensive effects, and that the marine bacterial metalloprotease A69 has promising potential in relation to the preparation of bioactive peptides from peanut protein.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antioxidants , Arachis , Bacillus subtilis , Metalloproteases , Peptides , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Metalloproteases/chemistry , Metalloproteases/pharmacology , Arachis/chemistry , Bacillus subtilis/drug effects , Bacillus subtilis/enzymology , Peptides/pharmacology , Peptides/chemistry , Hydrolysis , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/chemistry
6.
Nat Commun ; 15(1): 4999, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866834

ABSTRACT

Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.


Subject(s)
Cryoelectron Microscopy , Cryptophyta , Light-Harvesting Protein Complexes , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry , Cryptophyta/metabolism , Photosynthesis , Models, Molecular , Energy Transfer , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/chemistry , Chlorophyll A/metabolism , Chlorophyll A/chemistry
7.
J Biol Chem ; 300(7): 107466, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876302

ABSTRACT

Glycosaminoglycan (GAG) lyases are often strictly substrate specific, and it is especially difficult to simultaneously degrade GAGs with different types of glycosidic bonds. Herein, we found a new class of GAG lyases (GAGases) from different bacteria. These GAGases belong to polysaccharide lyase 35 family and share quite low homology with the identified GAG lyases. The most surprising thing is that GAGases can not only degrade three types of GAGs: hyaluronan, chondroitin sulfate, and heparan sulfate but also even one of them can also degrade alginate. Further investigation of structural preferences revealed that GAGases selectively act on GAG domains composed of non/6-O-/N-sulfated hexosamines and d-glucoronic acids as well as on alginate domains composed of d-mannuronic acids. In addition, GAG lyases were once speculated to have evolved from alginate lyases, but no transitional enzymes have been found. The discovery of GAGases not only broadens the category of GAG lyases, provides new enzymatic tools for the structural and functional studies of GAGs with specific structures, but also provides candidates for the evolution of GAG lyases.


Subject(s)
Glycosaminoglycans , Polysaccharide-Lyases , Substrate Specificity , Glycosaminoglycans/metabolism , Glycosaminoglycans/chemistry , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Chondroitin Sulfates/metabolism , Chondroitin Sulfates/chemistry
8.
Nat Microbiol ; 9(8): 1979-1992, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38862603

ABSTRACT

Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.


Subject(s)
Phylogeny , Sulfonium Compounds , Sulfonium Compounds/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , Cyanobacteria/enzymology , Methyltransferases/metabolism , Methyltransferases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Biosynthetic Pathways/genetics
9.
Mar Drugs ; 22(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786621

ABSTRACT

Alginate oligosaccharides (AOS), products of alginate degradation by endotype alginate lyases, possess favorable biological activities and have broad applications. Although many have been reported, alginate lyases with homogeneous AOS products and secretory production by an engineered host are scarce. Herein, the alginate lyase AlyC7 from Vibrio sp. C42 was characterized as a trisaccharide-producing lyase exhibiting high activity and broad substrate specificity. With PelB as the signal peptide and 500 mM glycine as the additive, the extracellular production of AlyC7 in Escherichia coli reached 1122.8 U/mL after 27 h cultivation in Luria-Bertani medium. The yield of trisaccharides from sodium alginate degradation by the produced AlyC7 reached 758.6 mg/g, with a purity of 85.1%. The prepared AOS at 20 µg/mL increased the root length of lettuce, tomato, wheat, and maize by 27.5%, 25.7%, 9.7%, and 11.1%, respectively. This study establishes a robust foundation for the industrial and agricultural applications of AlyC7.


