Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 94: 675-684, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31563556

ABSTRACT

Peroxisome proliferator-activated receptor α (PPARα) plays critical physiological roles in energy metabolism, antioxidation and immunity of mammals, however, these functions have not been fully understood in fish. In the present study, Nile tilapia (Oreochromis niloticus) were fed with fenofibrate, an agonist of PPARα, for six weeks, and subsequently challenged with Aeromonas hydrophila. The results showed that PPARα was efficiently activated by fenofibrate through increasing mRNA and protein expressions and protein dephosphorylation. PPARα activation increased significantly mitochondrial fatty acid ß-oxidation efficiency, the copy number of mitochondrial DNA and expression of monoamine oxidase (MAO), a marker gene of mitochondria. Meanwhile, PPARα activation also increased significantly the expression of NADH dehydrogenase [ubiquinone] 1α subcomplex subunit 9 (NDUFA9, complex I) and mitochondrial cytochrome c oxidase 1 (MTCO1, complex IV). The fenofibrate-fed fish had higher survival rate when exposed to A. hydrophila. Moreover, the fenofibrate-fed fish also had higher activities of immune and antioxidative enzymes, and gene expressions of anti-inflammatory cytokines, while had lower expressions of pro-inflammatory cytokine genes. Taken together, PPARα activation improved the ability of Nile tilapia to resist A. hydrophila, mainly through enhancing mitochondrial fatty acids ß-oxidation, immune and antioxidant capacities, as well as inhibiting inflammation. This is the first study showing the regulatory effects of PPARα activation on immune functions through increasing mitochondria-mediated energy supply in fish.


Subject(s)
Cichlids/immunology , Fenofibrate/metabolism , Fish Diseases/immunology , PPAR alpha/agonists , Aeromonas hydrophila/physiology , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Fenofibrate/administration & dosage , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary
2.
Chemosphere ; 237: 124422, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31352104

ABSTRACT

Environmental estrogenic compounds are important pollutants, which are widely distributed in natural water bodies. They produce various adverse effects on fish, but their concentration-dependent toxicities in fish metabolism and health are not fully understood. This study investigated the effects of 17ß-estradiol (E2) and bisphenol A (BPA) at low and high concentrations on lipid deposition, inflammation and antioxidant response in male zebrafish. We measured fish growth parameters, gonad development, lipid contents and the activities of inflammatory and antioxidant enzymes, as well as their mRNA expressions. All E2 and BPA concentrations used increased body weight, damaged gonad structure and induced feminization in male zebrafish. The exposure of zebrafish to E2 and BPA promoted lipid accumulation by increasing total fat, liver triglycerides and free fatty acid contents, and also upregulated lipogenic genes expression, although they decreased total cholesterol content. Notably, zebrafish exposed to low concentrations of E2 (200 ng/L) and BPA (100 µg/L) had higher lipid synthesis and deposition compared to high concentrations (2000 ng/L and 2000 µg/L, respectively). However, the high concentrations of E2 and BPA increased inflammation and antioxidant response. Furthermore, BPA caused greater damage to fish gonad development and more severe lipid peroxidation compared to E2. Overall, the results suggest that the toxic effects of E2 and BPA on zebrafish are concentration-dependent such that, the relative low concentrations used induced lipid deposition, whereas the high ones caused adverse effects on inflammation and antioxidant response.


Subject(s)
Antioxidants/metabolism , Benzhydryl Compounds/pharmacology , Estradiol/pharmacology , Inflammation/chemically induced , Lipid Metabolism/drug effects , Phenols/pharmacology , Water Pollutants, Chemical/toxicity , Animals , Benzhydryl Compounds/metabolism , Dose-Response Relationship, Drug , Estradiol/metabolism , Estrogens/pharmacology , Gonads/drug effects , Inflammation/metabolism , Male , Phenols/metabolism , Sex Differentiation , Zebrafish/metabolism
3.
Article in English | MEDLINE | ID: mdl-30593869

