Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Biotechnol Adv ; 73: 108354, 2024.
Article in English | MEDLINE | ID: mdl-38588906

ABSTRACT

Thraustochytrids are marine microorganisms known for their fast growth and ability to store lipids, making them useful for producing polyunsaturated fatty acids (PUFAs), biodiesel, squalene, and carotenoids. However, the high cost of production, mainly due to expensive fermentation components, limits their wider use. A significant challenge in this context is the need to balance production costs with the value of the end products. This review focuses on integrating the efficient utilization of waste with Thraustochytrids fermentation, including the economic substitution of carbon sources, nitrogen sources, and fermentation water. This approach aligns with the 3Rs principles (reduction, recycling, and reuse). Furthermore, it emphasizes the role of Thraustochytrids in converting waste into lipid chemicals and promoting sustainable circular production models. The aim of this review is to emphasize the value of Thraustochytrids in converting waste into treasure, providing precise cost reduction strategies for future commercial production.


Subject(s)
Fermentation , Biofuels , Lipids/biosynthesis , Lipids/chemistry , Stramenopiles/metabolism , Fatty Acids, Unsaturated/metabolism , Biotechnology/economics , Biotechnology/methods , Carbon/metabolism
2.
Front Nutr ; 11: 1344699, 2024.
Article in English | MEDLINE | ID: mdl-38549748

ABSTRACT

Background and aim: Gallstone disease (GSD) is a major public health problem worldwide. The dietary inflammatory index (DII) and the energy-adjusted DII (E-DII) have been used to describe dietary inflammatory potential. The current study sought to investigate the pro-inflammatory role of diet on GSD among outpatients in the United States. Methods: Cross-sectional data from 7,334 individuals older than 20 years who participated in the National Health and Nutrition Examination Survey (NHANES) from January 2017 to March 2020 were obtained. The relationship between GSD and DII was assessed using self-reported data. An association between DII and the risk of GSD was determined using sample-weighted logistic regression and restricted cubic splines (RCS). Subgroup analyzes were conducted to assess the interaction between DII and related factors. Sensitivity analysis was further used to confirm the stability of the relationship. To control for the effect of total energy intake, E-DII was calculated and analyzed. Results: A total of 10.5% of the study participants had GSD. The DII ranged from -5.52 to 5.51, and the median DII was significantly higher for participants with GSD than those without (1.68 vs. 1.23, p < 0.001). There was a significant and stable positive relationship between DII and GSD in adjusted models (OR 1.10, 95% CI 1.00-1.20). In the fully adjusted model, subjects with DII scores in the highest tertile were more likely to have GSD than those in the lowest tertile (OR 1.52, 95% CI 1.19-1.93). An apparent dose-response association between DII and GSD was detected. The association between E-DII and GSD remained stable. Conclusion: Higher DII/E-DII scores linked to the intake of a pro-inflammatory diet were positively associated with a higher risk of GSD. These findings suggest that pro-inflammatory dietary patterns can promote the formation of gallstones.

3.
Bioresour Technol ; 398: 130532, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447618

ABSTRACT

Schizochytrium sp. hasreceived much attention for itsability to synthesize and accumulate high-level docosahexaenoic acid (DHA), which can reach nearly 40 % of total fatty acids. In this study, the titer of DHA in Schizochytrium sp. was successfully improved by enhancing DHA storage through overexpressing the diacylglycerol acyltransferase (ScDGAT2C) gene, as well as optimizing the supply of precursors and cofactors required for DHA synthesis by response surface methodology. Notably, malic acid, citric acid, and biotin showed synergistic and time-dependent effects on DHA accumulation. The maximum lipid and DHA titers of the engineered Schizochytrium sp. strain reached 84.28 ± 1.02 g/L and 42.23 ± 0.69 g/L, respectively, with the optimal concentration combination (1.62 g/L malic acid + 0.37 g/L citric acid + 8.28 mg/L biotin) were added 48 h after inoculation. This study provides an effective strategy for improving lipid and DHA production in Schizochytrium sp.


