Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.193
Filter
1.
J Cancer ; 15(10): 3227-3241, 2024.
Article in English | MEDLINE | ID: mdl-38706908

ABSTRACT

Background: Telomere maintenance takes part in the regulation of gastric cancer (GC) pathogenesis and is essential for patients' clinical features. Though the correlation between a single telomere maintenance-related gene and GC has previously been published, comprehensive exploration and systematic analysis remain to be studied. Our study is aimed at determining telomere maintenance-related molecular subtypes and examining their role in GC. Methods: By analyzing the transcriptome data, we identified three telomere maintenance-associated clusters (TMCs) with heterogeneity in clinical features and tumor microenvironment (TME). Then, we screened five prognostic telomere maintenance-related genes and established corresponding TM scores. Additionally, the expression level and biological function of tubulin beta 6 class V (TUBB6) were validated in GC tissues and cells. Results: TMC1 was correlated with EMT and TGF-beta pathway and predicted low tumor mutation burden (TMB) as well as bad prognostic outcomes. TMC3 was associated with cell cycle and DNA repair. In terms of TMB and overall survival, TMC3 exhibited opposite results against TMC1. Significant heterogeneity was observed between TMCs. TUBB6 was upregulated and could promote GC proliferation, migration, and invasion. Conclusion: Altogether, combining bioinformatics and functional experiments, we identified three molecular subtypes based on telomere maintenance-associated genes in GC, which could bring new ideas and novel biomarkers to the clinic.

2.
Neural Netw ; 176: 106339, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38703420

ABSTRACT

Malaria is a significant health concern worldwide, particularly in Africa where its prevalence is still alarmingly high. Using artificial intelligence algorithms to diagnose cells with malaria provides great convenience for clinicians. In this paper, a densely connected convolutional dynamic learning network (DCDLN) is proposed for the diagnosis of malaria disease. Specifically, after data processing and partitioning of the dataset, the densely connected block is trained as a feature extractor. To classify the features extracted by the feature extractor, a classifier based on a dynamic learning network is proposed in this paper. Based on experimental results, the proposed DCDLN method demonstrates a diagnostic accuracy rate of 97.23%, surpassing the diagnostic performance than existing advanced methods on an open malaria cell dataset. This accurate diagnostic effect provides convincing evidence for clinicians to make a correct diagnosis. In addition, to validate the superiority and generalization capability of the DCDLN algorithm, we also applied the algorithm to the skin cancer and garbage classification datasets. DCDLN achieved good results on these datasets as well, demonstrating that the DCDLN algorithm possesses superiority and strong generalization performance.

3.
Chem Sci ; 15(18): 6777-6788, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38725487

ABSTRACT

Designing molecules with donor-acceptor-donor (D-A-D) architecture plays an important role in obtaining second near-infrared region (NIR-II, 1000-1700 nm) fluorescent dyes for biomedical applications; however, this always comes with a challenge due to very limited electronic acceptors. On the other hand, to endow NIR-II fluorescent dyes with combined therapeutic applications, trivial molecular design is indispensable. Herein, we propose a pyrazine-based planar electronic acceptor with a strong electron affinity, which can be used to develop NIR-II fluorescent dyes. By structurally attaching two classical triphenylamine electronic donors to it, a basic D-A-D module, namely Py-NIR, can be generated. The planarity of the electronic acceptor is crucial to induce a distinct NIR-II emission peaking at ∼1100 nm. The unique construction of the electronic acceptor can cause a twisted and flexible molecular conformation by the repulsive effect between the donors, which is essential to the aggregation-induced emission (AIE) property. The tuned intramolecular motions and twisted D-A pair brought by the electronic acceptor can lead to a remarkable photothermal conversion with an efficiency of 56.1% and induce a type I photosensitization with a favorable hydroxyl radical (OH˙) formation. Note that no additional measures are adopted in the molecular design, providing an ideal platform to realize NIR-II fluorescent probes with synergetic functions based on such an acceptor. Besides, the nanoparticles of Py-NIR can exhibit excellent NIR-II fluorescence imaging towards orthotopic 4T1 breast tumors in living mice with a high sensitivity and contrast. Combined with photothermal imaging and photoacoustic imaging caused by the thermal effect, the imaging-guided photoablation of tumors can be well performed. Our work has created a new opportunity to develop NIR-II fluorescent probes for accelerating biomedical applications.

