Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
J Med Chem ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778566

ABSTRACT

Induction of cuproptosis and targeting of multiple signaling pathways show promising applications in tumor therapy. In this study, we synthesized two thiosemicarbazone-copper complexes ([CuII(L)Cl] 1 and [CuII2CuI(L)2Cl3] 2, where HL is the (E)-N-methyl-2-(phenyl(pyridin-2-yl)methylene ligand), to assess their antilung cancer activities. Both copper complexes showed better anticancer activity than cisplatin and exhibited hemolysis comparable to that of cisplatin. In vivo experiments showed that complex 2 retarded the A549 cell growth in a mouse xenograft model with low systemic toxicity. Primarily, complex 2 kills lung cancer cells in vitro and in vivo by triggering multiple pathways, including cuproptosis. Complex 2 is the first mixed-valent Cu(I/II) complex to induce cellular events consistent with cuproptosis in cancer cells, which may stimulate the development of mixed-valent copper complexes and provide effective cancer therapy.

2.
Nat Commun ; 15(1): 4108, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750011

ABSTRACT

MAPK pathway-driven tumorigenesis, often induced by BRAFV600E, relies on epithelial dedifferentiation. However, how lineage differentiation events are reprogrammed remains unexplored. Here, we demonstrate that proteostatic reactivation of developmental factor, TBX3, accounts for BRAF/MAPK-mediated dedifferentiation and tumorigenesis. During embryonic development, BRAF/MAPK upregulates USP15 to stabilize TBX3, which orchestrates organogenesis by restraining differentiation. The USP15-TBX3 axis is reactivated during tumorigenesis, and Usp15 knockout prohibits BRAFV600E-driven tumor development in a Tbx3-dependent manner. Deleting Tbx3 or Usp15 leads to tumor redifferentiation, which parallels their overdifferentiation tendency during development, exemplified by disrupted thyroid folliculogenesis and elevated differentiation factors such as Tpo, Nis, Tg. The clinical relevance is highlighted in that both USP15 and TBX3 highly correlates with BRAFV600E signature and poor tumor prognosis. Thus, USP15 stabilized TBX3 represents a critical proteostatic mechanism downstream of BRAF/MAPK-directed developmental homeostasis and pathological transformation, supporting that tumorigenesis largely relies on epithelial dedifferentiation achieved via embryonic regulatory program reinitiation.


Subject(s)
Carcinogenesis , Proto-Oncogene Proteins B-raf , T-Box Domain Proteins , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Animals , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Mice , Cell Differentiation , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , MAP Kinase Signaling System/genetics , Gene Expression Regulation, Neoplastic , Mice, Knockout , Female , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism
3.
Energy Fuels ; 38(10): 8740-8748, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38774064

ABSTRACT

Pyrolysis of lignocellulosic biomass and waste plastics has been intensely studied in the last few decades to obtain renewable fuels and chemicals. Various pyrolysis devices have been developed for use in a laboratory setting, operated either in batch or continuously at scales ranging from milligrams per hour to tenths of g per hour. We report here the design and operation of a novel staged free-fall (catalytic) pyrolysis unit and demonstrate that the concept works very well for the (catalytic) pyrolysis of pinewood sawdust, paper sludge, and polypropylene as representative feeds. The unit consists of a vertical tube with a pretreatment section, a pyrolysis section, a solid residue collection section, a gas-liquid separation/collection section, and a catalytic reaction section to optionally perform ex situ catalytic upgrading of the pyrolysis vapor. The sample is placed in a tube, which is transported by gravity through various sections of the unit. It allows for rapid testing with semicontinuous feeding (e.g., 50 g h-1) and the opportunity to perform reactions under an (inert) gas (e.g., N2) at atmospheric as well as elevated pressure (e.g., 50 bar). Liquid yields for noncatalytic sawdust pyrolysis at optimized conditions (475 °C and atmospheric pressure) were 63 wt % on biomass intake. A lower yield of 51 wt % (on a biomass basis) was obtained for the noncatalytic pyrolysis of paper sludge, likely due to the presence of minerals (e.g., CaCO3) in the feed. The possibility of using the unit for ex situ catalytic pyrolysis (pyrolysis at 475 °C and catalytic upgrading at 550 °C) was also successfully demonstrated using paper sludge as the feed and H-ZSM-5 as the catalyst (21 wt % catalyst on biomass). This resulted in a biphasic liquid product with 25.6 wt % of an aqueous phase and 11 wt % of an oil phase. The yield of benzene, toluene, and xylenes was 1.9 wt % (on a biomass basis). Finally, the concept was also proven for a representative polyolefin (polypropylene), both noncatalytic as well as in situ catalytic pyrolysis using H-ZSM-5 as the catalyst at 500 °C. The liquid yield of thermal, noncatalytic plastic pyrolysis was as high as 77 wt % on plastic intake, while in situ catalytic pyrolysis gave a combined 7.8 wt % yield of benzene, toluene, and xylenes on plastic intake.