Subject(s)
Fatty Acids , Malates , Stramenopiles , Fermentation , Docosahexaenoic Acids , Biotin , Stramenopiles/genetics , Citric Acid
4.
Biomed Opt Express ; 15(2): 843-862, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38404318

ABSTRACT

The precise and automatic recognition of retinal vessels is of utmost importance in the prevention, diagnosis and assessment of certain eye diseases, yet it brings a nontrivial uncertainty for this challenging detection mission due to the presence of intricate factors, such as uneven and indistinct curvilinear shapes, unpredictable pathological deformations, and non-uniform contrast. Therefore, we propose a unique and practical approach based on a multiple attention-guided fusion mechanism and ensemble learning network (MAFE-Net) for retinal vessel segmentation. In conventional UNet-based models, long-distance dependencies are explicitly modeled, which may cause partial scene information loss. To compensate for the deficiency, various blood vessel features can be extracted from retinal images by using an attention-guided fusion module. In the skip connection part, a unique spatial attention module is applied to remove redundant and irrelevant information; this structure helps to better integrate low-level and high-level features. The final step involves a DropOut layer that removes some neurons randomly to prevent overfitting and improve generalization. Moreover, an ensemble learning framework is designed to detect retinal vessels by combining different deep learning models. To demonstrate the effectiveness of the proposed model, experimental results were verified in public datasets STARE, DRIVE, and CHASEDB1, which achieved F1 scores of 0.842, 0.825, and 0.814, and Accuracy values of 0.975, 0.969, and 0.975, respectively. Compared with eight state-of-the-art models, the designed model produces satisfactory results both visually and quantitatively.

5.
Biotechnol Biofuels Bioprod ; 17(1): 32, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402213

ABSTRACT

BACKGROUND: Eicosapentaenoic acid (EPA) is widely used in the functional food and nutraceutical industries due to its important benefits to human health. Oleaginous microorganisms are considered a promising alternative resource for the production of EPA lipids. However, the storage of EPA in triglyceride (TG) becomes a key factor limiting its level. RESULTS: This study aimed to incorporate more EPA into TG storage through metabolic engineering. Firstly, key enzymes for TG synthesis, the diacylglycerol acyltransferase (DGAT) and glycerol-3-phosphate acyltransferase (GPAT) genes from Schizochytrium sp. HX-308 were expressed in Yarrowia lipolytica to enhance lipid and EPA accumulation. In addition, engineering the enzyme activity of DGATs through protein engineering was found to be effective in enhancing lipid synthesis by replacing the conserved motifs "HFS" in ScDGAT2A and "FFG" in ScDGAT2B with the motif "YFP". Notably, combined with lipidomic analysis, the expression of ScDGAT2C and GPAT2 enhanced the storage of EPA in TG. Finally, the accumulation of lipid and EPA was further promoted by identifying and continuing to introduce the ScACC, ScACS, ScPDC, and ScG6PD genes from Schizochytrium sp., and the lipid and EPA titer of the final engineered strain reached 2.25 ± 0.03 g/L and 266.44 ± 5.74 mg/L, respectively, which increased by 174.39% (0.82 ± 0.02 g/L) and 282.27% (69.70 ± 0.80 mg/L) compared to the initial strain, respectively. CONCLUSION: This study shows that the expression of lipid synthesis genes from Schizochytrium sp. in Y. lipolytica effectively improves the synthesis of lipids and EPA, which provided a promising target for EPA-enriched microbial oil production.

6.
Iran J Basic Med Sci ; 27(1): 31-38, 2024.
Article in English | MEDLINE | ID: mdl-38164477

ABSTRACT

Objectives: The present study investigated the effect and its underlying mechanisms of fucoidan on Type 1 diabetes mellitus (T1DM) in non-obese diabetic (NOD) mice. Materials and Methods: Twenty 7-week-old NOD mice were used in this study, and randomly divided into two groups (10 mice in each group): the control group and the fucoidan treatment group (600 mg/kg. body weight). The weight gain, glucose tolerance, and fasting blood glucose level in NOD mice were detected to assess the development of diabetes. The intervention lasted for 5 weeks. The proportions of Th1/Th2 cells from spleen tissues were tested to determine the anti-inflammatory effect of fucoidan. Western blot was performed to investigate the expression levels of apoptotic markers and autophagic markers. Apoptotic cell staining was visualized through TdT-mediated dUTP nick-end labeling (TUNEL). Results: The results suggested that fucoidan ameliorated T1DM, as evidenced by increased body weight and improved glycemic control of NOD mice. Fucoidan down-regulated the Th1/Th2 cells ratio and decreased Th1 type pro-inflammatory cytokines' level. Fucoidan enhanced the mitochondrial autophagy level of pancreatic cells and increased the expressions of Beclin-1 and LC3B II/LC3B I. The expression of p-AMPK was up-regulated and p-mTOR1 was inhibited, which promoted the nucleation of transcription factor EB (TFEB), leading to autophagy. Moreover, fucoidan induced apoptosis of pancreatic tissue cells. The levels of cleaved caspase-9, cleaved caspase-3, and Bax were up-regulated after fucoidan treatment. Conclusion: Fucoidan could maintain pancreatic homeostasis and restore immune disorder through enhancing autophagy via the AMPK/mTOR1/TFEB pathway in pancreatic cells.