4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732070

ABSTRACT

Wolbachia, a group of Gram-negative symbiotic bacteria, infects nematodes and a wide range of arthropods. Diaphorina citri Kuwayama, the vector of Candidatus Liberibacter asiaticus (CLas) that causes citrus greening disease, is naturally infected with Wolbachia (wDi). However, the interaction between wDi and D. citri remains poorly understood. In this study, we performed a pan-genome analysis using 65 wDi genomes to gain a comprehensive understanding of wDi. Based on average nucleotide identity (ANI) analysis, we classified the wDi strains into Asia and North America strains. The ANI analysis, principal coordinates analysis (PCoA), and phylogenetic tree analysis supported that the D. citri in Florida did not originate from China. Furthermore, we found that a significant number of core genes were associated with metabolic pathways. Pathways such as thiamine metabolism, type I secretion system, biotin transport, and phospholipid transport were highly conserved across all analyzed wDi genomes. The variation analysis between Asia and North America wDi showed that there were 39,625 single-nucleotide polymorphisms (SNPs), 2153 indels, 10 inversions, 29 translocations, 65 duplications, 10 SV-based insertions, and 4 SV-based deletions. The SV-based insertions and deletions involved genes encoding transposase, phage tail tube protein, ankyrin repeat (ANK) protein, and group II intron-encoded protein. Pan-genome analysis of wDi contributes to our understanding of the geographical population of wDi, the origin of hosts of D. citri, and the interaction between wDi and its host, thus facilitating the development of strategies to control the insects and huanglongbing (HLB).


Subject(s)
Genome, Bacterial , Phylogeny , Symbiosis , Wolbachia , Wolbachia/genetics , Wolbachia/classification , Symbiosis/genetics , Animals , Asia , North America , Hemiptera/microbiology , Hemiptera/genetics , Diptera/microbiology , Diptera/genetics , Polymorphism, Single Nucleotide
5.
Article in English | MEDLINE | ID: mdl-38751078

ABSTRACT

PURPOSE: The purpose of this study was to investigate whether double-level (femur + tibia) derotational osteotomy is superior to single-level femoral derotational osteotomy for recurrent patellar dislocation with severe femoral and tibial rotational deformities (femoral anteversion >30° and external tibial torsion >30°). METHODS: Between January 2015 and June 2020, a total of 115 knees with recurrent patellar dislocation treated with combined medial patellofemoral ligament reconstruction (MPFL-R) and derotational osteotomies were evaluated after a minimum follow-up of 2 years. Among these cases, 15 knees that underwent double-level derotational osteotomy were included in the double-level group, which was propensity-matched in a 1:2 ratio to a single-level group of patients who underwent single-level femoral derotational osteotomy (30 knees). The clinical and radiological outcomes were evaluated and compared between the groups. Furthermore, the foot progression angle was measured preoperatively and 2 years after surgery. RESULTS: The patient-specific variables did not differ significantly between the double- and the single-level groups after propensity score matching. The postoperative mean foot progression angle was significantly lower in the double-level group than in the single-level group (9° ± 8° vs. 15° ± 11°; p = 0.014); however, there were no statistically significant differences between the groups in terms of any other clinical and radiological assessments. CONCLUSION: For patients with severe femoral and tibial torsional deformities (femoral anteversion >30° and external tibial torsion >30°), the double-level derotational osteotomy is superior to single-level osteotomy in maintaining normal foot progression angle, but it does not show an advantage in terms of patient-reported outcomes, radiological results and redislocation rate at minimum 2 years of follow-up. Furthermore, concomitant excessive external tibial torsion (>30°) did not have an adverse effect on clinical outcomes in patients who underwent derotational distal femoral osteotomy with MPFL-R due to excessive femoral anteversion. LEVEL OF EVIDENCE: Level III.