4.
Chemistry ; 30(32): e202400153, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38566460

ABSTRACT

This paper presents a green and efficient aqueous-phase method for the synthesis of thiosulfonates, which has the benefits of no need for catalysts or redox reagents and a short reaction time, providing a method with great economic value for synthesizing thiosulfonates. Furthermore, 3-Sulfenylindoles can be easily synthesized using this method, which expands the potential applications of this reaction.

5.
J Med Chem ; 67(7): 5744-5757, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38553427

ABSTRACT

To develop a next-generation metal agent and dual-agent multitargeted combination therapy, we developed a copper (Cu) compound based on the properties of the human serum albumin (HSA)-indomethacin (IND) complex to remodel the tumor microenvironment (TME). We optimized a series of Cu(II) isopropyl 2-pyridyl ketone thiosemicarbazone compounds to obtain a Cu(II) compound (C4) with significant cytotoxicity and then constructed an HSA-IND-C4 complex (HSA-IND-C4) delivery system. IND and C4 bind to the hydrophobic cavities of the IB and IIA domains of HSA, respectively. In vivo, the HSA-IND-C4 not only showed enhanced antitumor efficacy relative to C4 and C4 + IND but also improved their targeting ability and decreased their side effects. The antitumor mechanism of C4 + IND involved acting on the different components of the TME. IND inhibited tumor-related inflammation, while C4 not only induced apoptosis and autophagy of cancer cells but also inhibited tumor angiogenesis.


Subject(s)
Antineoplastic Agents , Neoplasms , Prodrugs , Thiosemicarbazones , Humans , Serum Albumin, Human/chemistry , Copper/chemistry , Serum Albumin/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/therapeutic use , Indomethacin/therapeutic use , Tumor Microenvironment , Prodrugs/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Neoplasms/drug therapy
6.
J Med Chem ; 67(5): 3843-3859, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38442035

ABSTRACT

To develop a potential theranostic metal agent to reverse the resistance of cancer cells to cisplatin and effectively inhibit tumor growth and metastasis, we proposed to design a cyclometalated iridium (Ir) complex based on the properties of the tumor environment (TME). To the end, we designed and synthesized a series of Ir(III) 2-hydroxy-1-naphthaldehyde thiosemicarbazone complexes by modifying the hydrogen atom(s) of the N-3 position of 2-hydroxy-1-naphthaldehyde thiosemicarbazone compounds and the structure of cyclometalated Ir(III) dimers and then investigated their structure-activity and structure-fluorescence relationships to obtain an Ir(III) complex (Ir5) with remarkable fluorescence and cytotoxicity to cancer cells. Ir5 not only possesses mitochondria-targeted properties but also overcomes cisplatin resistance and effectively inhibits tumor growth and metastasis in vivo. Besides, we confirmed the anticancer mechanisms of Ir5 acting on different components in the TME: directly killing liver cancer cells by inducing necroptosis and activating the necroptosis-related immune response.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Naphthalenes , Neoplasms , Thiosemicarbazones , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Antineoplastic Agents/chemistry , Iridium/pharmacology , Iridium/chemistry , Precision Medicine , Necroptosis , Neoplasms/drug therapy , Mitochondria , Coordination Complexes/chemistry , Cell Line, Tumor
7.
Mol Pharm ; 21(1): 346-357, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38015620

ABSTRACT

To overcome the limitations of traditional platinum (Pt)-based drugs and further improve the targeting ability and therapeutic efficacy in vivo, we proposed to design a human serum albumin (HSA)-Pt agent complex nanoparticle (NP) for cancer treatment by multimodal action against the tumor microenvironment. We not only synthesized a series of Pt(II) di-2-pyridone thiosemicarbazone compounds and obtained a Pt(II) agent [Pt(Dp44mT)Cl] with significant anticancer activity but also successfully constructed a novel HSA-Pt(Dp44mT) complex nanoparticle delivery system. The structure of the HSA-Pt(Dp44mT) complex revealed that Pt(Dp44mT)Cl binds to the IIA subdomain of HSA and coordinates with His-242. The HSA-His242-Pt-Dp44mT NPs had an obvious effect on the inhibition of tumor growth, which was superior to that of Dp44mT and Pt(Dp44mT)Cl, and they had almost no toxicity. In addition, the HSA-His242-Pt-Dp44mT NPs were found to kill cancer cells by inducing apoptosis, autophagy, and inhibiting angiogenesis.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Serum Albumin, Human/chemistry , Platinum , Tumor Microenvironment , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/chemistry , Cell Line, Tumor
9.
J Inorg Biochem ; 250: 112403, 2024 01.
Article in English | MEDLINE | ID: mdl-37866112

ABSTRACT

To develop the next-generation metal agents for efficiently inhibiting tumor growth, a series of novel mononuclear, binuclear and trinuclear copper (Cu) thiophene-2-formaldehyde thiosemicarbazone complexes and a tetranuclear Cu 1,2,4-triazole-derived complex have been synthesized and their structure-activity relationships have been studied. The trinucleated Cu complex showed the strongest inhibitory activity against T24 cells among all the Cu complexes. Its antitumor effect in vivo was superior to that of cisplatin, with reduced side effects. Further studies on the antitumor mechanism have showed that Cu complexes not only induced apoptosis of cancer cells but also inhibited tumor angiogenesis by inhibiting the migration and invasion of vascular endothelial cells, blocking the cell cycle in the G1 phase, and inducing autophagy.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Copper/pharmacology , Models, Molecular , Endothelial Cells , Neoplasms/drug therapy , Apoptosis , Coordination Complexes/pharmacology , Cell Line, Tumor , Cell Proliferation
10.
Angew Chem Int Ed Engl ; 63(10): e202317257, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38128012

ABSTRACT

Lignin represents the largest aromatic carbon resource in plants, holding significant promise as a renewable feedstock for bioaromatics and other cyclic hydrocarbons in the context of the circular bioeconomy. However, the methoxy groups of aryl methyl ethers, abundantly found in technical lignins and lignin-derived chemicals, limit their pertinent chemical reactivity and broader applicability. Unlocking the phenolic hydroxyl functionality through O-demethylation (ODM) has emerged as a valuable approach to mitigate this need and enables further applications. In this review, we provide a comprehensive summary of the progress in the valorization of technical lignin and lignin-derived chemicals via ODM, both catalytic and non-catalytic reactions. Furthermore, a detailed analysis of the properties and potential applications of the O-demethylated products is presented, accompanied by a systematic overview of available ODM reactions. This review primarily focuses on enhancing the phenolic hydroxyl content in lignin-derived species through ODM, showcasing its potential in the catalytic funneling of lignin and value-added applications. A comprehensive synopsis and future outlook are included in the concluding section of this review.

11.
J Med Chem ; 66(22): 15424-15436, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37956097

ABSTRACT

For the integration of targeted diagnosis and treatment of tumor, we innovatively designed and synthesized a single-molecule hetero-multinuclear Er(III)-Cu(II) complex (ErCu2) and then constructed an ErCu2@apoferritin (AFt) nanoparticle (NP) delivery system. ErCu2 and ErCu2@AFt NPs not only provided an evident photoacoustic imaging (PAI) signal of the tumor but also effectively inhibited tumor growth by integrating photothermal therapy, chemotherapy, and immunotherapy. ErCu2@AFt NPs improved the targeting ability and decreased the systemic toxicity of ErCu2 in vivo. Furthermore, we confirmed that ErCu2 and ErCu2@AFt NPs inhibited tumor growth by inducing apoptosis and autophagy of tumor cells and activating the immune system. The study not only provides a novel strategy to develop therapeutic metal agents but also reveals their potential for targeted accurate diagnosis and multimodality therapy of cancer.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Humans , Copper/pharmacology , Apoferritins , Erbium/therapeutic use , Photoacoustic Techniques/methods , Neoplasms/therapy , Neoplasms/drug therapy , Nanoparticles/therapeutic use , Cell Line, Tumor
12.
J Med Chem ; 66(18): 13072-13085, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37702429

