Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Animals (Basel) ; 14(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338018

ABSTRACT

The burden of gastrointestinal parasites in zoo animals has serious implications for their welfare and the health of veterinarians and visitors. Zhuyuwan Zoo is located in the eastern suburb of Yangzhou city in eastern China, in which over 40 species of zoo animals are kept. In order to understand the infection status of GI parasites in Zhuyuwan Zoo, a total of 104 fresh fecal samples collected randomly from birds (n = 19), primates (n = 19), and non-primate mammals (n = 66) were analyzed using the saturated saline flotation technique and nylon sifter elutriation and sieving method for eggs/oocysts, respectively. Two Ascaris species were molecularly characterized. The results showed that the overall prevalence of parasitic infection was 42.3% (44/104). The parasitic infection rate in birds, primates, and non-primate mammals were 26.3% (5/19), 31.6% (6/19), and 50.0% (33/66), respectively. A total of 11 species of parasites were identified, namely, Trichostrongylidae, Capillaria sp., Trichuris spp., Strongyloides spp., Amidostomum sp., Toxascaris leonina, Baylisascaris transfuga, Parascaris equorum, Paramphistomum spp., Fasciola spp., and Eimeria spp. Paramphistomum spp. eggs were first detected from the captive Père David's deer, and Fasciola spp. eggs were first reported from sika deer in zoo in China. A sequence analysis of ITS-2 and cox1 showed that the eggs isolated from the African lion (Panthera leo Linnaeus, 1758) were T. leonina, and the eggs from the brown bear (Ursus arctos Linnaeus, 1758) were B. transfuga. The public health threat posed by these potential zoonotic parasitic agents requires attention. These results lay a theoretical foundation for prevention and control of wild animal parasitic diseases at zoos in China.

2.
RSC Adv ; 14(8): 5167-5175, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38344002

ABSTRACT

Sustainable management of spent extraction solvents (SES) is paramount in the nuclear industry. This study delves into the optimization and oxidation pathways of treating these solvents using supercritical water oxidation (SCWO). Response surface methodology (RSM) has been employed to optimize key operating variables, that is, temperature, residence time and oxidant concentration, producing a highly accurate quadratic polynomial model. The results showed that the total organic carbon (TOC) removal could reach up to 99.25% under 549 °C, 67.7 s and with an oxidation coefficient of 274.3%. Product analysis of the effluent via GC-MS/FTIR/GC revealed the pivotal role of ketones and aldehydes as major intermediates. This study proposes potential chemical pathways for the destruction of these solvents, providing invaluable insights for process intensification. In conclusion, this study underscores the potential of SCWO as an efficient and sustainable solution for disposing of SES in the nuclear industry.

3.
Vet Parasitol ; 324: 110060, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37931477

ABSTRACT

Eimeria necatrix is a high pathogenic pathogen, which seriously endangers the poultry industry. The surface antigens (SAGs) of Apicomplexa are a kind of membrane protein anchored on the surface of the parasites through its carboxyl terminal glycosylphosphatidylinositol (GPI) structure. However, little is known about GPI-linked surface proteins in E. necatrix. In the present work, the E. necatrix sag gene (Ensag-CAP) was amplified and cloned for expression of the recombinant protein (rEnSAG-CAP). The full length Ensag-CAP gene was 813 bp, coding 270 amino acids with a predicated molecular weight of 28.86 kDa and contained a CAP domain with four sequence motifs CAP1, CAP2, CAP3 and CAP4. The rEnSAG-CAP was about 32 kDa and mainly expressed in a soluble form. Western blot analysis indicated that the rEnSAG-CAP could be recognized by anti-rEnSAG-CAP monoclonal antibody (anti-rEnSAG-CAP McAb) and the convalescent serum of chicken infected with E. necatrix. Native protein of EnSAG-CAP was detected in second-generation merozoites (MZ-2) using anti-rEnSAG-CAP polyclonal antibody (anti-rEnSAG-CAP pAb). The findings from the indirect immunofluorescence assay and enzyme digestion utilizing Bacillus cereus phosphoinositide-specific phospholipase C (PI-PLC) revealed that EnSAG-CAP predominantly localized at the surfaces of SZ and MZ-2 via a GPI anchor. It was observed that EnSAG-CAP can be cleaved from MZ-2 by PI-PLC. Real-time quantitative PCR (qPCR) analysis showed that transcript levels of Ensag-CAP in MZ-2 was significantly higher than that in SZ (P < 0.05). The anti-rEnSAG-CAP McAb in vitro could significantly inhibit the sporozoite invasion into MDBK cells (P < 0.01), which suggests that the protein might participate in sporozoite invasion into MDBK cells. rEnSAG-CAP afforded an immune protection against E. necatrix. The ACI value was 164.99 in the chickens immunized with 200 µg rEnSAG-CAP. Chickens immunized with rEnSAG-CAP had a significantly higher antigen-specific serum IgY response (P < 0.0001). The data indicates that EnSAG-CAP could serve as a potential candidate antigen for the development of a recombinant coccidiosis vaccine.