Subject(s)
Escherichia coli , Polysaccharide-Lyases , Trisaccharides , Vibrio , Polysaccharide-Lyases/metabolism , Trisaccharides/biosynthesis , Vibrio/enzymology , Substrate Specificity , Alginates , Zea mays , Oligosaccharides
10.
Proc Natl Acad Sci U S A ; 121(20): e2319115121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709931

ABSTRACT

The endosomal sorting complexes required for transport (ESCRTs) are responsible for membrane remodeling in many cellular processes, such as multivesicular body biogenesis, viral budding, and cytokinetic abscission. ESCRT-III, the most abundant ESCRT subunit, assembles into flat spirals as the primed state, essential to initiate membrane invagination. However, the three-dimensional architecture of ESCRT-III flat spirals remained vague for decades due to highly curved filaments with a small diameter and a single preferred orientation on the membrane. Here, we unveiled that yeast Snf7, a component of ESCRT-III, forms flat spirals on the lipid monolayers using cryogenic electron microscopy. We developed a geometry-constrained Euler angle-assigned reconstruction strategy and obtained moderate-resolution structures of Snf7 flat spirals with varying curvatures. Our analyses showed that Snf7 subunits recline on the membrane with N-terminal motifs α0 as anchors, adopt an open state with fused α2/3 helices, and bend α2/3 gradually from the outer to inner parts of flat spirals. In all, we provide the orientation and conformations of ESCRT-III flat spirals on the membrane and unveil the underlying assembly mechanism, which will serve as the initial step in understanding how ESCRTs drive membrane abscission.


Subject(s)
Cryoelectron Microscopy , Endosomal Sorting Complexes Required for Transport , Saccharomyces cerevisiae Proteins , Cell Membrane/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/ultrastructure
11.
Microbiome ; 12(1): 77, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664737

ABSTRACT

BACKGROUND: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS: In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS: Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.


Subject(s)
Bacteria , Metagenomics , Nutrients , Peptidoglycan , Phytoplankton , Polysaccharides , Seawater , Polysaccharides/metabolism , Seawater/microbiology , Phytoplankton/metabolism , Phytoplankton/genetics , Nutrients/metabolism , Peptidoglycan/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Microbiota
12.
Nat Commun ; 15(1): 2392, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493166

ABSTRACT

Symbiodinium are the photosynthetic endosymbionts for corals and play a vital role in supplying their coral hosts with photosynthetic products, forming the nutritional foundation for high-yield coral reef ecosystems. Here, we determine the cryo-electron microscopy structure of Symbiodinium photosystem I (PSI) supercomplex with a PSI core composed of 13 subunits including 2 previously unidentified subunits, PsaT and PsaU, as well as 13 peridinin-Chl a/c-binding light-harvesting antenna proteins (AcpPCIs). The PSI-AcpPCI supercomplex exhibits distinctive structural features compared to their red lineage counterparts, including extended termini of PsaD/E/I/J/L/M/R and AcpPCI-1/3/5/7/8/11 subunits, conformational changes in the surface loops of PsaA and PsaB subunits, facilitating the association between the PSI core and peripheral antennae. Structural analysis and computational calculation of excitation energy transfer rates unravel specific pigment networks in Symbiodinium PSI-AcpPCI for efficient excitation energy transfer. Overall, this study provides a structural basis for deciphering the mechanisms governing light harvesting and energy transfer in Symbiodinium PSI-AcpPCI supercomplexes adapted to their symbiotic ecosystem, as well as insights into the evolutionary diversity of PSI-LHCI among various photosynthetic organisms.


Subject(s)
Light-Harvesting Protein Complexes , Photosystem I Protein Complex , Photosystem I Protein Complex/metabolism , Light-Harvesting Protein Complexes/metabolism , Ecosystem , Cryoelectron Microscopy , Photosynthesis
13.
Article in English | MEDLINE | ID: mdl-38206131