ABSTRACT

To develop next-generation metal drugs with high efficiency and low toxicity for targeting inhibition of gastric tumor growth and metastasis, we not only optimized a series of ruthenium (Ru, III) 2-hydroxy-1-naphthaldehyde thiosemicarbazone complexes to obtain a Ru(III) complex (4b) with remarkable cytotoxicity in vitro but also constructed a 4b-decitabine (DCT)/liposome (Lip) delivery system (4b-DCT-Lip). The in vivo results showed that 4b-DCT-Lip not only had a stronger capacity to inhibit gastric tumor growth and metastasis than 4b-DCT but also addressed the co-delivery problems of 4b-DCT and improved their targeting ability. Furthermore, we confirmed the mechanism of 4b-DCT/4b-DCT-Lip inhibiting the growth and metastasis of a gastric tumor. DCT-upregulated gasdermin E (GSDME) was cleaved by 4b-activated caspase-3 to afford GSDME-N terminal and then was aggregated to form nonselective pores on the cell membrane of a gastric tumor, thereby inducing pyroptosis and a pyroptosis-induced immune response.


Subject(s)
Ruthenium , Stomach Neoplasms , Humans , Pyroptosis , Liposomes , Decitabine , Gasdermins , Ruthenium/pharmacology , Ruthenium/metabolism , Stomach Neoplasms/drug therapy , Caspase 3/metabolism
13.
Photodiagnosis Photodyn Ther ; 43: 103708, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37482369

ABSTRACT

BACKGROUND: Cutaneous melanoma, an exceedingly aggressive form of skin cancer, holds the top rank in both malignancy and mortality among skin cancers. In early stages, distinguishing malignant melanomas from benign pigmented nevi pathologically becomes a significant challenge due to their indistinguishable traits. Traditional skin histological examination techniques, largely reliant on light microscopic imagery, offer constrained information and yield low-contrast results, underscoring the necessity for swift and effective early diagnostic methodologies. As a non-contact, non-ionizing, and label-free imaging tool, hyperspectral imaging offers potential in assisting pathologists with identification procedures sans contrast agents. METHODS: This investigation leverages hyperspectral cameras to ascertain the optical properties and to capture the spectral features of malignant melanoma and pigmented nevus tissues, intending to facilitate early pathological diagnostic applications. We further enhance the diagnostic process by integrating transfer learning with deep convolutional networks to classify melanomas and pigmented nevi in hyperspectral pathology images. The study encompasses pathological sections from 50 melanoma and 50 pigmented nevus patients. To accurately represent the spectral variances between different tissues, we employed reflectance calibration, highlighting that the most distinctive spectral differences emerged within the 500-675 nm band range. RESULTS: The classification accuracy of pigmented tumors and pigmented nevi was 89% for one-dimensional sample data and 98% for two-dimensional sample data. CONCLUSIONS: Our findings have the potential to expedite pathological diagnoses, enhance diagnostic precision, and offer novel research perspectives in differentiating melanoma and nevus.


Subject(s)
Deep Learning , Melanoma , Nevus, Pigmented , Photochemotherapy , Skin Neoplasms , Humans , Melanoma/diagnostic imaging , Melanoma/pathology , Skin Neoplasms/pathology , Hyperspectral Imaging , Photochemotherapy/methods , Photosensitizing Agents , Early Detection of Cancer , Nevus, Pigmented/diagnostic imaging , Nevus, Pigmented/pathology , Diagnosis, Differential , Melanoma, Cutaneous Malignant
14.
Carcinogenesis ; 44(7): 549-561, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37466677