6.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747909

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a significant global health issue in recent years. Numerous studies indicate that COVID-19 during pregnancy is associated with an increased likelihood of pregnancy complications. Additionally, pregnancy itself is known to elevate the risk of severe SARS-CoV-2 infection. To explore the potential impact of SARS-CoV-2 infection on the probability of Down syndrome in fetuses, we conducted serological testing of Down syndrome markers in pregnant women who had contracted the virus. METHODS: Serological experiments were conducted utilizing a particle chemiluminescence test. The cohort of pregnant women was categorized into three groups: a control group with no infection, a group infected with SARS-CoV-2 Omicron within the first six weeks of gestation, and a group infected beyond the sixth week of gestation. RESULTS: In the group of individuals infected within 6 gestational weeks, the infection resulted in a decrease in alpha-fetoprotein (AFP) levels and a higher positive rate of Down syndrome screening tests (p ˂ 0.05). However, in this study, SARS-CoV-2 infection did not lead to an increase in the occurrence of Down syndrome in the fetus. The positive rate of women infected beyond 6 gestational weeks was slightly higher than the non-infected group (6.2% vs. 5.7%), but these differences were not statistically significant (p > 0.05). Within the group infected beyond 6 gestational weeks, there was, compared to the control group, a decrease in free beta human chorionic gonadotropin (ß-hCG) levels (p < 0.05). CONCLUSIONS: This study presents a novel investigation into the impact of SARS-CoV-2 infection on AFP and ß-hCG levels. It has been observed that pregnant women who contract SARS-CoV-2 may exhibit an increased likelihood of positive results in serum tests conducted for Down syndrome screening. However, it is important to note that the occurrence of Down syndrome in the developing fetus does not appear to be elevated. To validate these findings, additional research involving larger and diverse cohorts is necessary.


Subject(s)
COVID-19 , Down Syndrome , Pregnancy Complications, Infectious , SARS-CoV-2 , alpha-Fetoproteins , Humans , Down Syndrome/diagnosis , Down Syndrome/blood , alpha-Fetoproteins/analysis , Female , Pregnancy , COVID-19/diagnosis , COVID-19/blood , COVID-19/epidemiology , Pregnancy Complications, Infectious/blood , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/virology , Adult , Prenatal Diagnosis/methods , Biomarkers/blood
8.
J Colloid Interface Sci ; 670: 698-708, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38788437

ABSTRACT

Hydrophobic nano silica powder is a kind of important synergist to silicone defoaming agents. The large pore volume and branched chain conformation of silica nanoparticles present superior effects on defoaming properties. However, silica nanoparticles synthesized by liquid phase easily aggregate and pore collapse because of their high surface activity and polarity, leading to poorer dispersity and limited practicability. In this paper, a novel hydrophobic silica with a hyperbranched structure was designed through in-situ modifying method with hexamethyldisilazane (HMDS) and polydimethylsiloxane (PDMS) in the liquid phase. The trimethylsilanol generated by HMDS hydrolysis reacts quickly with the highly active hydroxyl groups on the silica, causing the surface properties of the nanoparticles to transform from polar to non-polar properties. The steric hindrance of the trimethyl silicon and the reduction of the surface polarity effectively prevent silica pores from collapsing and maintain the macropore structures to realize the hyperbranched silica. At the same time, the -Si (CH3)2- from PDMS endowed the hyperbranched silica with excellent hydrophobicity. When applied in the defoaming agent, the hydrophobicity of silica contributes to dewetting the foams, and the hyperbranched spatial structures play an enhanced needling effect. Therefore, this hydrophobic hyperbranched silica exhibited a surprising defoaming effect, which significantly reduced the defoaming time from 464.4 s to less than 2 s, superior to commercial defoaming silica (155.3 s). The defoaming efficiency reached 100 % within 2 s of the end of the shaking, and the defoamer antifoaming ability was improved to reach 27.5 min, which was 77 % higher than that of commercial defoamer.

