Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
2.
Emerg Microbes Infect ; 13(1): 2322671, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38390796

ABSTRACT

The increasing incidence of diseases caused by Coxsackievirus A6 (CV-A6) and the presence of various mutants in the population present significant public health challenges. Given the concurrent development of multiple vaccines in China, it is challenging to objectively and accurately evaluate the level of neutralizing antibody response to different vaccines. The choice of the detection strain is a crucial factor that influences the detection of neutralizing antibodies. In this study, the National Institutes for Food and Drug Control collected a prototype strain (Gdula), one subgenotype D1, as well as 13 CV-A6 candidate vaccine strains and candidate detection strains (subgenotype D3) from various institutions and manufacturers involved in research and development. We evaluated cross-neutralization activity using plasma from naturally infected adults (n = 30) and serum from rats immunized with the aforementioned CV-A6 strains. Although there were differences between the geometric mean titer (GMT) ranges of human plasma and murine sera, the overall trends were similar. A significant effect of each strain on the neutralizing antibody test (MAX/MIN 48.0 ∼16410.3) was observed. Among all strains, neutralization of the S112 strain by 15 different sera resulted in higher neutralizing antibody titers (GMTS112 = 132.0) and more consistent responses across different genotypic immune sera (MAX/MIN = 48.0). Therefore, S112 may serve as a detection strain for NtAb testing in various vaccines, minimizing bias and making it suitable for evaluating the immunogenicity of the CV-A6 vaccine.


Subject(s)
Antibodies, Neutralizing , Vaccines , Adult , Humans , Animals , Mice , Rats , Antibodies, Viral , Research , China
3.
Environ Sci Technol ; 58(9): 4092-4103, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38373958

ABSTRACT

Water-soluble inorganic ions (WSIIs, primarily NH4+, SO42-, and NO3-) are major components in ambient PM2.5, but their reproductive toxicity remains largely unknown. An animal study was conducted where parental mice were exposed to PM2.5 WSIIs or clean air during preconception and the gestational period. After delivery, all maternal and offspring mice lived in a clean air environment. We assessed reproductive organs, gestation outcome, birth weight, and growth trajectory of the offspring mice. In parallel, we collected birth weight and placenta transcriptome data from 150 mother-infant pairs from the Rhode Island Child Health Study. We found that PM2.5 WSIIs induced a broad range of adverse reproductive outcomes in mice. PM2.5 NH4+, SO42-, and NO3- exposure reduced ovary weight by 24.22% (p = 0.005), 14.45% (p = 0.048), and 16.64% (p = 0.022) relative to the clean air controls. PM2.5 SO42- exposure reduced the weight of testicle by 5.24% (p = 0.025); further, mice in the PM2.5 SO42- exposure group had 1.81 (p = 0.027) fewer offspring than the control group. PM2.5 NH4+, SO42-, and NO3- exposure all led to lower birth than controls. In mice, 557 placenta genes were perturbed by exposure. Integrative analysis of mouse and human data suggested hypoxia response in placenta as an etiological mechanism underlying PM2.5 WSII exposure's reproductive toxicity.


Subject(s)
Air Pollutants , Humans , Pregnancy , Female , Child , Air Pollutants/toxicity , Air Pollutants/analysis , Water , Particulate Matter/toxicity , Particulate Matter/analysis , Birth Weight , Environmental Monitoring , Ions/analysis , China
4.
BMC Psychiatry ; 24(1): 109, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326789

ABSTRACT

BACKGROUND: In recent years, accelerated transcranial magnetic stimulation (aTMS) has been developed, which has a shortened treatment period. The aim of this study was to evaluate the efficacy and long-term maintenance effects of aTMS in patients with major depressive disorder (MDD). METHODS: We systematically searched online databases for aTMS studies in patients with MDD published before February 2023 and performed a meta-analysis on the extracted data. RESULTS: Four randomized controlled trials (RCTs) and 10 before-and-after controlled studies were included. The findings showed that depression scores significantly decreased following the intervention (SMD = 1.80, 95% CI (1.31, 2.30), p < 0.00001). There was no significant difference in antidepressant effectiveness between aTMS and standard TMS (SMD = -0.67, 95% CI (-1.62, 0.27), p = 0.16). Depression scores at follow-up were lower than those directly after the intervention based on the depression rating scale (SMD = 0.22, 95% CI (0.06, 0.37), p = 0.006), suggesting a potential long-term maintenance effect of aTMS. Subgroup meta-analysis results indicated that different modes of aTMS may have diverse long-term effects. At the end of treatment with the accelerated repetitive transcranial magnetic stimulation (arTMS) mode, depressive symptoms may continue to improve (SMD = 0.29, 95% CI (0.10, 0.49), I2 = 22%, p = 0.003), while the accelerated intermittent theta burst stimulation (aiTBS) mode only maintains posttreatment effects (SMD = 0.01, 95% CI (-0.45, 0.47), I2 = 66%, p = 0.98). CONCLUSIONS: Compared with standard TMS, aTMS can rapidly improve depressive symptoms, but there is no significant difference in efficacy. aTMS may also have long-term maintenance effects, but longer follow-up periods are needed to assess this possibility. TRIAL REGISTRATION: This article is original and not under simultaneous consideration for publication. The study was registered on PROSPERO ( https://www.crd.york.ac.uk/prospero/ ) (number: CRD42023406590).


Subject(s)
Depressive Disorder, Major , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Depression/therapy , Depressive Disorder, Major/drug therapy , Antidepressive Agents/therapeutic use , Research Design
5.
Front Oncol ; 13: 1194120, 2023.
Article in English | MEDLINE | ID: mdl-37909021

ABSTRACT

Objective: To investigate the value of a clinical-MRI radiomics model based on clinical characteristics and T2-weighted imaging (T2WI) for preoperatively evaluating lymph node (LN) metastasis in patients with MRI-predicted low tumor (T) staging rectal cancer (mrT1, mrT2, and mrT3a with extramural spread ≤ 5 mm). Methods: This retrospective study enrolled 303 patients with low T-staging rectal cancer (training cohort, n = 213, testing cohort n = 90). A total of 960 radiomics features were extracted from T2WI. Minimum redundancy and maximum relevance (mRMR) and support vector machine were performed to select the best performed radiomics features for predicting LN metastasis. Multivariate logistic regression analysis was then used to construct the clinical and clinical-radiomics combined models. The model performance for predicting LN metastasis was assessed by receiver operator characteristic curve (ROC) and clinical utility implementing a nomogram and decision curve analysis (DCA). The predictive performance for LN metastasis was also compared between the combined model and human readers (2 seniors). Results: Fourteen radiomics features and 2 clinical characteristics were selected for predicting LN metastasis. In the testing cohort, a higher positive predictive value of 75.9% for the combined model was achieved than those of the clinical model (44.8%) and two readers (reader 1: 54.9%, reader 2: 56.3%) in identifying LN metastasis. The interobserver agreement between 2 readers was moderate with a kappa value of 0.416. A clinical-radiomics nomogram and decision curve analysis demonstrated that the combined model was clinically useful. Conclusion: T2WI-based radiomics combined with clinical data could improve the efficacy in noninvasively evaluating LN metastasis for the low T-staging rectal cancer and aid in tailoring treatment strategies.

6.
Adv Drug Deliv Rev ; 203: 115116, 2023 12.
Article in English | MEDLINE | ID: mdl-37871748

ABSTRACT

Upon entering the biological milieu, nanomedicines swiftly interact with the surrounding tissue fluid, subsequently being enveloped by a dynamic interplay of biomacromolecules, such as carbohydrates, nucleic acids, and cellular metabolites, but with predominant serum proteins within the biological corona. A notable consequence of the protein corona phenomenon is the unintentional loss of targeting ligands initially designed to direct nanomedicines toward particular cells or organs within the in vivo environment. mRNA nanomedicine displays high demand for specific cell and tissue-targeted delivery to effectively transport mRNA molecules into target cells, where they can exert their therapeutic effects with utmost efficacy. In this review, focusing on the delivery systems and tissue-specific applications, we aim to update the nanomedicine population with the prevailing and still enigmatic paradigm of nano-bio interactions, a formidable hurdle in the pursuit of targeted mRNA delivery. We also elucidate the current impediments faced in mRNA therapeutics and, by contemplating prospective avenues-either to modulate the corona or to adopt an 'ally from adversary' approach-aim to chart a course for advancing mRNA nanomedicine.


Subject(s)
Nanoparticles , Nucleic Acids , Humans , Nanomedicine , Prospective Studies , Extracellular Fluid , Nanoparticles/metabolism
7.
J Clin Invest ; 133(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37676733

ABSTRACT

Donor-recipient (D-R) mismatches outside of human leukocyte antigens (HLAs) contribute to kidney allograft loss, but the mechanisms remain unclear, specifically for intronic mismatches. We quantified non-HLA mismatches at variant-, gene-, and genome-wide scales from single nucleotide polymorphism (SNP) data of D-Rs from 2 well-phenotyped transplant cohorts: Genomics of Chronic Allograft Rejection (GoCAR; n = 385) and Clinical Trials in Organ Transplantation-01/17 (CTOT-01/17; n = 146). Unbiased gene-level screening in GoCAR uncovered the LIMS1 locus as the top-ranked gene where D-R mismatches associated with death-censored graft loss (DCGL). A previously unreported, intronic, LIMS1 haplotype of 30 SNPs independently associated with DCGL in both cohorts. Haplotype mismatches showed a dosage effect, and minor-allele introduction to major-allele-carrying recipients showed greater hazard of DCGL. The LIMS1 haplotype and the previously reported LIMS1 SNP rs893403 are expression quantitative trait loci (eQTL) in immune cells for GCC2 (not LIMS1), which encodes a protein involved in mannose-6-phosphase receptor (M6PR) recycling. Peripheral blood and T cell transcriptome analyses associated the GCC2 gene and LIMS1 SNPs with the TGF-ß1/SMAD pathway, suggesting a regulatory effect. In vitro GCC2 modulation impacted M6PR-dependent regulation of active TGF-ß1 and downstream signaling in T cells. Together, our data link LIMS1 locus D-R mismatches to DCGL via GCC2 eQTLs that modulate TGF-ß1-dependent effects on T cells.


Subject(s)
Kidney Transplantation , Humans , Transforming Growth Factor beta1/genetics , Graft Rejection/genetics , Kidney , Tissue Donors , HLA Antigens , Graft Survival/genetics , Membrane Proteins , Adaptor Proteins, Signal Transducing/genetics , LIM Domain Proteins/genetics
8.
J Control Release ; 361: 40-52, 2023 09.
Article in English | MEDLINE | ID: mdl-37506850

ABSTRACT

Oral delivery of macromolecules remains highly challenging due to their rapid degradation in the gastrointestinal tract and poor absorption across the tight junctions of the epithelium. In the last decade, researchers have investigated several medical devices to overcome these challenges using various approaches, some of which involve piercing through the intestine using micro and macro needles. We have developed a new generation of medical devices called self-unfolding proximity enabling devices, which makes it possible to orally deliver macromolecules without perforating the intestine. These devices protect macromolecules from the harsh conditions in the stomach and release their active pharmaceutical ingredients in the vicinity of the intestinal epithelium. One device version is a self-unfolding foil that we have used to deliver insulin and nisin to rats and pigs respectively. In our study, this device has shown a great potential for delivering peptides, with a significant increase in the absorption of solid dosage of insulin by ∼12 times and nisin by ∼4 times in rats and pigs, respectively. With the ability to load solid dosage forms, our devices can facilitate enhanced absorption of minimally invasive oral macromolecule formulations.


Subject(s)
Drug Delivery Systems , Nisin , Rats , Animals , Swine , Pharmaceutical Preparations , Macromolecular Substances , Insulin , Administration, Oral , Intestinal Absorption
9.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Article in English | MEDLINE | ID: mdl-37386251

ABSTRACT

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Subject(s)
Facial Paralysis , Animals , Mice , Facial Paralysis/genetics , Facial Paralysis/congenital , Facial Paralysis/metabolism , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Motor Neurons/metabolism , Neurogenesis , Neurons, Efferent
10.
Environ Sci Technol ; 57(19): 7346-7357, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37133311

ABSTRACT

The microbiota present in the respiratory tract (RT) responds to environmental stimuli and engages in a continuous interaction with the host immune system to maintain homeostasis. A total of 40 C57BL/6 mice were divided into four groups and exposed to varying concentrations of PM2.5 nitrate aerosol and clean air. After 10 weeks of exposure, assessments were conducted on the lung and airway microbiome, lung functions, and pulmonary inflammation. Additionally, we analyzed data from both mouse and human respiratory tract (RT) microbiomes to identify possible biomarkers for PM2.5 exposure-induced pulmonary damages. On average, 1.5 and 13.5% inter-individual microbiome variations in the lung and airway were explained by exposure, respectively. In the airway, among the 60 bacterial OTUs (operational taxonomic units) > 0.05% proportion, 40 OTUs were significantly affected by PM2.5 exposure (FDR ≤ 10%). Further, the airway microbiome was associated with peak expiratory flow (PEF) (p = 0.003), pulmonary neutrophil counts (p = 0.01), and alveolar 8-OHdG oxidative lesions (p = 0.0078). The Clostridiales order bacteria showed the strongest signals. For example, the o_Clostridiales;f_;g_ OTU was elevated by PM2.5 nitrate exposure (p = 4.98 × 10-5) and negatively correlated with PEF (r = -0.585 and p = 2.4 × 10-4). It was also associated with the higher pulmonary neutrophil count (p = 8.47 × 10-5) and oxidative lesion (p = 7.17 × 10-3). In human data, we confirmed the association of airway Clostridiales order bacteria with PM2.5 exposure and lung function. For the first time, this study characterizes the impact of PM2.5 exposure on the microbiome of multiple sites in the respiratory tract (RT) and its relevance to airflow obstructive diseases. By analyzing data from both humans and mice, we have identified bacteria belonging to the Clostridiales order as a promising biomarker for PM2.5 exposure-induced decline in pulmonary function and inflammation.


Subject(s)
Air Pollutants , Microbiota , Humans , Mice , Animals , Nitrates , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Mice, Inbred C57BL , Lung , Biomarkers , Organic Chemicals , Environmental Exposure/analysis
11.
PhytoKeys ; 220: 39-50, 2023.
Article in English | MEDLINE | ID: mdl-37251611

ABSTRACT

Gastrodiabawanglingensis, a new species of Orchidaceae from Hainan Island, China, is described and illustrated. It is morphologically similar to G.theana, G.albidoides and G.albida with dwarf habits, scarcely opening flowers, elongated fruit stems, curved and fleshy perianth tubes and similar columns and lips, but can be easily distinguished from them by having a pair of lateral wings bent outwards at the apex of the column and lateral wings with acuminate tips lower than the anther. According to the IUCN Red List Categories and Criteria, the new species is assessed as Endangered (EN). The plastome of G.bawanglingensis is greatly reduced and reconfigured with approximately 30876 bp in size and 25.36% in GC content. Morphological characteristics and molecular phylogenetic results based on chloroplast gene sequences support the recognition of G.bawanglingensis as a new species within Gastrodia.

12.
Phenomics ; 3(2): 138-147, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37197641

ABSTRACT

Glutamate (Glu) has been reported to be closely related to the pathophysiology of Tic Disorders (TD). By using proton magnetic resonance spectroscopy (1H-MRS), we aimed to investigate the relationship between in vivo Glu levels and the severity of TD. We performed a cross-sectional study in medication-free patients with TD and healthy controls aged between 5 and 13 years using 1H-MRS at 3 T. First, we measured the Glu levels in both patients and controls and observed the difference in subgroups, including mild TD patients and moderate TD patients. We then examined the correlations between the Glu levels and clinical features of the patients. Finally, we assessed the diagnostic value of 1H-MRS and the influencing factors. Our results show that the Glu levels in the striatum of all patients with TD were not significantly different from those of the healthy controls. Subgroup analysis revealed that the Glu levels in the moderate TD group were higher than those in the mild TD group and healthy controls. The correlation analysis showed that Glu levels are strongly positive correlated with TD severity. The optimal cutoff value of Glu levels to differentiate mild tics from moderate tics was 1.244, with a sensitivity of 88.2% and a specificity of 94.7%. Multiple linear regression models revealed that the severity of TD is one of the important factors that affect Glu levels. We conclude that Glu levels are mainly associated with the severity of tics, thus it could serve as a key biomarker for TD classification.

13.
Adv Healthc Mater ; 12(13): e2203018, 2023 05.
Article in English | MEDLINE | ID: mdl-36732890

ABSTRACT

Bacterial biofilms are linked to several diseases and cause resistant and chronic infections in immune-compromised patients. Nanomotors comprise a new field of research showing a great promise within biomedicine but pose challenges in terms of biocompatibility. Nanomotors propelled by thermophoresis could overcome this challenge, as they leave no waste product during propulsion. In this study, mesoporous-silica nanoparticles are coated with a thin layer of gold to make nanomotors, which can be driven by near-infrared (NIR) light irradiation. The prepared mesoporous SiO2 -Au nanomotors exhibit efficient self-propulsion when exposed to NIR irradiation, they penetrate deep through a biofilm matrix, and disperse the biofilm in situ due to the photothermal effect on the Au part of the nanomotors. The velocities of such nanomotors are investigated at different wavelengths and laser powers. Furthermore, the study examines the ability of these nanomotors to eradicate Pseudomonas aeruginosa (P. aeruginosa) biofilm under NIR light irradiation. The conducted study shows that the nanomotor's velocity increases with increasing laser power. The mesoporous SiO2 /Au nanomotors show excellent capabilities to eradicate P. aeruginosa biofilms even under short (30 s-3 min) irradiation time. This study shows great promise for overcoming the challenges related to bacterial biofilm eradication.


Subject(s)
Nanoparticles , Pseudomonas aeruginosa , Humans , Silicon Dioxide , Infrared Rays , Biofilms
14.
Sci Total Environ ; 873: 162390, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36841400

ABSTRACT

BACKGROUND: Although characterizing the inequality in pollution exposure burden across ethnic groups and the ethnic-specific exposure associations is of great social and public health importance, it has not been systematically investigated in large population studies. METHODS: The UK Biobank data (N = 485, 806) of individual-level air ambient and traffic-related pollution exposure, biomarkers routinely used in clinical practice, genotype, life-style factors, and socioeconomic status were analyzed. Air pollution exposure estimates were compared among six genetically inferred ethnic groups. We also quantified the association between exposure and biomarkers within and across ethnicities. RESULTS: Non-European participants (defined by genetics) disproportionately bear a higher burden of exposure than their European counterparts even after adjusting for covariables including socioeconomic status. For example, exposure to NO2 in people with African ancestry was 30.7 % higher (p = 1.5E-786) than European subjects. Within the genetically defined African group, larger African genetic ancestry proportion (AGAP) was linked to higher ambient air pollutant exposure. Trans-Ethnic analysis identified 32 clinical biomarkers associated with environmental exposure. For 13 biomarkers, the association with exposure was significantly different or even in opposing directions across ethnic groups. CONCLUSIONS: Substantial disparities in air pollution exposure was observed among genetically-defined ethnic groups. Most importantly, we show that the impact of exposure on biomarkers varies by ethnicity. Reducing the disproportionally high exposure burden on non-European populations and alleviating the adverse consequences in an ethnic-specific manner are of great urgency and significance.


Subject(s)
Air Pollutants , Air Pollution , Traffic-Related Pollution , Humans , Traffic-Related Pollution/analysis , Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Social Class , Particulate Matter/analysis
15.
Small ; 19(15): e2206330, 2023 04.
Article in English | MEDLINE | ID: mdl-36670055

ABSTRACT

In the case of macromolecules and poorly permeable drugs, oral drug delivery features low bioavailability and low absorption across the intestinal wall. Intestinal absorption can be improved if the drug formulation could be transported close to the epithelium. To achieve this, a cascade delivery device comprising Magnesium-based Janus micromotors (MMs) nesting inside a microscale containers (MCs) has been conceptualized. The device aims at facilitating targeted drug delivery mediated by MMs that can lodge inside the intestinal mucosa. Loading MMs into MCs can potentially enhance drug absorption through increased proximity and unidirectional release. The MMs will be provided with optimal conditions for ejection into any residual mucus layer that the MCs have not penetrated. MMS confined inside MCs propel faster in the mucus environment as compared to non-confined MMs. Upon contact with a suitable fuel, the MM-loaded MC itself can also move. An in vitro study shows fast release profiles and linear motion properties in porcine intestinal mucus compared to more complex motion in aqueous media. The concept of dual-acting cascade devices holds great potential in applications where proximity to epithelium and deep mucus penetration are needed.


Subject(s)
Drug Delivery Systems , Nanoparticles , Animals , Swine , Administration, Oral , Intestines , Intestinal Mucosa , Pharmaceutical Preparations , Mucus , Drug Carriers
16.
Ecotoxicol Environ Saf ; 249: 114426, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36525947

ABSTRACT

BACKGROUND: Electronic cigarette (e-cig) use is increasing worldwide, especially among young individuals. Spirometry measures airflow obstruction and is the primary tool for diagnosing/monitoring respiratory diseases in clinical settings. This study aims to assess the effects of chronic e-cig exposure on spirometric traits, and directly compare to conventional combustible-cigarette (c-cig). METHODS: We employed an e- and c-cig aerosol generation system that resembled human smoking/vaping scenario. Fifty 6-week old C57BL/6 mice were equally divided into five groups and exposed to clean air (control), e-cig aerosol (low- and high-dose), and c-cig aerosol (low- and high-dose), respectively, for 10 weeks. Afterwards, growth trajectory, spirometry and pulmonary pathology were analyzed. RESULTS: Both e- and c-cig exposure slowed down growth and weight gain. Low dose e-cig exposure (1 h exposure per day) resulted in minimal respiratory function damage. At high dose (2 h exposure per day), e-cig exposure deteriorated 7 spirometry traits but by a smaller magnitude than c-cig exposure. For example, comparing to clean air controls, high dose e- and c-cig exposure increased inspiratory resistance by 24.3% (p = 0.026) and 66.7% (p = 2.6e-5), respectively. Low-dose e-cig exposure increased alveolar macrophage count but did not lead to airway remodeling. In contrast, even low-dose c-cig caused alveoli break down and thickening of the small airway, hallmarks of airway obstructive disease. CONCLUSIONS: We conducted well-controlled animal exposure experiments assessing chronic e-cig exposure's effects on spirometry traits. Further, mechanistic study characterized airway remodeling, alveolar tissue lesion and inflammation induced by e- and c-cig exposure. Our findings provided scientific and public health insights on e-cig's health consequences, especially in adolescent users.


Subject(s)
Electronic Nicotine Delivery Systems , Lung Injury , Tobacco Products , Humans , Mice , Animals , Adolescent , Airway Remodeling , Mice, Inbred C57BL , Respiratory Aerosols and Droplets , Lung Injury/chemically induced
17.
J Am Soc Nephrol ; 33(11): 2108-2122, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36041788

ABSTRACT

BACKGROUND: Among patients with COVID-19, kidney transplant recipients (KTRs) have poor outcomes compared with non-KTRs. To provide insight into management of immunosuppression during acute illness, we studied immune signatures from the peripheral blood during and after COVID-19 infection from a multicenter KTR cohort. METHODS: We ascertained clinical data by chart review. A single sample of blood was collected for transcriptome analysis. Total RNA was poly-A selected and RNA was sequenced to evaluate transcriptome changes. We also measured cytokines and chemokines of serum samples collected during acute infection. RESULTS: A total of 64 patients with COVID-19 in KTRs were enrolled, including 31 with acute COVID-19 (<4 weeks from diagnosis) and 33 with post-acute COVID-19 (>4 weeks postdiagnosis). In the blood transcriptome of acute cases, we identified genes in positive or negative association with COVID-19 severity scores. Functional enrichment analyses showed upregulation of neutrophil and innate immune pathways but downregulation of T cell and adaptive immune activation pathways. This finding was independent of lymphocyte count, despite reduced immunosuppressant use in most KTRs. Compared with acute cases, post-acute cases showed "normalization" of these enriched pathways after 4 weeks, suggesting recovery of adaptive immune system activation despite reinstitution of immunosuppression. Analysis of the non-KTR cohort with COVID-19 showed significant overlap with KTRs in these functions. Serum inflammatory cytokines followed an opposite trend (i.e., increased with disease severity), indicating that blood lymphocytes are not the primary source. CONCLUSIONS: The blood transcriptome of KTRs affected by COVID-19 shows decreases in T cell and adaptive immune activation pathways during acute disease that, despite reduced immunosuppressant use, associate with severity. These pathways show recovery after acute illness.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , SARS-CoV-2 , COVID-19/genetics , Transcriptome , Acute Disease , Transplant Recipients , Immunosuppressive Agents/therapeutic use , Cytokines , RNA
18.
Sci Total Environ ; 850: 157977, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35964746

ABSTRACT

BACKGROUND: Pathogenesis of complex diseases often involves multiple organs/tissue-types. To date, the PM2.5 exposure's toxic effects and induced disease risks were not studied at multi-tissue level. METHODS: C57BL/6 mice (n = 40) were exposed to PM2.5 NO3- and clean air, respectively, and afterwards assessed respiratory functions and transcriptome in relevant tissues: blood and lung. We constructed within- and cross-tissue gene regulation networks and identified network modules associated with exposure and respiratory functions. RESULTS: PM2.5 NO3- exposure elevated naïve B cells proportion in blood (p = 0.0028). Among the 6000 highest expressed genes in blood, 18.8 % (1133 genes) were altered by exposure at p ≤ 0.05 level, among which 763 genes were also associated with respiratory function (enrichment folds = 7.63, p = 2.7E-189). The exposure disrupted blood genes were primarily in the immunoregulation pathways. Both within- and cross-tissue gene network modules were perturbed by exposure and associated with respiratory function. An immunodeficiency related cross-tissue module of 555 genes was affected by exposure (p = 0.0023) and strongly correlated with FEV0.05/FVC (r = 0.61 and p = 3E-5). CONCLUSIONS: This study aims to fill in a major knowledge gap and investigated the effect of PM2.5 exposure simultaneously in multiple tissues. We provided novel evidence that PM2.5 NO3- exposure profoundly perturbed within- and cross-tissue gene regulations, and highlighted their roles in the etiology of respiratory decline.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Animals , Environmental Exposure/analysis , Lung , Mice , Mice, Inbred C57BL , Nitrates/pharmacology , Nitrogen Oxides , Organic Chemicals , Particulate Matter/analysis , Particulate Matter/toxicity
19.
J Magn Reson Imaging ; 56(6): 1659-1668, 2022 12.
Article in English | MEDLINE | ID: mdl-35587946

ABSTRACT

BACKGROUND: Recent studies showed the potential of MRI-based deep learning (DL) for assessing treatment response in rectal cancer, but the role of MRI-based DL in evaluating Kirsten rat sarcoma viral oncogene homologue (KRAS) mutation remains unclear. PURPOSE: To develop a DL method based on T2-weighted imaging (T2WI) and clinical factors for noninvasively evaluating KRAS mutation in rectal cancer. STUDY TYPE: Retrospective. SUBJECTS: A total of 376 patients (108 women [28.7%]) with histopathology-confirmed rectal adenocarcinoma and KRAS mutation status. FIELD STRENGTH/SEQUENCE: A 3 T, turbo spin echo T2WI and single-shot echo-planar diffusion-weighted imaging (b = 0, 1000 sec/mm2 ). ASSESSMENT: A clinical model was constructed with clinical factors (age, gender, carcinoembryonic antigen level, and carbohydrate antigen 199 level) and MRI features (tumor length, tumor location, tumor stage, lymph node stage, and extramural vascular invasion), and two DL models based on modified MobileNetV2 architecture were evaluated for diagnosing KRAS mutation based on T2WI alone (image model) or both T2WI and clinical factors (combined model). The clinical usefulness of these models was evaluated through calibration analysis and decision curve analysis (DCA). STATISTICAL TESTS: Mann-Whitney U test, Chi-squared test, Fisher's exact test, logistic regression analysis, receiver operating characteristic curve (ROC), Delong's test, Hosmer-Lemeshow test, interclass correlation coefficients, and Fleiss kappa coefficients (P < 0.05 was considered statistically significant). RESULTS: All the nine clinical-MRI characteristics were included for clinical model development. The clinical model, image model, and combined model in the testing cohort demonstrated good calibration and achieved areas under the curve (AUCs) of 0.668, 0.765, and 0.841, respectively. The combined model showed improved performance compared to the clinical model and image model in two cohorts. DCA confirmed the higher net benefit of the combined model than the other two models when the threshold probability is between 0.05 and 0.85. DATA CONCLUSION: The proposed combined DL model incorporating T2WI and clinical factors may show good diagnostic performance. Thus, it could potentially serve as a supplementary approach for noninvasively evaluating KRAS mutation in rectal cancer. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Deep Learning , Rectal Neoplasms , Female , Humans , Magnetic Resonance Imaging/methods , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/genetics , Retrospective Studies , Male
20.
Dev Cogn Neurosci ; 55: 101112, 2022 06.
Article in English | MEDLINE | ID: mdl-35576725

ABSTRACT

Limbic-prefrontal connectivity during negative emotional challenges underpins a wide range of psychiatric disorders, yet the early development of this system is largely unknown due to difficulties imaging young children. Functional Near-Infrared Spectroscopy (fNIRS) has advanced an understanding of early emotion-related prefrontal activation and psychopathology, but cannot detect activation below the outer cortex. Galvanic skin response (GSR) is a sensitive index of autonomic arousal strongly influenced by numerous limbic structures. We recorded simultaneous lateral prefrontal cortex (lPFC) activation via fNIRS and GSR in 73 3- to 5-year-old children, who ranged from low to severe levels of irritability, during a frustration task. The goal of the study was to test how frustration-related PFC activation modulated psychophysiology in preschool children, and whether associations were moderated by irritability severity. Results showed lPFC activation significantly increased, and GSR levels significantly decreased, as children moved from frustration to rest, such that preschoolers with the highest activation had the steepest recovery. Further, this relation was moderated by irritability such that children with severe irritability showed no association between lPFC activation and GSR. Results suggest functional connections between prefrontal and autonomic nervous systems are in place early in life, with evidence of lPFC down-regulation of frustration-based stress that is altered in early psychopathology. Combining fNIRS and GSR may be a promising novel approach for inferring limbic-PFC processes that drive early emotion regulation and psychopathology.


Subject(s)
Emotional Regulation , Frustration , Arousal , Child, Preschool , Humans , Irritable Mood/physiology , Prefrontal Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...