ABSTRACT

A Gram-stain-negative, aerobic, rod-shaped, non-flagellated, non-gliding bacterial strain, designated MT50T, was isolated from a deep-sea sediment sample collected from the Mariana Trench. Optimal growth of strain MT50T was observed at 25 °C, pH 7.0-7.5 and in the presence of 3-5 % (w/v) NaCl. The strain was positive for oxidase and catalase. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain MT50T is affiliated with the genus Mesonia, showing the highest sequence similarity (98.5 %) to the type strain of Mesonia ostreae. The digital DNA-DNA hybridization and average nucleotide identity values between strain MT50T and four closely related type strains of known Mesonia species (14.1-54.8 % and 72.7-86.8 %, respectively) were all below the threshold values to discriminate bacterial species, indicating that strain MT50T is affiliated with a novel species within the genus. The genomic G+C content deduced from the genome of strain MT50T was 36.2 mol%. The major fatty acids of strain MT50T were iso-C15 : 0, iso-C17 : 0 3-OH and anteiso-C15 : 0. The predominant respiratory quinone of the strain was MK-6. The polar lipids of strain MT50T included phosphatidylethanolamine and two unidentified lipids. Based on the polyphasic data presented in this study, strain MT50T represents a novel species of the genus Mesonia, for which the name Mesonia profundi sp. nov. is proposed. The type strain is MT50T (=MCCC 1K07833T=KCTC 92380T).


Subject(s)
Fatty Acids , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques
14.
Appl Environ Microbiol ; 90(1): e0170423, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38169280

ABSTRACT

Catabolism of algal polysaccharides by marine bacteria is a significant process of marine carbon cycling. ß1,3/1,4-Mixed-linkage xylan (MLX) is a class of xylan in the ocean, widely present in the cell walls of red algae. However, the catabolic mechanism of MLX by marine bacteria remains elusive. Recently, we found that a marine Bacteroidetes strain, Polaribacter sp. Q13, is a specialist in degrading MLX, which secretes a novel MLX-specific xylanase. Here, the catabolic specialization of strain Q13 to MLX was studied by multiomics and biochemical analyses. Strain Q13 catabolizes MLX with a canonical starch utilization system (Sus), which is encoded by a single xylan utilization locus, XUL-Q13. In this system, the cell surface glycan-binding protein SGBP-B captures MLX specifically, contributing to the catabolic specificity. The xylanolytic enzyme system of strain Q13 is unique, and the enzymatic cascade dedicates the stepwise hydrolysis of the ß1,3- and ß1,4-linkages in MLX in the extracellular, periplasmic, and cytoplasmic spaces. Bioinformatics analysis and growth observation suggest that other marine Bacteroidetes strains harboring homologous MLX utilization loci also preferentially utilize MLX. These results reveal the catabolic specialization of MLX degradation by marine Bacteroidetes, leading to a better understanding of the degradation and recycling of MLX driven by marine bacteria.IMPORTANCERed algae contribute substantially to the primary production in marine ecosystems. The catabolism of red algal polysaccharides by marine bacteria is important for marine carbon cycling. Mixed-linkage ß1,3/1,4-xylan (MLX, distinct from hetero-ß1,4-xylans from terrestrial plants) is an abundant red algal polysaccharide, whose mechanism of catabolism by marine bacteria, however, remains largely unknown. This study reveals the catabolism of MLX by marine Bacteroidetes, promoting our understanding of the degradation and utilization of algal polysaccharides by marine bacteria. This study also sets a foundation for the biomass conversion of MLX.


Subject(s)
Flavobacteriaceae , Rhodophyta , Xylans/metabolism , Ecosystem , Flavobacteriaceae/metabolism , Polysaccharides/metabolism , Bacteroidetes/metabolism , Plants/metabolism , Rhodophyta/metabolism , Carbon/metabolism
15.
Appl Environ Microbiol ; 90(2): e0202523, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38259074

ABSTRACT

Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.


Subject(s)
Edible Seaweeds , Flavobacteriaceae , Kelp , Laminaria , Microbiota , Phaeophyceae , Humans , Metagenome , Kelp/metabolism , Polysaccharides/metabolism , Alginates/metabolism , Flavobacteriaceae/genetics , Flavobacteriaceae/metabolism , Carbon/metabolism
16.
Environ Int ; 182: 108325, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995388