10.
Bioresour Bioprocess ; 11(1): 55, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780695

ABSTRACT

BACKGROUND: Dodecanedioic acid (DDA), a typical medium-chain dicarboxylic fatty acid with widespread applications, has a great synthetic value and a huge industrial market demand. Currently, a sustainable, eco-friendly and efficient process is desired for dodecanedioic acid production. RESULTS: Herein, a multi-enzymatic cascade was designed and constructed for the production of DDA from linoleic acid based on the lipoxygenase pathway in plants. The cascade is composed of lipoxygenase, hydroperoxide lyase, aldehyde dehydrogenase, and unidentified double-bond reductase in E. coli for the main cascade reactions, as well as NADH oxidase for cofactor recycling. The four component enzymes involved in the cascade were co-expressed in E. coli, together with the endogenous double-bond reductase of E. coli. After optimizing the reaction conditions of the rate-limiting step, 43.8 g L- 1 d- 1 of DDA was obtained by a whole-cell one-pot process starting from renewable linoleic acid. CONCLUSIONS: Through engineering of the reaction system and co-expressing the component enzymes, a sustainable and eco-friendly DDA biosynthesis route was set up in E. coli, which afforded the highest space time yield for DDA production among the current artificial multi-enzymatic routes derived from the LOX-pathway, and the productivity achieved here ranks the second highest among the current research progress in DDA biosynthesis.

11.
PLoS One ; 19(5): e0302155, 2024.
Article in English | MEDLINE | ID: mdl-38701096

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is strongly associated with type 2 diabetes mellitus (T2DM). Lifestyle intervention remains a preferred treatment modality for NAFLD. The glucagon-like peptide (GLP-1) receptor agonists and sodium-glucose cotransporter-2 (SGLT-2) inhibitors have been developed as new glucose-lowering drugs, which can improve fatty liver via an insulin-independent glucose-lowering effect. However, studies exploring the efficacy of GLP-1 receptor agonists combined with SGLT-2 inhibitors in patients with NAFLD and T2DM are scanty. Thus, the present randomised controlled trial aims at comparing the efficacy and safety of semaglutide plus empagliflozin with each treatment alone in patients with NAFLD and T2DM. METHODS: This 52-week double-blinded, randomised, parallel-group, active-controlled trial evaluates the effects of semaglutide, empagliflozin and semaglutide + empagliflozin in 105 eligible overweight/obese subjects with NAFLD and T2DM. The primary outcome will be a change from baseline to week 52 in the controlled attenuation parameter, free fatty acid and glucagon. Secondary endpoints include changes in liver stiffness measurement, liver enzymes, blood glucose, lipid levels, renal function, electrolyte balances, minerals and bone metabolism, cytokines, high-sensitivity C-reactive protein, ferritin, anthropometric indicators, nonalcoholic fatty liver fibrosis score, fibrosis 4 score and homeostatic model assessment for insulin resistance. In addition, intention-to-treat, interim analysis and safety analysis will be performed. DISCUSSION: This double-blinded, randomised, clinical trial involves a multi-disciplinary approach and aims to explore the synergistic effects of the combination of semaglutide and empagliflozin. The results can provide important insights into mechanisms of GLP-1 receptor agonists and/or SGLT-2 inhibitors in patients with NAFLD and T2DM. TRIAL REGISTRATION: This study has been registered with Chinese Clinical Trial Registry (ChiCTR2300070674).


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucagon-Like Peptides , Glucosides , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/complications , Glucosides/therapeutic use , Glucosides/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Glucagon-Like Peptides/therapeutic use , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/adverse effects , Middle Aged , Male , Double-Blind Method , Female , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Adult , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Drug Therapy, Combination , Blood Glucose/metabolism , Aged , Treatment Outcome
12.
Int J Biol Macromol ; 269(Pt 1): 132099, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710256

ABSTRACT

Iron deficiency anemia (IDA) is the most common nutritional disease worldwide. In this study, a low methoxyl pectin (LMP)­iron(III) complex was prepared. The physicochemical and structural properties were characterized by HPSEC, HPIC, CV, FTIR, 1H NMR, XRD, SEM and CD. The results showed that iron increased the molecular weight of the LMP­iron(III) from 11.50 ± 0.32 to 12.70 ± 0.45 kDa and improved its crystallinity. Moreover, the findings demonstrated that -OH and -COOH groups in LMP coordinate with Fe3+ to form ß-FeOOH. The water-holding capacity, emulsion stability, and antioxidant activities of the LMP­iron(III) were lower than those of LMP. Furthermore, the therapeutic effects of LMP­iron(III) on IDA were investigated in rats. Following LMP­iron(III) supplementation, compared with the model group, the administration of LMP­iron(III) significantly increased the body weight, hemoglobin concentration, and serum iron concentration as well as decreased free erythrocyte protoporphyrin concentration. Therefore, the LMP­iron(III) can potentially treat IDA in rats experiments, providing a theoretical basis for the development of a promising iron supplement.