7.
ACS Chem Neurosci ; 15(3): 593-607, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38214579

ABSTRACT

Objective: Schisandrin B (Sch B) is a bioactive dibenzocyclooctadiene derizative that is prevalent in the fruit of Schisandra chinensis. Numerous studies have demonstrated that Sch B has a neuroprotective action by reducing oxidative stress and effectively preventing inflammation. It follows that Sch B is a potential treatment for Alzheimer's disease (AD). However, the drug's solubility, bioavailability, and lower permeability of the blood-brain barrier (BBB) can all reduce its efficacy during the therapy process. Therefore, this study constructed borneol-modified schisandrin B micelles (Bor-Sch B-Ms), which increase brain targeting by accurately delivering medications to the brain, effectively improving bioavailability. High therapeutic efficacy has been achieved at the pathological site. Methods: Bor-Sch B-Ms were prepared using the thin film dispersion approach in this article. On the one hand, to observe the targeting effect of borneol, we constructed a blood-brain barrier (BBB) model in vitro and studied the ability of micelles to cross the BBB. On the other hand, the distribution of micelle drugs and their related pharmacological effects on neuroinflammation, oxidative stress, and neuronal damage were studied through in vivo administration in mice. Results: In vitro studies have demonstrated that the drug uptake of bEnd.3 cells was increased by the borneol alteration on the surface of the nano micelles, implying that Bor-Sch B-Ms can promote the therapeutic effect of N2a cells. This could result in more medicines entering the BBB. In addition, in vivo studies revealed that the distribution and circulation time of medications in the brain tissue were significantly higher than those in other groups, making it more suitable for the treatment of central nervous system diseases. Conclusion: As a novel nanodrug delivery system, borneol modified schisandrin B micelles have promising research prospects in the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Camphanes , Lignans , Polycyclic Compounds , Mice , Animals , Micelles , Alzheimer Disease/drug therapy , Endothelial Cells , Cyclooctanes
8.
J Environ Manage ; 351: 119859, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128213

ABSTRACT

The priming effect stands as a critical factor influencing the balance of soil organic carbon (SOC). Following vegetation restoration, the carbon (C) pool stability in Platycladus orientalis forests (PO) varies, and the priming effect resulting from exogenous C addition also differs significantly. Here, we selected PO with restoration ages of 10, 15, and 30 years in the rocky mountainous area in northern China and conducted measurements of soil properties, microbial communities, microbial necromass C (MNC), SOC fractions, and the priming effect characteristics to explore the main influencing factors of the priming effect, especially the microbiological mechanisms. Our results showed that the ratio of mineral-associated organic C to particulate organic C increased. The characteristics of the priming effect showed the same pattern, and there was a significant positive correlation between the C pool stability and the priming effect. The diversity of the fungal communities increased with increasing vegetation restoration age, and the content and proportion of fungal necromass C (FNC) also increased synchronously, reaching the maximum value in the soil of PO that had been restored for 30 years. In addition, the soil water content and total nitrogen indirectly affected the priming effect by influencing the microbial communities. In summary, the results suggested that vegetation restoration can enhance the C pool stability by promoting an increase in soil FNC, thereby producing a positive priming effect. This can help deepen our understanding of the SOC mineralization changes induced by fresh C input following vegetation restoration and provides a theoretical basis for better explaining the C cycle between soil and atmosphere under the vegetation restoration models in the future.