ABSTRACT

High fat diets are commonly used in aquaculture to reduce feed cost in Nile tilapia, but impair its lipid homeostasis. This study evaluated the role of forskolin on reducing fat accumulation in Nile tilapia (Oreochromis niloticus) by using in vitro and in vivo experiments. The use of 50 µM forskolin in vitro increased free fatty acid and glycerol release, but decreased triglyceride in adipocytes and hepatocytes. The adipose triglyceride lipase (ATGL), protein kinase cAMP-dependent type I regulatory subunit alpha (PKAR I) and other genes related to ß-oxidation (peroxisome proliferator activated receptor alpha, PPARα and carnitine O-palmitoyltransferase 1, CPT1) were significantly up-regulated. After feeding a high-fat diet for six weeks, O. niloticus were fed with 0 (control), 0.5 and 1.5 mg/kg forskolin for two weeks to determine whether forskolin could reduce fat accumulation in vivo. Fish fed the two levels of forskolin decreased significantly the hepatosomatic and mesenteric fat indices. The total lipid in the whole fish and liver together with the serum glycerol content were lower in fish fed on forskolin than in the control. The fish fed on forskolin diets exhibited smaller areas of lipid droplets in adipose and liver tissues. Lipolysis related genes (ATGL, hormone-sensitive lipase, HSL; monoacylglycerol lipase, MGL; and protein kinase cAMP-activated catalytic subunit, PKAC) and ß-oxidation genes (PPARα; fatty acid binding protein 1, FABP1; and CPT1) in the adipose were up-regulated. Similarly, in the liver lipolysis genes such as ATGL and PKAR I and ß-oxidation genes (PPARα, FABP1, CPT1 and acyl-CoA oxidase, ACO) showed an increasing trend with the increase of forskolin doses. This study indicates that forskolin can reduce fat accumulation in the adipose and liver by stimulating lipolysis and ß-oxidation in O. niloticus.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Cichlids/metabolism , Colforsin/pharmacology , Lipolysis , Animal Feed , Animals , Cichlids/genetics , Cichlids/growth & development , Colforsin/administration & dosage , Diet, High-Fat , Dose-Response Relationship, Drug , Gene Expression , Hepatocytes/metabolism , Liver/metabolism , Oxidation-Reduction
4.
Environ Pollut ; 240: 733-744, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29778059

ABSTRACT

Dietary fish oil used in aquafeed transfers marine pollutants to farmed fish. However, the entire transfer route of marine pollutants in dietary fish oil from ocean to table fish has not been tracked quantitatively. To track the entire transfer route of marine pollutants from wild fish to farmed fish through dietary fish oil and evaluate the related human health risks, we obtained crude and refined fish oils originating from the same batch of wild ocean anchovy and prepared fish oil-containing purified aquafeeds to feed omnivorous lean Nile tilapia and carnivorous fatty yellow catfish for eight weeks. The potential human health risk of consumption of these fish was evaluated. Marine persistent organic pollutants (POPs) were concentrated in fish oil, but were largely removed by the refining process, particularly dioxins and polychlorinated biphenyls (PCBs). The differences in the POP concentrations between crude and refined fish oils were retained in the fillets of the farmed fish. Fillets fat content and fish growth were positively and negatively correlated to the final POPs deposition in fillets, respectively. The retention rates of marine POPs in the final fillets through fish oil-contained aquafeeds were 1.3%-5.2%, and were correlated with the POPs concentrations in feeds and fillets, feed utilization and carcass ratios. The dietary crude fish oil-contained aquafeeds are a higher hazard ratio to consumers. Prohibiting the use of crude fish oil in aquafeed and improving growth and feed efficiency in farmed fish are promising strategies to reduce health risks originating from marine POPs.