Subject(s)
Anemia, Iron-Deficiency , Iron , Pectins , Animals , Pectins/chemistry , Pectins/pharmacology , Rats , Anemia, Iron-Deficiency/drug therapy , Iron/chemistry , Male , Antioxidants/pharmacology , Antioxidants/chemistry , Chemical Phenomena , Hemoglobins/chemistry , Hemoglobins/metabolism , Molecular Weight , Body Weight/drug effects , Rats, Sprague-Dawley
13.
Article in English | MEDLINE | ID: mdl-38651601

ABSTRACT

PURPOSE: To explore the relationship between preoperative J-sign grading and structural bone abnormalities in patients with recurrent patellar dislocation (RPD). METHODS: A retrospective study was conducted on RPD patients over 5 years. Patients were categorised based on J-sign grade into low (J- and J1+), moderate (J2+) and high groups (J3+). Trochlear dysplasia (TD) and osseous structures (femoral anteversion angle [FAA], knee torsion, tibial tuberosity-trochlear groove [TT-TG] distance, Caton-Deschamps index) were assessed and grouped according to risk factor thresholds. The χ2 test was used to compare composition ratio differences of structural bone abnormalities among the groups. RESULTS: A total of 256 patients were included, with 206 (80.5%) females. The distribution of J-sign grade was as follows: 89 knees (34.8%) of low grade, 86 moderate (33.6%) and 81 high (31.6%). Among the five structural bone abnormalities, TD was the most common with a prevalence of 78.5%, followed by increased TT-TG at 47.4%. Excessive tibiofemoral rotation had the lowest occurrence at 28.9%. There were 173 (67.6%) patients who had two or more abnormalities, while 45 (17.6%) had four to five bony abnormalities. Among patients with any bony abnormality, the proportion of high-grade J-sign surpassed 40%. Patients with moderate and high-grade J-sign had more increased FAA and more pronounced patella alta (all p < 0.001). The proportion of excessive knee torsion and TD increased with increasing each J-sign grade, with the more notable tendency in knee torsion (high vs. moderate vs. low-grade: 61% vs. 22% vs 7%, p < 0.001). Furthermore, the higher J-sign grade was also associated with more combined bony abnormalities (p < 0.001). In the high-grade J-sign group, 90.2% of the knees had two or more bony risk factors and 40.7% had four or more, which were significantly higher than the moderate and low-grade J-sign groups (40.7% vs. 11.6% vs. 2.2%, p < 0.001). CONCLUSION: In patients with a high-grade J-sign, over 90% of the lower limbs had two or more structural bone risk factors, and more than 40% had four or more. These proportions were significantly higher compared to knees with low-grade and moderate J-sign. In clinical practice, when treating high-grade patellar mal-tracking, it is important to focus on and correct these strongly correlated abnormal bone structures. LEVEL OF EVIDENCE: Level III.

14.
Biomed Mater ; 19(4)2024 May 07.
Article in English | MEDLINE | ID: mdl-38653259

ABSTRACT

The decellularized matrix has a great potential for tissue remodeling and regeneration; however, decellularization could induce host immune rejection due to incomplete cell removal or detergent residues, thereby posing significant challenges for its clinical application. Therefore, the selection of an appropriate detergent concentration, further optimization of tissue decellularization technique, increased of biosafety in decellularized tissues, and reduction of tissue damage during the decellularization procedures are pivotal issues that need to be investigated. In this study, we tested several conditions and determined that 0.1% Sodium dodecyl sulfate and three decellularization cycles were the optimal conditions for decellularization of pulp tissue. Decellularization efficiency was calculated and the preparation protocol for dental pulp decellularization matrix (DPDM) was further optimized. To characterize the optimized DPDM, the microstructure, odontogenesis-related protein and fiber content were evaluated. Our results showed that the properties of optimized DPDM were superior to those of the non-optimized matrix. We also performed the 4D-Label-free quantitative proteomic analysis of DPDM and demonstrated the preservation of proteins from the natural pulp. This study provides a optimized protocol for the potential application of DPDM in pulp regeneration.