Subject(s)
Carbon , Soil , Carbon/analysis , Soil Microbiology , Forests , China , Minerals
9.
Bioresour Technol ; 394: 130250, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154734

ABSTRACT

Schizochytrium sp., a microalga with high lipid content, holds the potential for co-producing docosahexaenoic acid (DHA) and carotenoids. In this study, the ability of Schizochytrium sp. to naturally produce carotenoids was systematically explored. Further, by enhancing the precursor supply of geranylgeranyl diphosphate, regulating carbon source through sugar limitation fermentation and employing a combination of response surface methodology and artificial neural networks to precisely optimize nitrogen sources, a new record of 43-fold increase in ß-carotene titer was achieved in the 5L bioreactor (653.2 mg/L). Meanwhile, a high DHA content was maintained (13.4 g/L). Furthermore, the use of corn stover hydrolysate has effectively lowered the production costs of carotenoid and DHA while sustaining elevated production levels (with total carotenoid titer and DHA titer reached 502.0 mg/L and 13.2 g/L, respectively). This study offers an efficient and cost-effective method for the co-production of carotenoid and DHA in Schizochytrium sp..


Subject(s)
Docosahexaenoic Acids , Stramenopiles , Fermentation , Carotenoids , Bioreactors , Genetic Engineering
10.
Phytopathology ; : PHYTO08230290R, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38148161

ABSTRACT

Serotonin (5-hydroxytryptamine) is an essential neurotransmitter involved in regulating various behaviors in plant-parasitic nematodes, including locomotion, egg laying, feeding, and mating. However, the functional role of serotonin in root-knot nematode invasion of host plants and the molecular mechanisms underlying feeding behavior remain poorly understood. In this study, we tested the effects of exogenous serotonin and the pharmacological compounds fluoxetine and methiothepin on the feeding behaviors of Meloidogyne graminicola. Our results suggested that M. graminicola possesses an endogenous serotonin signaling pathway and that serotonin plays a crucial role in modulating feeding behaviors in M. graminicola second-stage juveniles. We also identified and cloned the serotonin synthesis enzyme tryptophan hydroxylase (Mg-tph-1) in M. graminicola and investigated the role of endogenous serotonin by generating RNA interference nematodes in Mg-tph-1. Silencing Mg-tph-1 substantially reduced nematode invasion, development, and reproduction. According to the immunostaining results, we speculated that these serotonin immunoreactive cells near the nerve ring in M. graminicola are likely homologous to Caenorhabditis elegans ADFs, NSMs, and RIH serotonergic neurons. Furthermore, we investigated the impact of phytoserotonin on nematode invasion and development in rice by overexpressing OsTDC-3 or supplementing rice plants with tryptamine and found that an increase in phytoserotonin increases nematode pathogenicity. Overall, our study provides insights into the essential role of serotonin in M. graminicola host plant parasitism and proposes that the serotonergic signaling pathway could be a potential target for controlling plant-parasitic nematodes.

11.
Nat Commun ; 14(1): 7333, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957162

ABSTRACT

Cytoplasmic male sterility (CMS) lines are important for breeding hybrid crops, and utilization of CMS lines requires strong fertility restorer (Rf) genes. Rf4, a major Rf for Wild-Abortive CMS (CMS-WA), has been cloned in rice. However, the Rf4 evolution and formation of CMS-WA/Rf system remain elusive. Here, we show that the Rf4 locus emerges earlier than the CMS-WA gene WA352 in wild rice, and 69 haplotypes of the Rf4 locus are generated in the Oryza genus through the copy number and sequence variations. Eight of these haplotypes of the Rf4 locus are enriched in modern rice cultivars during natural and human selections, whereas non-functional rf4i is preferentially selected for breeding current CMS-WA lines. We further verify that varieties carrying two-copy Rf4 haplotype have stronger fertility restoration ability and are widely used in three-line hybrid rice breeding. Our findings increase our understanding of CMS/Rf systems and will likely benefit crop breeding.


Subject(s)
Genes, Plant , Oryza , Humans , Oryza/genetics , DNA Copy Number Variations , Plant Breeding , Cytoplasm , Fertility/genetics , Plant Infertility/genetics
12.
Biotechnol J ; 18(12): e2300314, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37596914

ABSTRACT

Docosahexaenoic acid (DHA) as one of ω-3 polyunsaturated fatty acids (PUFAs), plays a key role in brain development, and is widely used in food additives and the pharmaceutical industry. Schizochytrium sp. is often considered as a satisfactory strain for DHA industrialization. The aim of this study was to assess the feasibility of phosphopantetheinyl transferase (PPTase) and ω-3 fatty acid desaturase (FAD) for regulating DHA content in Schizochytrium sp. PPTase is essential to activate the polyketide-like synthase (PKS) pathway, which can transfer apo-acyl-carrier protein (apo-ACP) into holo-ACP, and plays a key role in DHA synthesis. Moreover, DHA and docosapentaenoic acid (DPA) are synthesized by the PKS pathway simultaneously, so high DPA synthesis limits the increase of DHA content. In addition, the detailed mechanisms of PKS pathway have not been fully elucidated, so it is difficult to improve DHA content by modifying PKS. However, ω-3 FAD can convert DPA into DHA, and it is the most direct and effective way to increase DHA content and reduce DPA content. Based on this, PPTase was overexpressed to enhance the synthesis of DHA by the PKS pathway, overexpressed ω-3 FAD to convert the co-product of the PKS pathway into DHA, and co-overexpressed PPTase and ω-3 FAD. With these strategies, compared with wild type, the final lipid, and DHA titer were 92.5 and 51.5 g L-1 , which increased by 46.4% and 78.1%, respectively. This study established an efficient DHA production strain, and provided some feasible strategies for industrial DHA production in Schizochytrium sp.


Subject(s)
Docosahexaenoic Acids , Stramenopiles , Docosahexaenoic Acids/metabolism , Stramenopiles/genetics , Stramenopiles/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Polyketide Synthases/metabolism
13.
J Cancer Res Clin Oncol ; 149(13): 11013-11023, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37335336

ABSTRACT

PURPOSE: Recent studies have revealed that primary tumor resection (PTR) surgery could improve prognosis in some solid tumors. Thus, we aimed to investigate whether patients with stage IVB cervical carcinoma can benefit from PTR surgery and who can benefit. METHODS: We extracted and obtained data on patients with stage IVB cervical carcinoma from the SEER database from 2010 to 2017 and classified them into two groups: the surgery and the non-surgery group. The overall survival (OS) and cancer-specific survival (CSS) of the two groups were compared before and after propensity score matching (PSM). The independent prognostic variables were identified using univariate and multivariate Cox regression analyses. Then, the model was established to select the optimal patients to receive PTR surgery using multivariate logistic regression. RESULTS: After PSM, the study included 476 cervical carcinoma (stage IVB) patients, of whom 238 underwent PTR surgery. Compared to the non-surgery group, the surgery group's median OS and median CSS were both longer (median OS: 27 months vs. 13 months, P < 0.001; median CSS: 52 months vs. 21 months, P < 0.001). The model showed no organ metastasis, adenocarcinoma, G1/2, and chemotherapy were more supportive of performing PTR surgery. The calibration curves and DCA showed that the model had high predictive accuracy and excellent clinical applicability. Finally, the "surgery benefit" group had the OS that was approximately four times better than "surgery non-benefit" group. CONCLUSION: PTR surgery can potentially improve the prognosis of patients with cervical carcinoma at stage IVB. The model could probably select optimal candidates and provide a new perspective on individualized treatment.


Subject(s)
Adenocarcinoma , Humans , SEER Program , Prognosis
14.
ACS Synth Biol ; 12(6): 1586-1598, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37224027

ABSTRACT

Base editors (BE) based on CRISPR systems are practical gene-editing tools which continue to drive frontier advances of life sciences. BEs are able to efficiently induce point mutations at target sites without double-stranded DNA cleavage. Hence, they are widely employed in the fields of microbial genome engineering. As applications of BEs continue to expand, the demands for base-editing efficiency, fidelity, and versatility are also on the rise. In recent years, a series of optimization strategies for BEs have been developed. By engineering the core components of BEs or adopting different assembly methods, the performance of BEs has been well optimized. Moreover, series of newly established BEs have significantly expanded the base-editing toolsets. In this Review, we will summarize the current efforts for BE optimization, introduce several novel BEs with versatility, and look forward to the broadened applications for industrial microorganisms.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Gene Editing/methods , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
15.
Sci Total Environ ; 881: 163492, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37062318

ABSTRACT

Thinning is a common forest management measure that can effectively maintain the ecological service function of protected forests. However, the effect of thinning on the soil carbon (C) pool remains uncertain. In particular, we lack an understanding of the complete link between thinning and microbial communities, microbial necromass C, and consequently, soil C pools in coastal zone protected forests. In this study, three thinning intensities, i.e., a control treatment (CT, i.e., no thinning), light thinning (LT) and heavy thinning (HT), were established in three types of forests (Quercus acutissima Carruth, Pinus thunbergii Parl and mixed Quercus acutissima Carruth and Pinus thunbergii Parl, i.e., QAC, PTP and QP, respectively). Two years after the completion of thinning, we investigated the changes in the soil organic carbon (SOC) fractions, soil microbial community and soil microbial necromass C in the surface layer (0-20 cm) and thoroughly evaluated the relationship between the potential change in SOC and the microbial community. Compared with CT, there was no change in the SOC content under LT and HT, but thinning conducted in QAC increased the proportion of mineral-associated organic C (MAOC) in SOC. Moreover, both LT and HT reduced the soil carbon lability (CL) in the QAC and QP forests. Different thinning intensities changed the soil microbial community structure, and most of the variation was explained by thinning and the soil physicochemical properties. The proportion of soil bacterial and fungal necromass C to SOC increased with increasing thinning intensity. The content of soil bacterial and fungal necromass C was mainly controlled by the relative abundance of the core phylum (relative abundance>10 %). Thinning affected the soil C pool by affecting the content of soil bacterial and fungal necromass C, but their accumulation pathways was different. The results showed that thinning was beneficial to the stability of SOC. The microbial C pool, total organic C pool and even bacterial and fungal C pools should be distinguished when studying the soil C pool, which can effectively deepen our understanding of the mechanism by which soil microorganisms affect the soil C pool.


Subject(s)
Microbiota , Soil , Soil/chemistry , Carbon , Soil Microbiology , Forests , Bacteria
16.
Sensors (Basel) ; 23(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904621

ABSTRACT

Text regions in natural scenes have complex and variable shapes. Directly using contour coordinates to describe text regions will make the modeling inadequate and lead to low accuracy of text detection. To address the problem of irregular text regions in natural scenes, we propose an arbitrary-shaped text detection model based on Deformable DETR called BSNet. The model differs from the traditional method of directly predicting contour points by using B-Spline curve to make the text contour more accurate and reduces the number of predicted parameters simultaneously. The proposed model eliminates manually designed components and dramatically simplifies the design. The proposed model achieves F-measure of 86.8% and 87.6% on CTW1500 and Total-Text, demonstrating the model's effectiveness.

17.
J Exp Bot ; 74(5): 1403-1419, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36478231

ABSTRACT

Weedy rice (Oryza spp.), one of the most notorious weeds of cultivated rice, evades eradication through stem lodging and seed shattering. Many studies have focused on seed shattering, whereas variations in lodging have received less attention and the underlying mechanisms that cause the differences in lodging between weedy and cultivated rice have not been studied in detail. Here, we compared lodging variation among diverse Chinese weedy rice strains and between weedy rice and co-occurring cultivated rice. The chemical composition of basal stems was determined, and transcriptome and methylome sequencing were used to assess the variation in expression of lodging-related genes. The results showed that the degree of lodging varied between indica-derived weed strains with high lodging levels, which occurred predominantly in southern China, and japonica-derived strains with lower lodging levels, which were found primarily in the north. The more lodging-prone indica weedy rice had a smaller bending stress and lower lignin content than non-lodging accessions. In comparison to co-occurring cultivated rice, there was a lower ratio of cellulose to lignin content in the lodging-prone weedy rice. Variation in DNA methylation of lignin synthesis-related OsSWN1, OsMYBX9, OsPAL1, and Os4CL3 mediated the differences in their expression levels and affected the ratio of cellulose to lignin content. Taken together, our results show that DNA methylation in lignin-related genes regulates variations in stem strength and lodging in weedy rice, and between weed strains and co-occurring cultivated rice.


Subject(s)
Oryza , Oryza/genetics , Phenotype , Lignin , Genes, Plant , Cellulose , Genetic Variation
18.
Commun Biol ; 5(1): 1356, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36494568

ABSTRACT

Presently, the supply of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) traditionally produced by marine fisheries will be insufficient to meet their market demand in food industry. Thus a sustainable alternative source is urgently required. Schizochytrium sp. is an ideal producer of DHA; however, its ability to co-produce DHA and EPA has not yet been proved. Herein, we first described a cobalamin-independent methionine synthase-like (MetE-like) complex, which contains independent acyltransferase and 3-ketoacyl synthase domains, independent of the traditional polyketide synthase (PKS) system. When the MetE-like complex was activated, the EPA content was increased from 1.26% to 7.63%, which is 6.06-folds higher than that in the inactivated condition. Through lipidomics, we find that EPA is more inclined to be stored as triglyceride. Finally, the EPA production was enhanced from 4.19 to 29.83 (mg/g cell dry weight) using mixed carbon sources, and the final yield reached 2.25 g/L EPA and 9.59 g/L DHA, which means that Schizochytrium sp. has great market potential for co-production of EPA and DHA.


Subject(s)
Docosahexaenoic Acids , Eicosapentaenoic Acid , Eicosapentaenoic Acid/metabolism , Polyketide Synthases
19.
Molecules ; 27(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36234975

ABSTRACT

The fast and reliable analysis of electrolytes such as K, Na, Ca in human blood serum has become an indispensable tool for diagnosing and preventing diseases. Laser-induced breakdown spectroscopy (LIBS) has been demonstrated as a powerful analytical technique on elements. To apply LIBS to the quantitative analysis of electrolyte elements in real time, a self-developed portable laser was used to measure blood serum samples supported by glass slides and filter paper in this work. The partial least squares regression (PLSR) method was employed for predicting the concentrations of K, Na, Ca from serum LIBS spectra. Great prediction accuracies with excellent linearity were obtained for the serum samples, both on glass slides and filter paper. For blood serum on glass slides, the prediction accuracies for K, Na, Ca were 1.45%, 0.61% and 3.80%. Moreover, for blood serum on filter paper, the corresponding prediction accuracies were 7.47%, 1.56% and 0.52%. The results show that LIBS using a portable laser with the assistance of PLSR can be used for accurate quantitative analysis of elements in blood serum in real time. This work reveals that the handheld LIBS instruments will be an excellent tool for real-time clinical practice.


Subject(s)
Lasers , Serum , Electrolytes , Humans , Least-Squares Analysis , Spectrum Analysis/methods
20.
Biotechnol Biofuels Bioprod ; 15(1): 114, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36289497

ABSTRACT

BACKGROUND: Schizochytrium sp. is a heterotrophic, oil-producing microorganism that can efficiently produce lipids. However, the industrial production of bulk chemicals using Schizochytrium sp. is still not economically viable due to high-cost culture medium. Replacing glucose with cheap and renewable lignocellulose is a highly promising approach to reduce production costs, but Schizochytrium sp. cannot efficiently metabolize xylose, a major pentose in lignocellulosic biomass. RESULTS: In order to improve the utilization of lignocellulose by Schizochytrium sp., we cloned and functionally characterized the genes encoding enzymes involved in the xylose metabolism. The results showed that the endogenous xylose reductase and xylulose kinase genes possess corresponding functional activities. Additionally, attempts were made to construct a strain of Schizochytrium sp. that can effectively use xylose by using genetic engineering techniques to introduce exogenous xylitol dehydrogenase/xylose isomerase; however, the introduction of heterologous xylitol dehydrogenase did not produce a xylose-utilizing engineered strain, whereas the introduction of xylose isomerase did. The results showed that the engineered strain 308-XI with an exogenous xylose isomerase could consume 8.2 g/L xylose over 60 h of cultivation. Xylose consumption was further elevated to 11.1 g/L when heterologous xylose isomerase and xylulose kinase were overexpressed simultaneously. Furthermore, cultivation of 308-XI-XK(S) using lignocellulosic hydrolysates, which contained glucose and xylose, yielded a 22.4 g/L of dry cell weight and 5.3 g/L of total lipid titer, respectively, representing 42.7 and 30.4% increases compared to the wild type. CONCLUSION: This study shows that engineering of Schizochytrium sp. to efficiently utilize xylose is conducive to improve its utilization of lignocellulose, which can reduce the costs of industrial lipid production.

SELECTION OF CITATIONS
SEARCH DETAIL
...