ABSTRACT

The degradation of high molecular weight organic matter (HMWOM) is a core process of oceanic carbon cycle, which is determined by the activity of microbial communities harboring hundreds of different species. Illustrating the active microbes and their interactions during HMWOM processing can provide key information for revealing the relationship between community composition and its ecological functions. In this study, the genomic and transcriptional responses of microbial communities to the availability of alginate, an abundant HMWOM in coastal ecosystem, were elucidated. The main degraders transcribing alginate lyase (Aly) genes came from genera Alteromonas, Psychrosphaera and Colwellia. Meanwhile, some strains, mainly from the Rhodobacteraceae family, did not transcribe Aly gene but could utilize monosaccharides to grow. The co-culture experiment showed that the activity of Aly-producing strain could promote the growth of Aly-non-producing strain when alginate was the sole carbon source. Interestingly, this interaction did not reduce the alginate degradation rate, possibly due to the easily degradable nature of alginate. This study can improve our understanding of the relationship between microbial community activity and alginate metabolism function as well as further manipulation of microbial community structure for alginate processing.


Subject(s)
Alginates , Microbiota , Alginates/metabolism , Bacteria/genetics , Seawater/microbiology
17.
mBio ; : e0146723, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37948335

ABSTRACT

Dimethylsulfoniopropionate (DMSP) is one of Earth's most abundant organosulfur molecules, which can be catabolized by marine bacteria to release climate-active gases through the cleavage and/or demethylation pathways. The marine SAR92 clade is an abundant oligotrophic group of Gammaproteobacteria in coastal seawater, but their ability to catabolize DMSP is untested. Three SAR92 clade strains isolated from coastal seawater in this study and the SAR92 representative strain HTCC2207 were all shown to catabolize DMSP as a carbon source. All the SAR92 clade strains exhibited DMSP lyase activity producing dimethylsulfide (DMS) and their genomes encoded a ratified DddD DMSP lyase. In contrast, only HTCC2207 and two isolated strains contained the DMSP demethylase dmdA gene and potentially simultaneously demethylated and cleaved DMSP to produce methanethiol (MeSH) and DMS. In SAR92 clade strains with dddD and dmdA, transcription of these genes was inducible by DMSP substrate. Bioinformatic analysis indicated that SAR92 clade bacteria containing and transcribing DddD and DmdA were widely distributed in global oceans, especially in polar regions. This study highlights the SAR92 clade of oligotrophic bacteria as potentially important catabolizers of DMSP and sources of the climate-active gases MeSH and DMS in marine environments, particularly in polar regions.IMPORTANCECatabolism of dimethylsulfoniopropionate (DMSP) by marine bacteria has important impacts on the global sulfur cycle and climate. However, whether and how members of most oligotrophic bacterial groups participate in DMSP metabolism in marine environments remains largely unknown. In this study, by characterizing culturable strains, we have revealed that bacteria of the SAR92 clade, an abundant oligotrophic group of Gammaproteobacteria in coastal seawater, can catabolize DMSP through the DMSP lyase DddD-mediated cleavage pathway and/or the DMSP demethylase DmdA-mediated demethylation pathway to produce climate-active gases dimethylsulfide and methanethiol. Additionally, we found that SAR92 clade bacteria capable of catabolizing DMSP are widely distributed in global oceans. These results indicate that SAR92 clade bacteria are potentially important DMSP degraders and sources of climate-active gases in marine environments that have been overlooked, contributing to a better understanding of the roles and mechanisms of the oligotrophic bacteria in oceanic DMSP degradation.

18.
Nat Microbiol ; 8(12): 2326-2337, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38030907

ABSTRACT

Dimethylsulfoxonium propionate (DMSOP) is a recently identified and abundant marine organosulfur compound with roles in oxidative stress protection, global carbon and sulfur cycling and, as shown here, potentially in osmotolerance. Microbial DMSOP cleavage yields dimethyl sulfoxide, a ubiquitous marine metabolite, and acrylate, but the enzymes responsible, and their environmental importance, were unknown. Here we report DMSOP cleavage mechanisms in diverse heterotrophic bacteria, fungi and phototrophic algae not previously known to have this activity, and highlight the unappreciated importance of this process in marine sediment environments. These diverse organisms, including Roseobacter, SAR11 bacteria and Emiliania huxleyi, utilized their dimethylsulfoniopropionate lyase 'Ddd' or 'Alma' enzymes to cleave DMSOP via similar catalytic mechanisms to those for dimethylsulfoniopropionate. Given the annual teragram predictions for DMSOP production and its prevalence in marine sediments, our results highlight that DMSOP cleavage is likely a globally significant process influencing carbon and sulfur fluxes and ecological interactions.