Subject(s)
Decellularized Extracellular Matrix , Dental Pulp , Proteomics , Tissue Engineering , Tissue Scaffolds , Dental Pulp/cytology , Proteomics/methods , Animals , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Decellularized Extracellular Matrix/chemistry , Sodium Dodecyl Sulfate/chemistry , Humans , Odontogenesis , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry
15.
Chem Biodivers ; : e202400399, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634752

ABSTRACT

Four undescribed prenylated flavonoids, sophoratones A-D (1-4), and 17 known flavonoids, were obtained from the aerial parts of Sophora tonkinensis. Their structures with absolute configurations were elucidated by detailed interpretation of NMR spectroscopy, mass spectrometry, and ECD calculations. Meanwhile, the ability of these compounds to inhibit the release of nitric oxide (NO) by a lipopolysaccharide induced mouse in RAW 264.7 cells was assayed. The results indicated that some compounds exhibited clear inhibitory effects, with IC50 ranging from 19.91±1.08 to 35.72±2.92 µM. These results suggest that prenylated flavonoids from the aerial parts of S. tonkinensis could potentially be used as a latent source of anti-inflammatory agents.

16.
ACS Omega ; 9(14): 15893-15903, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617696

ABSTRACT

The cylindrical regenerative thermal oxidizer (CRTO) came into being later than the three-chamber regenerative thermal oxidizer (TRTO). Compared with TRTO, CRTO has a smaller size and a larger regenerator volume for absorbing and releasing heat. There are few studies on CRTO despite its numerous applications. A CRTO was selected in industrial applications for simulation research. The velocity and temperature of the CRTO were investigated after error analysis of industrial and simulated data. It was found that the velocity and temperature in the regenerative chamber had obvious stratification and gradients after homogenization by the regenerator unit. The velocity and temperature distribution in the oxidation chamber were independent of the position of the CRTO inlet and outlet or the structure below the regenerator, and there were identical periodic changes in each period. A TRTO with primary parameters as those of the CRTO was employed for comparison. The time of the intake and exhaust periods of a CRTO regenerative chamber were 30 s longer than those of a TRTO. The regenerator volume of heat storage used by CRTO for heat exchange increased by 1/6 compared to that of TRTO at the same total regenerator volume. Simulation shows that CRTO had a more uniform velocity and temperature in the regenerative chamber compared to those in TRTO, increasing by approximately 2%; the thermal efficiency is higher, with an average increase of about 3%.

17.
Front Plant Sci ; 15: 1331710, 2024.
Article in English | MEDLINE | ID: mdl-38595761

ABSTRACT

The K+ uptake permease/high-affinity K+/K+ transporter (KUP/HAK/KT) family is the most prominent group of potassium (K+) transporters, playing a key role in K+ uptake, transport, plant growth and development, and stress tolerance. However, the presence and functions of the KUP/HAK/KT family in Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau), the fastest-growing plant, have not been studied. In this study, we identified 41 KUP/HAK/KT genes (PeHAKs) distributed across 18 chromosomal scaffolds of the Moso bamboo genome. PeHAK is a typical membrane protein with a conserved structural domain and motifs. Phylogenetic tree analysis classified PeHAKs into four distinct clusters, while collinearity analysis revealed gene duplications resulting from purifying selection, including both tandem and segmental duplications. Enrichment analysis of promoter cis-acting elements suggested their plausible role in abiotic stress response and hormone induction. Transcriptomic data and STEM analyses indicated that PeHAKs were involved in tissue and organ development, rapid growth, and responded to different abiotic stress conditions. Subcellular localization analysis demonstrated that PeHAKs are predominantly expressed at the cell membrane. In-situ PCR experiments confirmed that PeHAK was mainly expressed in the lateral root primordia. Furthermore, the involvement of PeHAKs in potassium ion transport was confirmed by studying the potassium ion transport properties of a yeast mutant. Additionally, through homology modeling, we revealed the structural properties of HAK as a transmembrane protein associated with potassium ion transport. This research provides a solid basis for understanding the classification, characterization, and functional analysis of the PeHAK family in Moso bamboo.