Subject(s)
Coccidiosis , Eimeria , Poultry Diseases , Animals , Eimeria/physiology , Chickens/parasitology , Coccidiosis/prevention & control , Coccidiosis/veterinary , Recombinant Proteins/genetics , Sporozoites , Vaccines, Synthetic , Poultry Diseases/parasitology
4.
Proc Natl Acad Sci U S A ; 120(31): e2301364120, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37487078

ABSTRACT

In nearly all cases of underwater adhesion, water molecules typically act as a destroyer. Thus, removing interfacial water from the substrate surfaces is essential for forming super-strong underwater adhesion. However, current methods mainly rely on physical means to dislodge interfacial water, such as absorption, hydrophobic repulsion, or extrusion, which are inefficient in removing obstinate hydrated water at contact interface, resulting in poor adhesion. Herein, we present a unique means of reversing the role of water to assist in realizing a self-strengthening liquid underwater adhesive (SLU-adhesive) that can effectively remove water at contact interface. This is achieved through multiscale physical-chemical coupling methods across millimeter to molecular levels and self-adaptive strengthening of the cohesion during underwater operations. As a result, strong adhesion over 1,600 kPa (compared to ~100 to 1,000 kPa in current state of the art) can be achieved on various materials, including inorganic metal and organic plastic materials, without preloading in different environments such as pure water, a wide range of pH solutions (pH = 3 to 11), and seawater. Intriguingly, SLU-adhesive/photothermal nanoparticles (carbon nanotubes) hybrid materials can significantly reduce the time required for complete curing from 24 h to 40 min using near-infrared laser radiation due to unique thermal-response of the chemical reaction rate. The excellent adhesion property and self-adaptive adhesion procedure allow SLU-adhesive materials to demonstrate great potential for broad applications in underwater sand stabilization, underwater repair, and even adhesion failure detection as a self-reporting adhesive. This concept of "water helper" has potential to advance underwater adhesion and manufacturing strategies.

5.
Nat Commun ; 13(1): 6964, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36379942

ABSTRACT

Solid matter that can rapidly and reversibly switch between adhesive and non-adhesive states is desired in many technological domains including climbing robotics, actuators, wound dressings, and bioelectronics due to the ability for on-demand attachment and detachment. For most types of smart adhesive materials, however, reversible switching occurs only at narrow scales (nanoscale or microscale), which limits the realization of interchangeable surfaces with distinct adhesive states. Here, we report the design of a switchable adhesive hydrogel via dynamic multiscale contact synergy, termed as DMCS-hydrogel. The hydrogel rapidly switches between slippery (friction ~0.04 N/cm2) and sticky (adhesion ~3 N/cm2) states in the solid-solid contact process, exhibits large span, is switchable and dynamic, and features rapid adhesive switching. The design strategy of this material has wide applications ranging from programmable adhesive materials to intelligent devices.


Subject(s)
Hydrogels , Robotics , Adhesives , Friction
6.
ACS Appl Mater Interfaces ; 14(10): 12684-12692, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35230813

ABSTRACT

Despite the fact that synthetic adhesives have achieved great progress, achieving robust dry/wet adhesion under harsh operating environments is still challenging. Herein, inspired from the extraordinary adhesion mechanism of nature mussel protein adhesive, the balanced design concept of co-adhesion and interfacial adhesion is proposed to prepare one kind of novel copolymer adhesive of [poly(dopamine methacrylamide-co-methoxethyl acrylate-co-adamantane-1-carboxylic acid 2-(2-methyl-acryloyloxy)-ethyl ester)] [p(DMA-co-MEA-co-AD)], named as super-robust adhesive (SRAD). The SRAD exhibits ultra-high interface bonding strengths in air (∼7.66 MPa) and underwater (∼2.78 MPa) against an iron substrate. Especially, a greatly tough and stable adhesion strength (∼2.11 MPa) can be achieved after immersing the bonded sample in water for half a year. Furthermore, the SRAD demonstrates surprising wet bonding robustness/tolerance even encountering harsh conditions such as fluid shearing, dynamic loading, and cyclic mechanical fretting. The great advantages of SRAD, such as strong interface bonding, stable wet adhesion underwater, and good mechanical tolerance, makes it demonstrate huge application potential in engineering sealants and underwater adhesion.