Subject(s)
Dioxins/analysis , Fish Oils/chemistry , Food Contamination/analysis , Polychlorinated Biphenyls/analysis , Seafood/analysis , Water Pollutants, Chemical/metabolism , Animals , Catfishes/metabolism , Cichlids/metabolism , Fisheries , Humans , Oceans and Seas , Water Pollutants, Chemical/analysis
5.
Carcinogenesis ; 39(3): 493-502, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29390122

ABSTRACT

Metformin is a promising drug for cancer prevention and treatment, especially in the diabetic population. We aimed to test whether 14-3-3zeta affects the anticancer effect of metformin on colorectal carcinoma (CRC). In this study, we confirmed that higher 14-3-3zeta expression was found in CRC tissues than in pericarcinoma tissues, and in CRC tissue of patients with diabetes than in those without diabetes. A knockdown of 14-3-3zeta inhibited CRC proliferation and promoted apoptosis in vitro and in vivo. Then, we created stable cell lines with under-expressed 14-3-3zeta from SW480 and HCT15 cells after infection by a lentiviral vector carrying short hairpin RNA targeting 14-3-3zeta (named LV-sh14-3-3zeta). Of note, metformin induced apoptosis and retarded tumor growth in the CRCs with overexpressed 14-3-3zeta, whereas this action was attenuated when 14-3-3zeta was knocked down. Moreover, either metformin or downregulation of 14-3-3zeta noticeably activated AMP-dependent protein kinase (AMPK) signaling, whereas the effect of metformin was attenuated when the 14-3-3zeta expression was decreased. Taken together, our results suggest that 14-3-3zeta may be associated with carcinogenesis and poor prognosis of CRCs associated with diabetes, and metformin may reverse the AMPK inhibition caused by 14-3-3zeta in CRCs in the background of diabetes. Our study should lead to a better understanding of the anticancer activity of metformin and points to possible application of metformin to the treatment of cancers overexpressing 14-3-3zeta.


Subject(s)
14-3-3 Proteins/metabolism , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/pathology , Diabetes Complications/metabolism , Metformin/pharmacology , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/complications , Colorectal Neoplasms/metabolism , Diabetes Mellitus/metabolism , Female , Humans , Hypoglycemic Agents/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays
7.
Sci Total Environ ; 536: 933-945, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26105705

ABSTRACT

Shanghai is a Chinese megacity in the Yangtze River Delta area, one of the most polluted coastal areas in China. The inhabitants of Shanghai have very high aquatic product consumption rates. A risk-benefit assessment of the co-ingestion of fish nutrients and contaminants has not previously been performed for Shanghai residents. Samples of five farmed fish species (marine and freshwater) with different feeding habits were collected from Shanghai markets in winter and summer. Fatty acids, protein, mercury, cadmium, lead, copper, polychlorinated biphenyls, hexachlorocyclohexanes, and dichlorodiphenyltrichloroethanes were measured in liver, abdominal fat, and dorsal, abdominal, and tail muscles from fish. Tolerable daily intakes and benefit-risk quotients were calculated to allow the benefits and risks of co-ingesting n-3 long-chain polyunsaturated fatty acids and contaminants to be assessed according to the cancer slope factors and reference doses of selected pollutants. All of the contaminant concentrations in the muscle tissues were much lower than the national maximum limits, but the livers generally contained high Hg concentrations, exceeding the regulatory limit. The organic pollutant and n-3 long-chain polyunsaturated fatty acid concentrations correlated with the lipid contents of the fish tissues, and were higher in carnivorous marine fish than in omnivorous and herbivorous freshwater fish. The tolerable daily intakes, risk-benefit quotients, and current daily aquatic product intakes for residents of large Chinese cities indicated that the muscle tissues of most of the fish analyzed can be consumed regularly without significant contaminant-related risks to health. However, attention should be paid to the potential risks posed by dichlorodiphenyltrichloroethane in large yellow croaker and Hg in tilapia. Based on the results of this study, we encourage people to consume equal portions of marine and freshwater fish.


Subject(s)
Environmental Exposure/statistics & numerical data , Fishes/metabolism , Water Pollutants, Chemical/metabolism , Animals , China , Cities , Environmental Monitoring , Humans , No-Observed-Adverse-Effect Level , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...