ABSTRACT

Immunotherapy is the only approved systemic therapy for advanced cutaneous squamous cell carcinoma (cSCC), however, roughly 50% of patients do not respond to the therapy and resistance often occurs over time to those who initially respond. Immunosuppression could have a critical role in developing treatment resistance, thus, understanding the mechanisms of how immunosuppression is developed and regulated may be the key to improving clinical diagnosis and treatment strategies for cSCC. Here, through using a series of immunocompetent genetically engineered mouse models, we demonstrate that miR-22 promotes cSCC development by establishing regulatory T cells (Tregs)-mediated immunosuppressive tumor microenvironment (TME) in a tumor cell autonomous manner. Mechanism investigation revealed that miR-22 elicits the constitutive activation of JAK/STAT3 signaling by directly targeting its suppressor SOCS3, which augments cancer cell-derived chemokine secretion and Tregs recruitment. Epithelial-specific and global knockouts of miR-22 repress papilloma and cSCC development and progression, manifested with reduced Tregs infiltration and elevated CD8+ T cell activation. Transcriptomic analysis and functional rescue study confirmed CCL17, CCL20 and CCL22 as the main affected chemokines that mediate the chemotaxis between miR-22 highly expressing keratinocyte tumor cells and Tregs. Conversely, overexpression of SOCS3 reversed miR-22-induced Tregs recruitment toward tumor cells. Clinically, gradually increasing Tregs infiltration during cSCC progression was negatively correlated with SOCS3 abundance, supported by previously documented elevated miR-22 levels. Thus, our study uncovers a novel miR-22-SOCS3-JAK/STAT3-chemokines regulatory mechanism in defining the immunosuppressive TME and highlights the promising clinical application value of miR-22 as a common targeting molecule against JAK/STAT3 signaling and immune escape in cSCC.

15.
J Med Chem ; 66(13): 8564-8579, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37321208

ABSTRACT

To obtain next-generation metal drugs that can overcome the deficiencies of platinum (Pt) drugs and treat cancer more effectively, we proposed to develop a multitargeted palladium (Pd) agent to the tumor microenvironment (TME) based on the specific residue(s) of human serum albumin (HSA). To this end, we optimized a series of Pd(II) 2-benzoylpyridine thiosemicarbazone compounds to obtain a Pd agent (5b) with significant cytotoxicity. The HSA-5b complex structure revealed that 5b bound to the hydrophobic cavity in the HSA IIA subdomain and then His-242 replaced a leaving group (Cl) of 5b, coordinating with the Pd center. The in vivo results showed that the 5b/HSA-5b complex had significant capacity of inhibiting tumor growth, and HSA optimized the therapeutic behavior of 5b. In addition, we confirmed that the 5b/HSA-5b complex inhibited tumor growth through multiple actions on different components of TME: killing cancer cells, inhibiting tumor angiogenesis, and activating T cells.


Subject(s)
Antineoplastic Agents , Neoplasms , Prodrugs , Humans , Serum Albumin, Human/chemistry , Palladium , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Prodrugs/pharmacology , Neoplasms/drug therapy , Protein Binding , Tumor Microenvironment
16.
J Med Chem ; 66(11): 7268-7279, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37218052

ABSTRACT

To integrate targeted diagnosis and treatment of cancer, we proposed to develop a gadolinium (Gd) agent based on the properties of apoferritin (AFt). To this end, we not only optimized a series of Gd(III) 8-hydroxyquinoline-2-carboxaldehyde-thiosemicarbazone compounds to obtain a Gd(III) compound (C4) with remarkable T1-weighted magnetic resonance imaging (MRI) performance and cytotoxicity to cancer cells in vitro but also constructed an AFt-C4 nanoparticle (NP) delivery system. Importantly, AFt-C4 NPs improved the targeting ability of C4 in vivo and showed enhanced MRI performance and tumor growth inhibition ratio relative to C4 alone. Furthermore, we confirmed that C4 and AFt-C4 NPs inhibited tumor growth through apoptosis, ferroptosis, and ferroptosis-induced immune response.