7.
ACS Appl Mater Interfaces ; 13(31): 37609-37616, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34323467

ABSTRACT

The accumulation of ice in winter has brought many problems in industrial production and everyday life, and how to prevent icing or remove ice rapidly has aroused great attention from researchers in recent years. In this work, we demonstrated a strategy of using a superhydrophobic photothermal and thermal isolation macroporous xerogel (PMX) to delay icing and remove ice efficiently under faint sunlight irradiation. An oriented macroporous xerogel was prepared by an ice templating method, and multi-walled carbon nanotubes acting as the photothermal genesis component under sunlight irradiation were introduced into the xerogel. After fluorination, the PMX presented a robust water repellency and delayed icing. More importantly, numerous macropores in the PMX matrix acted as the thermal barrier that can restrict heat transmission to surroundings at maximum, which guarantees efficient anti-icing and de-icing in low temperature. Water on the PMX surface can never freeze at -30 °C under 0.25 kW/m2 ("0.25 sun") sunlight irradiation. The outdoor experiment also has confirmed the availability of PMX in a natural winter environment. The PMX integrated with thermogenesis and thermo-isolation functions provides a new route for highly efficient anti-icing and de-icing.

8.
Appl Phys Lett ; 1182021.
Article in English | MEDLINE | ID: mdl-36452035

ABSTRACT

We demonstrate the electrical detection of magnon-magnon hybrid dynamics in yttrium iron garnet/permalloy (YIG/Py) thin film bilayer devices. Direct microwave current injection through the conductive Py layer excites the hybrid dynamics consisting of the uniform mode of Py and the first standing spin wave (n = 1) mode of YIG, which are coupled via interfacial exchange. Both the two hybrid modes, with Py or YIG dominated excitations, can be detected via the spin rectification signals from the conductive Py layer, providing phase resolution of the coupled dynamics. The phase characterization is also applied to a nonlocally excited Py device, revealing the additional phase shift due to the perpendicular Oersted field. Our results provide a device platform for exploring hybrid magnonic dynamics and probing their phases, which are crucial for implementing coherent information processing with magnon excitations.

9.
Rev Sci Instrum ; 91(12): 125105, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33379972

ABSTRACT

We report the construction and characterization of a comprehensive magnonic-opto-electronic oscillator (MOEO) system based on 1550-nm photonics and yttrium iron garnet (YIG) magnonics. The system exhibits a rich and synergistic parameter space because of the ability to control individual photonic, electronic, and magnonic components. Taking advantage of the spin wave dispersion of YIG, the frequency self-generation as well as the related nonlinear processes becomes sensitive to the external magnetic field. Besides being known as a band-pass filter and a delay element, the YIG delay line possesses spin wave modes that can be controlled to mix with the optoelectronic modes to generate higher-order harmonic beating modes. With the high sensitivity and external tunability, the MOEO system may find usefulness in sensing applications in magnetism and spintronics beyond optoelectronics and photonics.

10.
Zhongguo Gu Shang ; 33(8): 730-5, 2020 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-32875763

ABSTRACT

OBJECTIVE: To explore the effect of glucose pretreatment in the rapid rehabilitation surgery of hip replacement patients, and to provide reference for the future clinical treatment. METHODS: From June 2016 to June 2018, 168 patients (100 males, 68 females) were treated with hip replacement. The patients were divided into control group and observation group, 84 cases in each group, aged 25 to 90 (52.05±5.73) years old. Both groups were treated with the concept of rapid rehabilitation surgery, the control group was given traditional fasting water deprivation before operation, and the observation group was given glucose pretreatment before operation. The levels of fasting blood glucose(FBG), C-peptide, fasting insulin(FINS), IgG, IgM, IgA and total lymphocyte count (TLC) were compared before and after operation, and the sensitivity of thirst, nausea, fatigue, sweating, stomach discomfort, anxiety, hunger and dizziness were compared. RESULTS: All the 168 patients were followed up. There was no significant difference in FBG, C-peptide and fins levels between the observation group and the control group (P>0.05). The levels of FBG, C-peptide and fins in the observation group were higher than those in the control group (P<0.05). There was no significant difference in the serum IgG, IgM, IgA and TLC levels between the observation group and the control group(P>0.05);the serum IgG, IgM, IgA and TLC levels after operation were higher than those before operation, and the observation group was higher than the control group(P<0.05). There was no significant difference in the degree of thirst, nausea, fatigue, sweating and stomach discomfort between the observation group and the control group (P>0.05);the degree of anxiety, hunger and dizziness in the observation group was less than that in the control group (P<0.05). CONCLUSION: Glucose pretreatment before hip replacement can relieve insulin resistance, improve immunity and change energy storage under fasting, which can be widely used in clinic.