Subject(s)
Propionates , Roseobacter , Sulfides/metabolism , Sulfur/metabolism , Carbon
19.
Microb Cell Fact ; 22(1): 179, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689719

ABSTRACT

BACKGROUND: Alginate oligosaccharides (AOs) are the degradation products of alginate, a natural polysaccharide abundant in brown algae. AOs generated by enzymatic hydrolysis have diverse bioactivities and show broad application potentials. AOs production via enzymolysis is now generally with sodium alginate as the raw material, which is chemically extracted from brown algae. In contrast, AOs production by direct degradation of brown algae is more advantageous on account of its cost reduction and is more eco-friendly. However, there have been only a few attempts reported in AOs production from direct degradation of brown algae. RESULTS: In this study, an efficient Laminaria japonica-decomposing strain Pseudoalteromonas agarivorans A3 was screened. Based on the secretome and mass spectrum analyses, strain A3 showed the potential as a cell factory for AOs production by secreting alginate lyases to directly degrade L. japonica. By using the L. japonica roots, which are normally discarded in the food industry, as the raw material for both fermentation and enzymatic hydrolysis, AOs were produced by the fermentation broth supernatant of strain A3 after optimization of the alginate lyase production and hydrolysis parameters. The generated AOs mainly ranged from dimers to tetramers, among which trimers and tetramers were predominant. The degradation efficiency of the roots reached 54.58%, the AOs production was 33.11%, and the AOs purity was 85.03%. CONCLUSION: An efficient, cost-effective and green process for AOs production directly from the underutilized L. japonica roots by using strain A3 was set up, which differed from the reported processes in terms of the substrate and strain used for fermentation and the AOs composition. This study provides a promising platform for scalable production of AOs, which may have application potentials in industry and agriculture.


Subject(s)
Alginates , Laminaria , Cost-Benefit Analysis , Oligosaccharides
20.
Appl Environ Microbiol ; 89(10): e0060123, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37768087

ABSTRACT

Ocean warming profoundly impacts microbes in marine environments; yet, how lifestyle (e.g., free living versus biofilm associated) affects the bacterial response to rising temperature is not clear. Here, we compared transcriptional, enzymatic, and physiological responses of free-living and biofilm-associated Leisingera aquaemixtae M597, a member of the Roseobacteraceae family isolated from marine biofilms, to the increase in temperature from 25℃ to 31℃. Complete genome sequencing and metagenomics revealed the prevalence of M597 in global ocean biofilms. Transcriptomics suggested a significant effect on the expression of genes related to carbohydrate metabolism, nitrogen and sulfur metabolism, and phosphorus utilization of free-living M597 cells due to temperature increase, but such drastic alterations were not observed in its biofilms. In the free-living state, the transcription of the key enzyme participating in the Embden-Meyerhof-Parnas pathway was significantly increased due to the increase in temperature, accompanied by a substantial decrease in the Entner-Doudoroff pathway, but transcripts of these glycolytic enzymes in biofilm-forming strains were independent of the temperature variation. The correlation between the growth condition and the shift in glycolytic pathways under temperature change was confirmed by enzymatic activity assays. Furthermore, the rising temperature affected the growth rate and the production of intracellular reactive oxygen species when M597 cells were free living rather than in biofilms. Thus, biofilm formation stabilizes metabolism in M597 when grown under high temperature and this homeostasis is probably related to the glycolytic pathways.IMPORTANCEBiofilm formation is one of the most successful strategies employed by microbes against environmental fluctuations. In this study, using a marine Roseobacteraceae bacterium, we studied how biofilm formation affects the response of marine bacteria to the increase in temperature. This study enhances our understanding of the function of bacterial biofilms and the microbe-environment interactions in the framework of global climate change.


Subject(s)
Bacteria , Carbohydrate Metabolism , Temperature , Bacteria/genetics , Glycolysis , Biofilms
SELECTION OF CITATIONS
SEARCH DETAIL