Subject(s)
Nanoparticles , Neoplasms , Humans , Gadolinium , Apoferritins , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/pathology , Magnetic Resonance Imaging/methods , Contrast Media/pharmacology
17.
J Med Chem ; 66(8): 5669-5684, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37071741

ABSTRACT

To develop the next-generation Pt drug with remarkable activity and low toxicity to maximally inhibit tumor growth, we optimized a Pt(II) thiosemicarbazone compound (C4) with remarkable cytotoxicity to SK-N-MC cells and then constructed a new human serum albumin-C4 (HSA-C4) complex delivery system. The in vivo results showed that C4 and the HSA-C4 complex have remarkable therapeutic efficiency and almost no toxicity; they induced apoptosis and inhibited tumor angiogenesis. This system showed potential as a practical Pt drug. This study could pave the way for developing next-generation dual-targeted Pt drugs and achieving their targeting therapy for cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Serum Albumin, Human , Platinum , Antineoplastic Agents/pharmacology , Drug Delivery Systems/methods , Neoplasms/drug therapy , Cell Line, Tumor
18.
Aging Dis ; 14(2): 529-547, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37008055

ABSTRACT

Hypoxia is an indispensable factor for cancer progression and is closely associated with the Warburg effect. Circular RNAs (CircRNA) have garnered considerable attention in molecular malignancy therapy as they are potentially important modulators. However, the roles of circRNAs and hypoxia in osteosarcoma (OS) progression have not yet been elucidated. This study reveals the hypoxia-sensitive circRNA, Hsa_circ_0000566, that plays a crucial role in OS progression and energy metabolism under hypoxic stress. Hsa_circ_0000566 is regulated by hypoxia-inducible factor-1α (HIF-1α) and directly binds to it as well as to the Von Hippel-Lindau (VHL) E3 ubiquitin ligase protein. Consequentially, binding between VHL and HIF-1α is impeded. Furthermore, Hsa_circ_0000566 contributes to OS progression by binding to HIF-1α (while competing with VHL) and by confers protection against HIF-1α against VHL-mediated ubiquitin degradation. These findings demonstrate the existence of a positive feedback loop formed by HIF-1α and Hsa_circ_0000566 and the key role they play in OS glycolysis. Taken together, these data indicate the significance of Hsa_circ_0000566 in the Warburg effect and suggest that Hsa_circ_0000566 could be a potential therapeutic target to combat OS progression.

19.
Ultrason Sonochem ; 95: 106401, 2023 May.
Article in English | MEDLINE | ID: mdl-37060713

ABSTRACT

Dicaffeoylquinic acids (diCQAs) are found in a variety of edible and medicinal plants with various biological activities. An important issue is the low stability of diCQAs during extraction and food processing, resulting in the degradation and transformation. This work used 3,5-diCQA as a representative to study the influence of different parameters in ultrasonic treatment on the stability of diCQAs, including solvent, temperature, treatment time, ultrasonic power, duty cycle, and probe immersion depth. The generation of free radicals and its influence were investigated during the treatment. The stability of three diCQAs (3,5-diCQA, 4,5-diCQA and 3,4-diCQA) under the certain ultrasonic condition at different pH conditions was evaluated and found to decrease with the increase of pH, further weakened by ultrasonic treatment. Ultrasound was found to accelerate the degradation and isomerization of diCQAs. Different diCQAs showed different pattern of degradation and isomerization. The stability of diCQAs could be improved by adding epigallocatechin gallate and vitamin C.

20.
ChemSusChem ; 16(10): e202300168, 2023 May 19.
Article in English | MEDLINE | ID: mdl-36826410

ABSTRACT

Combining solid acid catalysts with enzyme reactions in aqueous environments is challenging because either very acidic conditions inactivate the enzymes, or the solid acid catalyst is neutralized. In this study, Amberlyst-15 encapsulated in polydimethylsiloxane (Amb-15@PDMS) is used to deprotect the lignin depolymerization product G-C2 dioxolane phenol in a buffered system at pH 6.0. This reaction is directly coupled with the biocatalytic reduction of the released homovanillin to homovanillyl alcohol by recombinant horse liver alcohol dehydrogenase, which is subsequently acylated by the promiscuous acyltransferase/hydrolase PestE_I208A_L209F_N288A in a one-pot system. The deprotection catalyzed with Amb-15@PDMS attains up to 97 % conversion. Overall, this cascade enables conversions of up to 57 %.


Subject(s)
Dioxolanes , Lignin , Animals , Horses , Lignin/metabolism , Phenol , Biocatalysis , Catalysis , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL
...