Subject(s)
Arthroplasty, Replacement, Hip , Insulin Resistance , Adult , Aged , Aged, 80 and over , Blood Glucose , Female , Glucose , Humans , Insulin , Male , Middle Aged
11.
Phys Rev Lett ; 124(11): 117202, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32242705

ABSTRACT

We experimentally identify coherent spin pumping in the magnon-magnon hybrid modes of yttrium iron garnet/permalloy (YIG/Py) bilayers. By reducing the YIG and Py thicknesses, the strong interfacial exchange coupling leads to large avoided crossings between the uniform mode of Py and the spin wave modes of YIG enabling accurate determination of modification of the linewidths due to the dampinglike torque. We identify additional linewidth suppression and enhancement for the in-phase and out-of-phase hybrid modes, respectively, which can be interpreted as concerted dampinglike torque from spin pumping. Furthermore, varying the Py thickness shows that both the fieldlike and dampinglike couplings vary like 1/sqrt[t_{Py}], verifying the prediction by the coupled Landau-Lifshitz equations.

12.
Phys Rev Lett ; 123(10): 107701, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31573284

ABSTRACT

We demonstrate strong magnon-photon coupling of a thin-film Permalloy device fabricated on a coplanar superconducting resonator. A coupling strength of 0.152 GHz and a cooperativity of 68 are found for a 30-nm-thick Permalloy stripe. The coupling strength is tunable by rotating the biasing magnetic field or changing the volume of Permalloy. We also observe an enhancement of magnon-photon coupling in the nonlinear regime of the superconducting resonator, which is attributed to the nucleation of dynamic flux vortices. Our results demonstrate a critical step towards future integrated hybrid systems for quantum magnonics and on-chip coherent information transfer.

13.
BMC Cancer ; 18(1): 1148, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30463529

ABSTRACT

BACKGROUND: Radiomics is an emerging field in oncological research. In this study, we aimed at developing a radiomics score (rad-score) to estimate postoperative recurrence and survival in patients with solitary hepatocellular carcinoma (HCC). METHODS: A total of 319 solitary HCC patients (training cohort: n = 212; validation cohort: n = 107) were enrolled. Radiomics features were extracted from the artery phase of preoperatively acquired computed tomography (CT) in all patients. A rad-score was generated by using the least absolute shrinkage and selection operator (lasso) logistic model. Kaplan-Meier and Cox's hazard regression analyses were used to evaluate the prognostic significance of the rad-score. Final nomograms predicting recurrence and survival of solitary HCC patients were established based on the rad-score and clinicopathological factors. C-index and calibration statistics were used to assess the performance of nomograms. RESULTS: Six potential radiomics features were selected out of 110 texture features to formulate the rad-score. Low rad-score positively correlated with aggressive tumor phenotypes, like larger tumor size and vascular invasion. Meanwhile, low rad-score was significantly associated with increased recurrence and reduced survival. In addition, multivariate analysis identified the rad-score as an independent prognostic factor (recurrence: Hazard ratio (HR): 2.472, 95% confident interval (CI): 1.339-4.564, p = 0.004;survival: HR: 1.558, 95%CI: 1.022-2.375, p = 0.039). Notably, the nomogram integrating rad-score had a better prognostic performance as compared with traditional staging systems. These results were further confirmed in the validation cohort. CONCLUSIONS: The preoperative CT image based rad-score was an independent prognostic factor for the postoperative outcome of solitary HCC patients. This score may be complementary to the current staging system and help to stratify individualized treatments for solitary HCC patients.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Hepatectomy/methods , Liver Neoplasms/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/surgery , Cohort Studies , Diagnostic Imaging/methods , Diagnostic Imaging/standards , Diagnostic Imaging/statistics & numerical data , Female , Humans , Kaplan-Meier Estimate , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Male , Middle Aged , Neoplasm Recurrence, Local , Nomograms , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Postoperative Period , Prognosis , Proportional Hazards Models , Young Adult
14.
Dalton Trans ; 45(26): 10577-84, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27263977

ABSTRACT

Four novel N-heterocyclic carbene (NHC) silver complexes, , have been synthesized and characterized. The single X-ray crystal diffraction data indicate a dinuclear solid-state structure for and and a mononuclear structure for and . These complexes have been successfully used as efficient catalysts for the C-H activating carboxylation of terminal alkynes with CO2. A wide range of substrates with various functional groups afforded the corresponding aryl or alkyl substituted propiolic acids in good yields under mild conditions. Moreover, the role of bases and the reaction mechanism is thoroughly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...