18.
Biotechnol Bioeng ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639160

ABSTRACT

This study presents a novel approach for developing generic metabolic Raman calibration models for in-line cell culture analysis using glucose and lactate stock solution titration in an aqueous phase and data augmentation techniques. First, a successful set-up of the titration method was achieved by adding glucose or lactate solution at several different constant rates into the aqueous phase of a bench-top bioreactor. Subsequently, the in-line glucose and lactate concentration were calculated and interpolated based on the rate of glucose and lactate addition, enabling data augmentation and enhancing the robustness of the metabolic calibration model. Nine different combinations of spectra pretreatment, wavenumber range selection, and number of latent variables were evaluated and optimized using aqueous titration data as training set and a historical cell culture data set as validation and prediction set. Finally, Raman spectroscopy data collected from 11 historical cell culture batches (spanning four culture modes and scales ranging from 3 to 200 L) were utilized to predict the corresponding glucose and lactate values. The results demonstrated a high prediction accuracy, with an average root mean square errors of prediction of 0.65 g/L for glucose, and 0.48 g/L for lactate. This innovative method establishes a generic metabolic calibration model, and its applicability can be extended to other metabolites, reducing the cost of deploying real-time cell culture monitoring using Raman spectroscopy in bioprocesses.

19.
Front Surg ; 11: 1348737, 2024.
Article in English | MEDLINE | ID: mdl-38645508

ABSTRACT

Objective: To review and summarize the characteristics and therapy of paraganglioma of the urinary bladder (PUB). Method: Patients who underwent the operation in Peking Union Medical College Hospital between January 2012 and December 2021 were reviewed for this retrospective study. Results: A total of 29 patients, comprising 9 (31%) men and 20 (69%) women, were included. The main manifestations were hypertension, palpitation, and micturition syncope. Eight patients had an increased 24-h urinary catecholamine, and seven of them had increased norepinephrine. Normetanephrine in seven patients was increased. Six of 18 metaiodobenzylguanidine and 8 of 22 octreotide scans were positive. In total, 15 cases underwent laparoscopic partial cystectomy and 14 underwent transurethral resection of bladder tumor. In all patients, the immunohistochemical index of Melan-A, AE1/AE3, and α-inhibin were negative, and chromogranin A, S-100, and succinate dehydrogenase were positive. The Ki-67 of 28/29 cases was under 5%, and 1 case with a Ki-67 of 20% was diagnosed with malignant PUB. A total of 27 patients had a regular follow-up, 2 patients were lost during the follow-up, 3 patients had a recurrence, and 1 of these patients died within 1 year of surgery. The symptoms all disappeared or were relieved after the surgery. Conclusion: The transurethral surgery approach fits PUB tumors with a size <3 cm or that protrudes into the bladder and can significantly reduce the postoperative hospital stay. Early detection and treatment are effective, and regular review is necessary after the surgery.

20.
RSC Adv ; 14(15): 10726-10735, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38567318

ABSTRACT

In this study, both mechanoluminescence (ML) and long persistent luminescence (LPL) characteristics were first observed in CaSrGa4O8 doped with Tb3+ ions, which confirmed that CaSrGa4O8 is a high-quality host for luminescent material research. Notably, the samples show stronger mechanoluminescent intensity with increasing Tb3+ doping. Additionally, the introduction of Tb3+ led to a shift of the thermoluminescence peak towards higher temperatures and a substantial increase in its intensity, suggesting that Tb3+ doping enhances the overall trap concentration and introduces deeper trap energy levels. Presumably, the free carriers in the system recombine upon mechanical stimulation, releasing energy that is transferred to Tb3+ ions. Investigations into the intrinsic structure, matrix effects, and trap evolution of the material confirmed that deep and shallow traps are responsible for the observed ML and LPL phenomena, respectively. The elucidation of the unique luminescent properties of the material provides us with some guidance for the development of new multi-functional luminescent materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...