Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 15: 1415723, 2024.
Article in English | MEDLINE | ID: mdl-38983623

ABSTRACT

The physiological and genotypic characteristics of Mangrovibacter (MGB) remain largely unexplored, including their distribution and abundance within ecosystems. M. phragmitis (MPH) ASIOC01 was successfully isolated from activated sludge (AS), which was pre-enriched by adding 1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol as carbon sources. The new isolate, MPH ASIOC01, exhibited resilience in a medium containing sodium chloride concentration up to 11% (with optimal growth observed at 3%) and effectively utilizing glycerol as their sole carbon source. However, species delimitation of MGBs remains challenging due to high 16S rRNA sequence similarity (greater than 99% ANI) among different MGBs. In contrast, among the housekeeping gene discrepancies, the tryptophan synthase beta chain gene can serve as a robust marker for fast species delimitation among MGBs. Furthermore, the complete genome of MPH ASIOC01 was fully sequenced and circlized as a single contig using the PacBio HiFi sequencing method. Comparative genomics revealed genes potentially associated with various phenotypic features of MGBs, such as nitrogen-fixing, phosphate-solubilizing, cellulose-digesting, Cr-reducing, and salt tolerance. Computational analysis suggested that MPH ASIOC01 may have undergone horizontal gene transfer events, possibly contributing unique traits such as antibiotic resistance. Finally, our findings also disclosed that the introduction of MPH ASIOC01 into AS can assist in the remediation of wastewater chemical oxygen demand, which was evaluated using gas chromatograph-mass spectrometry. To the best of our knowledge, this study offers the most comprehensive understanding of the phenotypic and genotypic features of MGBs to date.

2.
J Am Chem Soc ; 146(3): 2257-2266, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38195401

ABSTRACT

Metallic Al has been deemed an ideal electrode material for aqueous batteries by virtue of its abundance and high theoretical capacity (8056 mAh cm-3). However, the development of aqueous Al metal batteries has been hindered by several side reactions, including water decomposition, Al corrosion, and passivation, which arise from the solvation reaction of Al and H2O in conventional aqueous electrolytes. In this work, we report that water activity in electrolyte can be suppressed by optimizing the Al3+ solvation structure through intercalation of polar pyridine-3-carboxylic acid in an aluminum trifluoromethanesulfonate aqueous environment. Furthermore, the pyridine-3-carboxylic acid molecules are inclined to alter the surface energy of Al, thus suppressing the random deposition of Al. As a result, the Al corrosion in the hybrid electrolyte is restrained, and the long-term electrochemical stability of the electrolyte is tremendously improved. These merits bring remarkable reversibility to aqueous Al batteries using Al-preintercalated MnO2 cathodes, delivering a retaining energy density of >250 Wh kg-1 at 0.2 A g-1 after 600 cycles.

3.
Am J Cancer Res ; 12(7): 3390-3404, 2022.
Article in English | MEDLINE | ID: mdl-35968338

ABSTRACT

Although prostate cancer (PC) is the most common cancer among men in the Western world, there are no good biomarkers that can reliably differentiate between potentially aggressive and indolent PC. This leads to overtreatment, even for patients who can be managed conservatively. Previous studies have suggested that nuclear lamin proteins-especially lamin B1 (LMNB1)-play important roles in PC progression. However, the results of these studies are inconsistent. Here, we transfected the LMNB1 gene into the telomerase reverse transcriptase-immortalized benign prostatic epithelial cell line, EP156T to generate a LMNB1-overexpressing EP156T (LMN-EP156T) cell line with increased cellular proliferation. However, LMN-EP156T cells could neither form colonies in soft agar, nor establish subcutaneous growth or metastasis in the xenograft NOD/SCID mouse model. In addition, immunohistochemical staining of LMNB1 in PC specimens from 143 patients showed a statistically significant trend of stronger LMNB1 staining with higher Gleason scores. A univariate analysis of the clinicopathological parameters of 85 patients with PC who underwent radical prostatectomy revealed that pathological stage, resection margin, and extracapsular extension were significant predictors for biochemical recurrence (BCR). However, LMNB1 staining showed only a non-significant trend of association with BCR (high vs. low staining: hazard ratio (HR), 1.83; 95% confidence interval (CI), 0.98-3.41; P = 0.059). In multivariate analysis, only pathological stage was a significant independent predictor of BCR (pT3 vs. pT2: HR, 2.29; 95% CI, 1.18-4.43; P = 0.014). In summary, LMNB1 may play a role in the early steps of PC progression, and additional molecular alterations may be needed to confer full malignancy potential to initiated cells.

4.
Protein Pept Lett ; 27(11): 1068-1081, 2020.
Article in English | MEDLINE | ID: mdl-32348206

ABSTRACT

Matrix Metalloproteinases (MMPs) belong to a family of metal-dependent endopeptidases which contain a series of conserved pro-peptide domains and catalytic domains. MMPs have been widely found in plants, animals, and microorganisms. MMPs are involved in regulating numerous physiological processes, pathological processes, and immune responses. In addition, MMPs play a key role in disease occurrence, including tumors, cardiovascular diseases, and other diseases. Compared with invertebrate MMPs, vertebrate MMPs have diverse subtypes and complex functions. Therefore, it is difficult to study the function of MMPs in vertebrates. However, it is relatively easy to study invertebrate MMPs because there are fewer subtypes of MMPs in invertebrates. In the present review, the structure and function of MMPs in invertebrates were summarized, which will provide a theoretical basis for investigating the regulatory mechanism of MMPs in invertebrates.


Subject(s)
Extracellular Matrix/enzymology , Invertebrates/enzymology , Animals , Extracellular Matrix/genetics , Invertebrates/genetics , Matrix Metalloproteinases/classification , Matrix Metalloproteinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL