Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(9): 4342, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38353276

ABSTRACT

Correction for 'The {Cu2I2} cluster bearing metal organic frameworks: crystal structures and fluorescence detecting performances towards cysteine and explosive molecules' by Jiang Jiang et al., Dalton Trans., 2024, 53, 706-714, https://doi.org/10.1039/d3dt03363e.

2.
Dalton Trans ; 53(2): 706-714, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38084056

ABSTRACT

Two {Cu2I2} cluster-bearing metal organic frameworks (MOFs) of {[Eu(CuI)2(INA)3DMF]·0.95DMF}n (Eu-CuI-INA) and {K[(CH3)2NH2]Sr4(INA)2(DMF)2{(Cu2I2)2(INA)8}·2H2O}n (Sr-K-CuI-INA, HINA = isonicotinic acid, DMF = N,N-dimethyl formamide) were prepared and characterized in this work. Both materials feature a three-dimensional (3-D) structure, in which the {Cu2I2} clusters and Eu3+ (or Sr2+) metal ions are coordinated by INA- ligands with pyridine and carboxylic groups, respectively. Impressively, Sr-K-CuI-INA exhibits sensitive fluorescence sensing behaviors towards cysteine and nitro-bearing molecules, demonstrating potential FL sensing applications for bio and explosive molecules. This work would provide a good reference for designing fluorescent MOF probes containing CuI molecules.

4.
Chem Commun (Camb) ; 57(100): 13784-13787, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34860224

ABSTRACT

Compound [C5mim][Mim]2[SbCl6] (1; [C5mim]+ = 1-pentyl-3-methylimidazolium; [Mim]+ = N-methylimidazolium) with dual cations exhibits the first case of deep-red emission in [SbCl6]3--based 0D OIMHs. Anion distortion due to high disequilibrium of supramolecular interactions is revealed to be responsible for the extremely large Stokes shift of 335 nm and FWHM of 210 nm in the emission.

5.
Inorg Chem ; 60(23): 17837-17845, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34738796

ABSTRACT

Zero-dimensional (0D) metal halides with solid-state luminescence switching (SSLS) have attracted attention as sensors and luminescent anticounterfeiting. Herein, selective solvent molecule response and accordingly luminescence switching were discovered in 0D [EtPPh3]2[SbCl5] (1, EtPPh3 = ethyltriphenylphosphonium). More than a dozen kinds of solvent molecules have been tested to find out the selection rule for molecule absorption in 1, which is demonstrated to be the size effect of guest molecules. Confirmed by crystal structural analysis, only the solvents with molecular volume less than 22.3 Å3 could be accommodated in 1 leading to the solvatochromic photoluminescence (PL). The mechanism of solvatochromic PL was also deeply studied, which was found to be closely related to the supramolecular interactions between solvent molecules and the host material. Different functional groups of the solvent molecule can affect its strength of hydrogen bonding with [SbCl5]2-, which is crucial for the distortion level of [SbCl5]2- unit and thus results in not only distinct solvatochromic PL but also distinct thermochromic PL. In addition, they all show typical self-trapped exciton triplet emissions. The additional supramolecular interactions from guest molecules can enhance the photoluminescence quantum yield to be as high as 95%.

6.
Dalton Trans ; 50(10): 3586-3592, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33620059

ABSTRACT

Zero-dimensional (0D) organic-inorganic hybrid metal halides (OIMHs) containing multiple halometallate species (HMSs) have received extensive attention due to their capability to achieve multifunctional photophysical characteristics. Herein we report a lead-free 0D-OIMH compound, namely [Emim]8[SbCl6]2[SbCl5] (1, Emim = 1-ethyl-3-methylimidazolium), which is the first crystal containing two distinct mononuclear [SbXn]3-n units in one single structure. The optical absorption, temperature/excitation-variable photoluminescence (PL) and PL decay were studied. 1 exhibits a broad emission centered at 577 nm, which is analyzed to be a combination of the emissions from [SbCl6]3- and [SbCl5]2-. The structural effects including SbSb distances and polyhedral distortion of [SbXn]3-n on the PL of antimony-based 0D-OIMHs are discussed in detail. This work would provide guidance for constructing Sb-based 0D OIMHs composed of multiple halometallate species.

7.
ACS Appl Mater Interfaces ; 12(23): 26222-26231, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32401005

ABSTRACT

The discovery of novel high-nuclearity oxo-clusters considerably promotes the development of cluster science. We report a high-nuclearity oxo-cluster-based compound with acid/alkali-resistance and radiation stabilities, namely, (H3O)7[Cd7Sb24O24(l-tta)9(l-Htta)3(H2O)6]·29H2O (FJSM-CA; l-H4tta = l-tartaric acid), which features a two-dimensionally anionic layer based on the largest Sb-oxo-clusters with 28-metal-ion-core [Cd4Sb24O24]. It is challenging to efficiently capture Sr2+, Ba2+ (analogue of 226Ra), and [UO2]2+ ions from aqueous solutions due to their high water solubility and environmental mobility, while it is unprecedented that a novel Sb-oxo-cluster-based framework material FJSM-CA can efficiently remove these hazardous ions accompanied with intriguing structural transformations. Especially, it shows fast ion-exchange abilities for Sr2+, Ba2+, and [UO2]2+ (reaches equilibrium within 2, 10, and 20 min, respectively) and high exchange capacity (121.91 mg/g), removal rate R (96%), and distribution coefficient KdU (2.46 × 104 mL/g) for uranium. Moreover, the underlying mechanism is clearly revealed, which is attributed to strong electrostatic interactions between exchanged cations and highly negative-charged frameworks and the strong affinity of (COO)- groups for these cations. Proton conduction of the pristine and Sr2+, Ba2+, [UO2]2+-loaded products was investigated. This work highlights the design of new oxo-cluster-based materials for radionuclide remediation and proton conduction performance.

8.
Chem Commun (Camb) ; 55(51): 7303-7306, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31155621

ABSTRACT

The different hydrogen bond interactions in two organic-inorganic hybrid manganese halide compounds, namely [A]2[MnBr4] (A = N-butyl-N-methylpyrrolidinium ([P14]+) for (1) and N-butyl-N-methylpiperidinium ([PP14]+) for (2)), lead to distinct photoluminescence quantum yields (81% for 1; 55% for 2). Further applications of luminescent 1 are also developed.

SELECTION OF CITATIONS
SEARCH DETAIL
...